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Abstract: In this paper an alternative approach to black-box identification of

- non-linear dynamic systems is compared with the more established approach
of using artificial neural networks. The Gaussian process prior approach is a
representative of non-parametric modelling approaches. It was compared on a pH
process modelling case study. The purpose of modelling was to use the model
for control design. The comparison revealed that even though Gaussian process
models can be effectively used for modelling dynamic systems caution has to be
exercised when signals are selected. Copyright © 2003 IFAC
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1. INTRODUCTION

Gaussian processes (GPs) are being increasingly
used to tackle many of the standard applications
usually addressed by artificial neural networks
(ANN), see e.g. (Williams, 1998). In fact, the two
models are closely related, and in the limit of an
infinite number of neurons in the hidden layver
in the Bayesian treatment the two are equivalent
(Neal, 1996). Nevertheless, the majority of work
on GPs shown up to now considers modelling of
static non-linearities. The GP prior approach for
modelling dynamic systems has been the scope
of much recent work (Murray-Smith et. al., 199¢;

1 This work was made possible by EC funded Research
Training Network HPRN-CT-1999-01107

Murray-Smith and Girard, 2001; Girard et al.,
2002; Gregoréi¢ and Lightbody, 2002; Kocijan et
al., 2003).

While the relationship with neural networks has
been established, a comparison in the field of dy-
namic systems identification has not yet been fully
revealed. Whenever a new (control directed) mod-
elling approach for dynamic systems is introduced
it is important to compare it with some already
established method that is related to the evalu-
ated one and GPs are no exception. The purpose
of this contribution is to compare GP dynamic
models to a multi-layer perceptron ANN model
using the pH neutralisation process benchmark.
where the goal is control design.
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Despite being well established and popular, ANNs
still lack some properties that would further in-
crease their acceptance. A large number of data
points is necessary in order to identify the model
properly. Furthermore, a relatively large number
of parameters needs to be optimized when an
ANN is used for identification.

Unlike ANNs, GPs naturally provide the variance
associated with the estimated output for each
time sample. Advantages of this information are
presented in other works (e.g. (Kocijan et al.,
2003)) and will not be the topic of this paper.
The main point of investigation here is to evaluate
whether dynamic features of the process to be
modelled can be captured with the GPs mean
value as they are with ANNs response.

In the next section, the pH neutralisation pro-
cess used is briefly described. This is a frequently
used benchmark for comparison of different ap-
proaches. Identification with neural networks and
with GPs is presented in Section 3 and 4 re-
spectively. The last section gives some concluding
remarks.

2. PROCESS MODEL

A pH neutralization process model taken from
(Henson and Seborg, 1994) was used for the study.
The process consists of an acid stream, buffer
strearn and base streamn that are mixed in a tank
T;. Prior to mixing, the acid stream enters the
tank T2 which introduces additional flow dynam-
ics. The acid and base flow rates are controlled
with flow control valves, while the buffer flow
rate is controlled manually with a rotameter. The
effiuent pH is the measured variable. Since the pH
probe is located downstream from the tank T 1, &
time delay is introduced in the pH measurement.
In this study, the pH is controlled by manipulat-
ing the base flow rate. The model includes valve
and transmitter dynamics as well as hydraulic
relationships for the tank outlet fows. Modelling
assumptions include perfect mixing, constant den-
sity, and complete solubility of the ions involved.
The simulation model of pH process which was
used for necessary data generation therefore con-
tains various non-linear elements as well as im-
plicitly calculated function (value of highly non-
linear titration curve). A more detailed descrip-
tion of the process with mathematical model and
necessary parameters is presented in (Henson and
Seborg, 1994).

2.1 Selection of input signals and model simulation
To get a vague idea about our system dynamics,

necessary for sampling time and input signal se-
lection, some preliminary tests were pursued. The

process model was excited with a combination of

- step-like signals for estimation of the dominant

time constant and settling time. The dominant
time constant was estimated in range between 65
and 185 s and settling time between 135 and 325
s (Fig. 1).
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Fig. 1. Input step-like signal (upper figure) and
process model response (lower figure)

This ‘provisional’ dynamics is necessary for the
estimation of appropriate sampling time. Based
on responses and iterative cut-and-try procedure
a sampling time of 25 seconds was selected for
these tests. The sampling time was so large that
the dead-time mentioned in the previous section
disappeared.

Based on these preliminary tests the chosen iden-
tification signal (400 samples) was generated from
a uniform random distribution and sampling time
of 50 seconds.

The validation signal was obtained using a gen-
erator of random noise with uniform distribution
and sampling time of 500 seconds, so it has lower
magnitude and frequency compounents than the
identification signal. The rationale behind this is
that if the model was identified using a rich signal,
then it should respoud well to a signal with less
components.

3. DYNAMIC MODEL IDENTIFICATION
WITH MULTILAYER PERCEPTRON

As ANNs are a well established approach to sys-
tem identification, a number of computer tools
exist to facilitate the identification. In our case, a
Matlab programme package, in particular a Neu-
ral Network Based System Identification Toolbox
(Norgaard et al., 2000), was used as the compu-
tation tool. This toolbox was chosen because it
contains functions for learning, validation, sin-
lation and optimization of multilayer perceptrons
with special emphasis on identification of dynamic
systemns.



8.1 Neural network structure and optimization

First all the data were scaled to have a mean value
of 0 and variance of 1. For the neural network
‘structure a nonlinear autoregression model with
exogencous input (NARX, for neural networks
NNARX) and Levenberg-Marquardt optimization
method for parameter optimization was chosen.
The hidden layer contained sigmoid activation
functions and the output layer contained a linear
activation function. The activation functions are
determined by use of the toolbox and could not
be changed. However, selection of other non-linear
functions for hidden laver would not improve the
quality of identified model much.

The reason for chosing the NNARX structure was
the relative simplicity of structure (only input and
output delayed signals for regressors). The choice
of regressors is a difficult one and is common to
all black-box modelling approaches. The number
of regressors (delayed inputs and outputs) was
determined by a toolbox function that determines
the lag space. For more detailes see (Norgaard et
al., 2000). The obtained plot did not have distine-
tive knee-points at lags of 2,3 and 4 which means
that it would not, be unreasonable to assume that
the system can be modelled by the model of form

y(k) = fly(k 1), y(k
ulk 1),u(k

2).y(k 3)ylk 4),
2),ulk 3),u(k 4))

(1)

where k denotes consecutive number of data san-
ple. The optimal munber of neurons in the hid-
den layer was determined by optimization. The
network was optimized for each possible number
of hidden neurons in a certain range, starting
from 2 and the model order from 4 to 6 (which
corresponds to the number of delayed outputs
contained in the vector of regressors). Levenberg-
Marquardt method is the standard method (not
necessarily the most efficient) for minimization of
mean-square error criteria, due to its rapid con-
vergence properties and robustness. An important
factor of choice was also its availability in the
software used.

At the end of this lengthy procedure, the optimal
parameters were obtained for the model given by
equation (1), with the regressor vector composed
of four delayed inputs and outputs and with ten
neurons in the hidden layer. To avoid redundant
connections between neurons, pruning of ANN
was pursued. Only one connection was determined
as redundant.

3.2 Model validation

Visual inspection of the plot comparing predic-
tions to data used for validation is probably
the most important validation tool (Nergaard et
al., 2000). Responses of ANN and comparison
with process model respouse to the identification
and validation input signal is given in Fig. 2.
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Fig. 2. Simulated responses of neural network
(dashed line) and process model (full line) on
identification input signal (upper figure) and
responses of neural network {dashed line) and
process model (full line) on validation input
signal (lower figure)

A satisfactory fit can be observed for identification
input signal which is understandable, since this
signal was used for optimization. The response to
the validation input signal is obtained by simula-
tion (not by one-step ahead prediction).

The goodness of the fit of the model response was
assessed by calculating the average absolute test
(validation) error, AE, and the average squared
test error, SE.

1 .~ .
AE = — Y1y yl=0.0672 (2)
and
SE = Z(y y)? = 0.0142 (3)

where N is the number of data in the validation
set, y the process response (target) and y is
the model output. The first 20 samples were
not used in for this evaluation due to undefined
delayed values at the beginning of simulation and
a consequent transient response.

The autocorrelation function (Fig. 3) of the er-
ror between network response and process model
response on the validation signal and the cross
correlation between error and input validation
signal also indicated a satisfactory identification.
From these results it can be concluded that the
ANN model captures the dynamics of the pH
neuralization process model relatively well. There
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Fig. 3. Autocorrelation function of the error be-
tween network response and process model
response on the validation signal
may be scope to improve the ANN model, but it is
sufficiently good for numerous ANN model-based
control designs. The resulting ANN is not too
large to be handled and was relatively routinely
obtained with the selected software tool. Never-
theless, it has to be stressed that input signals
and number of samples were selected suited to
identification with ANNs.

4. DYNAMIC MODEL IDENTIFICATION
WITH GAUSSIAN PROCESSES

4.1 A quick review of modelling with Gaussian.
Processes

A Gaussian Process is a collection of random
variables which have a joint multivariate Gaussian
distribution: f(z!),..., f(z") ~ N(0,%), where
L,q gives the covariance between outputs f(z?)
and f(z9) corresponding to inputs z” and 24.

We have Cov(f(27), f(z79)) = C(zP,z9), where
C(.,.) is some function with the property that
it generates a positive definite covariance matrix.
This means that the covariance between the vari-
ables that represent the outputs for cases number
p and ¢ is a function of the inputs corresponding
to the same cases p and q.

A stationary (depends only on the distance be-
tween points) Gaussian covariance function (such
as (4)) is used in this work:

o

D o» 2
Cla?,z%) = 1y exp[ EZW} 4
2 e w3
where D is the input dimension. This choice
corresponds to points close together being more
correlated than points far apart — a smoothness
assumption.

Learning. It is assumed that the data are noisy
versions of the function outputs. That is, if it is
sssumed y = f(2) + ¢ where € is an uncorrelated
{white) noise with variance vy. Then, the covari-
ance between the training cases y” and y7 is given
by

Kpy = CxP,2%) + vody, (5)
in which the noise contribution is non zero only
when p = g¢. Given a set of training cases

{¢*, 2"}, where 2’ is (possibly) a D-dimensional
input vector, the hyperparameters of the covari-
ance function, © = [w;...wp v, vo)7 are to be
learned.

The learning is done by maximizing the marginal
log-likelihood

1o 1 N
L) = 3loglK| sy'K 'y 5 log(2m) (6)

where y is the N x 1 vector of training targets and
K is the N x N training covariance matrix .

Predicting. For a new test input z*, the predictive
distribution of the corresponding output is yjz* ~
N(py (%), 02(x*)) with

py(z) =k(=*)'K 1y (7)
oa(z*) =k(z*) k(z*)TK k(z*)+vo (8)

where k = [C(z*,2!),...,C(z*,z™)]7 is the Nx1
vector of covariances between the test and training
cases and k(z*) = C(z*, z*) is the variance of the
new test case.

Validation of the model is obtained by simulation,
that we can view as infinite-step ahead prediction
(where infinite is, in practice, the length of the
validation set). Currently, k-step ahead prediction
can be achieved by either training the model to
learn how to make k-step ahead predictions (direct
method) or by doing repeated one-step ahead
predictions up to k - iterative method. For a model
of the form

y(k) = fy(k 1),y(k 2).....u(k 1wk 2),...),

(9)
it corresponds to feeding back the model output
at each time step

yky = fo(k 14k 2),...,uk 1),...).

(10)
In our experiment, the iterative approach as pre-
sented here is used, although (Girard et al., 2002)
proposed a principled approach taking account of
the uncertainty of the model output at each time
step. Au example of modelling a dynamic system
with a GP can be found in (Kocijan et al., 2003).

4.2 Regressors and parameter optimization

The same data and the same model representation
(1) were used as for the ANN. The counterpart of
ANN’s choice of number of layers and nodes, is.
in the GP modelling framework, the choice of a
particular covariance function

Given our choice of covariance function (4), the
learning consists in the identification of the covari-
ance hyperparameters and the noise variance vg.
There is a hyperparameter corresponding to each
regressor- ‘component’ so that, after the learning,



if a hyperparameter is very large it means that
the corresponding regressor ‘component’ has little
impact so could potentially be removed.

The optimization method used for identification
of GP model was a conjugent gradient with line-
searches. The Polack - Ribiere conjugate gradients
is used to compute search directions, and a line
search using quadratic and cnbic polynomial ap-
proximations and the Wolfe-Powell stopping crite-
ria is used together with the slope ratio method for
guessing initial step sizes. Additionally a number
of checks are made to make sure that exploration
is taking place and that extrapolation will not be
unboundedly large (Rasmussen, 1996).

Obtained hyperparameters after optimization were 2 :

o wy = 1.23 (y(k)); we = 3.07 (y(k
204 (y(k  2)); wy =378 (y(k
correspond to previous outputs;

o ws = T0.7 (u(k)); we = 6.03 (u{k 1)); wy =
14.7 (w(k  2)); ws > 1000 (u(k  3)) which
correspond to previous inputs (in brackets);

® vy = (,0045 which is estimated noise variance
and

e vy = 2.339 which is the estimate of the
vertical variance.

1) ws =
3)) which

Results of simulation of the obtained 4th order GP
mode] and its assessment is given in the following
section.

4.3 Validation of results

Responses (estimates or predicted mean) of GP
model and comparison with process model re-
sponse to the same identification and validation
input signal as in the case of ANNs are given in
Fig. 4.

As in the case with the ANN a very good fit
can be observed for identification input signal
which was used for optimization. The response on
validation signal is not as good as in the case of
ANN model. The autocorrelation function of the
modelling error is given in Fig. 5.

Fitting of the response for validation signal:

e average absolute test error AE = 0.1494
e average squared test error SE = (0.0512

When the number of points in the training set is
reduced then the ANN performance deteriorates.
On the other hand, the advantage of GPs is that it
performs well given a small number of data (Fig.
6).

2 The code
is available at
http:/ /www.gatsby.uclLac.uk/~edward/code/gp/, for the
Matlab programme package.

implementing  the GP  modelling
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Fig. 4. Responses of Gaussian process model
(dashed line) and process model (full line) on
identification input signal {(upper figure) and
responses of Gaussian process wodel (dashed
line) and process model (full line) on valida-
tion input signal (lower figure)
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Fig. 5. Autocorrelation function of the error be-
tween Gaussian processes response and pro-
cess model response on the validation signal
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The second point that needs to be addressed is the
choice of covariance function and its link to GP
predictions. Selecting covariance functions suit-
able for robust generalisation in typical dynamic
systems applications should be a research priority.
The validation data was sufficiently different from
the training data in this case that the GP with a
smoothing covariance function performed poorly,
having optimised its parameters to fit the higher
frequency components present in the identifica-
tion data, but then being asked to make predic-
tions in areas of the input space unpopulated by
training data. The GP can, however, highlight
such areas of the input space where prediction
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quality is poor, due to the lack of data or its
complexity, by indicating the higher variance of
the predicted mean (Girard et al., 2002; Kocijan
et al., 2003).

From the presented results it can be seen that GP
models can be used for identification of dynamic
models, in our case the dynamics of the pH
neuralization process model, though under some
special considerations. Despite a poorer fit to the
validation data, the model could still be useful for
control design. The number of parameters for the
GP is much smaller than the number of weights
in ANN, and it could be used as well to select
the model structure (e.g. number of regressors)
via the hyperparameters. This means that the
procedure could be to start off with many delayed
inputs and outputs and decide to keep them or
not, depending on the value of the corresponding
hyperparameter after learning.

5. CONCLUSIONS

Two models of dynamical system were presented
in the paper. The first one is the well established
ANN model and the second one is GP model.
The purpose of this paper was to evaluate the
GP models use for dynamic models identification
under the same conditions as ANNs via compar-
ison on a case study, namely pH process model
identification. The models were developed for use
in system control.

The following conclusions can be drawn from
obtained results:

o GP models can be used to model dynamic
systems.

e There were no problems encountered with
the GP, when dealing with a rather small
number of data, but this model is difficult
to apply to large data sets because of com-
putational reasons (inversion of the N x N
training covariance matrix). However, efforts
are continuing to solve this problem.

o Obtained a GP model is relatively simple to
implement and contains a smaller number of
structure parameters than a corresponding
ANN.

o ANNs and GP models could have more com-
plementary role in systems identification. A
role of GPs especially where small number of
measurements is available and signals used
for identification and validation do not differ
very much.

e Beside envisaged GP based control design
(see e.g. (Murray-Smith and Sbarbaro, 2002),
there are still possibilities for further devel-

opment of GP model identification, especially
in the direction of nore efficient algorithm
development.
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