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Carl E. Rasmussen1

March 10, 2005

1 Department Schölkopf {kuss,tpfingst,csatol,carl }@tuebingen.mpg.de
2 Robert Bosch GmbH, Corporate Sector Research and Advance Engineering

This report is available in PDF–format via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/robust.pdf. The
complete series of Technical Reports is documented at: http://www.kyb.tuebingen.mpg.de/techreports.html



Approximate Inference for Robust Gaussian
Process Regression

Malte Kuss, Tobias Pfingsten, Lehel Csató, Carl E. Rasmussen

Abstract. Gaussian process (GP) priors have been successfully used in non-parametric Bayesian re-
gression and classification models. Inference can be performed analytically only for the regression model
with Gaussian noise. For all other likelihood models inference is intractable and various approximation
techniques have been proposed. In recent yearsexpectation-propagation(EP) has been developed as a
general method for approximate inference. This article provides a general summary of how expectation-
propagation can be used for approximate inference in Gaussian process models. Furthermore we present
a case study describing its implementation for a new robust variant of Gaussian process regression. To
gain further insights into the quality of the EP approximation we present experiments in which we com-
pare to results obtained byMarkov chain Monte Carlo(MCMC) sampling.

1 Introduction – Robustness & Bayesian Regression

To solve a real-world regression problem the analyst should carefully screen the data and use all prior
information at hand in order to choose an appropriate regression model. The model is selected so as to
approximate the beliefs about the data generating process. A mismatch seems unavoidable in practice.
Robust regression methods can be understood as attempts to limit undesired distractions and distortions
that result from this mismatch.

Robust regression is often associated with the notion ofoutliers, which refers to observations that are
in some sense structurally conspicuous. Often the presence of such outliers is attributed to observational
errors, e.g. data processing errors or failures of measuring instruments. Commonly a statistical model is
called robust if it leads to conclusions which are insensitive to the occurrence of such outlier observations.
Note that this implies that an observation can only be called an outlier relative to a given model. As Jaynes
(2003, ch. 21) phrases it: “One seeks data analysis methods that arerobust, which means insensitive to
the exact sampling distribution of errors, as it is often stated, insensitive to the model, or are,resistant,
meaning that large errors in small proportion of the data do not greatly affect the conclusions.”

The Bayesian answer to robust regression, i.e. handling outliers, results automatically from the com-
mon statement that a model should be chosen so as to reflect all the analyst’s beliefs and uncertainties.
So a Bayesian regression model can be considered robust if it explicitly accounts for the potential exis-
tence of outliers. Therefore, unless the analyst has absolutely no doubt that the model he has accounts
for all possible observations—in other words, unless he is certain that thereare no outliers relative to
that model—he should adjust the model to account explicitly for the potential occurrence of outliers.
A convenient way to reflect this belief is a mixture model. Jaynes (2003, ch. 21) calls it a “two-model
model” being a mixture of a model which accounts for theregular observations and a second model for
explainingoutliers. The “two-model model” will be the line of thought in the remainder of this paper.

Before we go on, we briefly describe inference in the framework of non-parametric Bayesian regres-
sion. By inferencewe refer to the process of updating our beliefs according to Bayes’ rule, i.e. comput-
ing the posterior from likelihood and prior, integrating the information contained in observed data. In
regression analysis the objective is to make inference related to a latent real-valued functionf(x) where
x ∈ RD. The non-parametric approach is to put a priorp0(f |θ1) directly on the space of functions and to

1



do inference onf . The simplest and most common prior over functions is a Gaussian process, described
in Section 2.

Inference aboutf is based on observed samplesy(x) = f(x) + ε which are corrupted by additive
noise. We assume the noise termε to be independent and identically distributed (iid.), leading to the joint
likelihood

p(y|f,X,θ2) =
N∏

n=1

p(yn|fn,xn,θ2) (1)

wherey = [y1, . . . , yN ]> denotes the observed outputs,X = [x1, . . . ,xN ]> are the corresponding in-
puts, andfn = f(xn) are the latent function values. We introduce a set of parametersθ2 to parameterise
the likelihoodp(y|f,x,θ2).1 For non-parametric Bayesian models the posterior over thef is computed
according to Bayes’ rule

ppost(f |X,y,θ1,θ2) =
p(y|f,X,θ2) p0(f |θ1)

p(y|X,θ1,θ2)
(2)

wheref is a random function and the parametersθ1 andθ2 are considered fixed. The denominator is
theevidence, or marginal likelihoodp(D|θ1,θ2) = p(y|X,θ1,θ2), which is the normalising constant
of the product of likelihood and prior. HereD = {X,y} denotes the observed data and we use the slight
abuse of notationp(D|·) to meanp(y|X, ·).

We now describe how we can construct a mixture likelihood—a two-model model—in order to obtain
a robust Bayesian regression model wrt. outliers iny. Let pr(yn|fn,θ2) denote a noise model which
describes our beliefs aboutregularobservations, like the typical error of a measuring instrument. Assume
we cannot deny the potential existence of outliers. For these outliers we believe the distribution of errors
po(yn|fn,θ2) to be different. If we useπ to denote the fraction of outlier observations, we can combine
both models

p(yn|fn,θ2) = (1− π) pr(yn|fn,θ2) + π po(yn|fn,θ2) .

and obtain a mixture likelihood. In the following we consider the mixture of two Gaussian distributions.
For regular observations we assume a relatively small varianceσ2

r compared to the varianceσ2
o of the

outlier distribution. Thus the noise model is

p(yn|fn,θ2) = (1− π) N (yn|fn, σ2
r ) + π N (yn|fn, σ2

o) (3)

whereθ2 = [π, σ2
r , σ

2
o ] collects the parameters. Assumingpr to be Gaussian is a common and often

plausible hypothesis. It seems more questionable to explain the outliers by Gaussian noise with relatively
large variance. If we were certain that this were the case then the Gaussian mixture model would be
correct and we would not call it robust. Generally, if we knew the outlier generating process, the notion
of robustness would vanish. But the notion of anoutlier involves a large uncertainty about their origin
and distribution. Consequently, using a wide Gaussian distribution forpo must be interpreted as aback-
upmodel explaining observations which are highly unlikely to come frompr.

In the following section we give an introduction to Gaussian process regression and describe why a
direct application of Bayes rule is unfeasible for the proposed mixture noise model. Then we proceed by
describing how the posterior process can be approximated using theexpectation propagationmethod. For
comparison we describe aMarkov chain Monte Carloapproach to approximate inference in Section 4.
Finally we describe experiments on several data sets in Section 5.

1We useθ1 to refer to parameters of prior distributions andθ2 to denote likelihood model parameters (other thanf )
throughout the paper. For different models the actual parameterisation can differ.
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(a) (b)

Figure 1: Samples from a zero-meanGP using a squared exponential covariance function (5). Figure (b) was generated with
the squared length-scalew2 six times larger than the one used in generating Figure (a). We observe thatw can be interpreted
as the characteristic length-scale at which the functions vary. Since the particular coordinates are not important, we omit axis
labelling in the figures.

2 Inference in Gaussian Process Models

After specifying a likelihood (1) we have to assign a prior distribution to the latent function values to
implement Bayesian inference. In Bayesian non-parametric regression we consider distributions onany
collection of function values, the family of these distributions constituting a stochastic process.

As prior over functions we use Gaussian process (GP) priors below. Each input positionx ∈ RD

has an associated random variablef(x). A Gaussian process overf technically means that the joint
distributions of a collectionf = [f(x1), . . . , f(xN )]> associated to any input setX is multivariate
Gaussian

p(f |X,θ1) = N (f |µ,K) (4)

with meanµ and covariance matrixK. A Gaussian process is specified by a mean functionµ(x)
and a positive-definite covariance2 function k(xi,xj |θ1), such thatKij = k(xi,xj |θ1) andµ =
[µ(x1), . . . , µ(xN )]>. By choosing a covariance function we introducehyper-parametersθ1 to the prior
GP.

Several families of covariance functions are known in the literature, for example, see Abrahamsen
(1997) or Scḧolkopf and Smola (2002, ch. 2). In the following we use a squared exponential covariance
function of the form

k(x,x′|θ1) = σ2
s exp

(
−1

2

D∑
d=1

(
x(d) − x′(d)

)2
w2

d

)
(5)

whereD is the dimension of inputsx ∈ RD, σ2
s is the signal variance andw = [w1, . . . , wD]> are

scaling parameters, such thatθ1 = [σ2
s ,w]. The effect of changing the length-scalesw on the prior

GP is illustrated in Figure 1. Note that having a scaling parameter for each input dimension allows the
model to adjust the influence of the respective input variables—a concept which Neal (1996, ch. 1) calls
automatic relevance determination(ARD).

In GP regression models inference overf is analytically tractable if the noise is assumed to be Gaus-
sian. We now describe briefly how to obtain the posterior process, which is again aGP so this can be
considered the conjugate setting. The derivation can be found in many introductory texts, e.g. Williams
(1998), MacKay (2003, ch. 45) or O’Hagan (1994, 10.48) to mention only three. Nevertheless we repeat
it here to contrast the difficulties that occur for other likelihoods, i.e. more complex noise models like the
Gaussian mixture noise described in the previous section.

The model isy(x) = f(x) + ε whereε ∼ N (0, σ2
r ) and on the latent functionf we put aGP prior

with zero-mean and given covariance function (e.g. (5)). Given the observedX we write the likelihood

2We use the terms covariance function and kernel function interchangeably.
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(a) (b) (c)

Figure 2: Illustration ofGP regression and the effect of outliers. The dashed line shows thesinc functionf(x) = sin(x)/x and
the circles mark noisy samples thereof. Figure (a) shows the fit of aGP model with Gaussian noise. The posterior process is
represented by its mean (solid line) and four standard deviations (dotted lines). Adding a single outlier (solid blue circle) affects
highly the posteriorGP with Gaussian noise – results shown in Figure (b). As before the mean function roughly interpolates
the samples while the uncertainty about the function is increased dramatically. This can be explained as an effect of the inferred
shorter length scalew and larger signal varianceσ2

s . Figure (c) shows the posteriorGPobtained when the noise is modelled as
a mixture of Gaussians. The methods used to generate the Figures are snMLII and mnMCMC as described in Section 5.

of f

p(y|f ,X,θ2) =
N∏

n=1

p(yn|f(xn),θ2) = N (y|f ,Π) (6)

whereΠ = σ2
rI is a diagonal matrix withσ2

r on its diagonal entries andθ2 = σ2
r . According to the

model conditioning the likelihood onf is equivalent to conditioning on the full functionf .
The posterior predictive distributionof the latent function valuef∗ for an arbitrary test locationx∗

can be computed using standard results for multivariate normal distributions (Mardia et al., 1979, ch. 3).
First we write the joint distribution under theGPprior p0(f , f∗), compute the joint posterior distribution
ppost(f , f∗|D,x∗) and marginalisef out to obtainppost(f∗|D,x∗). The posterior predictive distribution
of f∗ is again GaussianN (f∗|µpost(x∗), σ2

post(x∗)) with the following mean and variance

µpost(x∗) = k(x∗)> (K + Π)−1 y (7a)

σ2
post(x∗) = k(x∗,x∗)− k(x∗)> (K + Π)−1 k(x∗) (7b)

wherek(x∗) = [k(x1,x∗), . . . , k(xN ,x∗)]>. The posterior predictive distribution overf∗ provides
us a notion of theuncertaintyof the model about the prediction, as illustrated in Figure 2. The above
argumentation generalises to an arbitrary set of input locations, meaning that the posterior process onf
is again aGPwith mean function (7a) and posterior covariance function

kpost(x,x′) = k(x,x′)− k(x)> (K + Π)−1 k(x′) . (8)

So for any set of input locationsX∗ we can compute the posterior predictive distribution of the corre-
sponding function valuesf∗ which is multivariate normalN (f∗|µ∗post,K

∗
post).

So far we have described inference over latent function valuesf(x). We introduced the parametersθ1

andθ2 which were considered fixed. In a full Bayesian setting one should also perform inference over
these parameters. Therefore we have to assign some prior distributionsp0(θ1,θ2) and write the posterior
distribution of the parameters as

ppost(θ1,θ2|D) ∝ p(D|θ1,θ2) p0(θ1,θ2) (9)
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wherep(D|θ1,θ2) is the marginal likelihood, as it appeared in the denominator in equation (2). Usually
we are not primarily interested in the posterior distribution of the parameters (9) and therefore could
integrate them out from the joint posteriorppost(f∗,θ1,θ2|D,x∗) to obtain the predictive distribution
over the function valueppost(f∗|D,x∗). However, the calculations are analytically intractable. As will
be shown in Section 4, this step can be approximated using sampling techniques.

Instead of doing inference, a computationally more attractive procedure is to find maximum-likelihood
estimates forθ1 andθ2. Following themaximum likelihood II(ML-II) scheme, values for the parameters
are found by maximising the evidencep(D|θ1,θ2), see Williams and Rasmussen (1996) or MacKay
(1992) for details. Within theGP framework the logarithm of the evidence is

ln p(D|θ1,θ2) = ln
∫

df p(y|f ,θ2) p0(f |θ1) (10)

which in the case of Gaussian noise can be computed analytically:

ln p(D|θ1,θ2) = −1
2

ln |K(θ1) + Π(θ2)| −
1
2
y> (K(θ1) + Π(θ2))

−1 y − N

2
ln(2π) (11)

where the dependencies on the parameters have been made explicit. One can now maximise the log-
evidence inθ1 andθ2 to find adequate values for the parameters given the observed data. The optimal
parameters are not analytically computable but standard optimisation techniques, e.g. conjugate gradient,
can be used to find a local maximum.

Gaussian process regression with Gaussian noise combined with ML-II parameter estimation has
found many successful applications. Computationally the algorithm scales asO(n3) and so several
thousand observations can be handled without using further approximations. But changing the likeli-
hood, e.g. for classification or by assuming a different noise model for regression, leads to analytically or
computationally intractable inference problems. In those cases methods for approximate inference have
to be applied.

In the case we consider in this paper, the noise is modelled as a mixture of two Gaussian distributions
(3). The posterior becomes

ppost(f |D,θ1,θ2) =
p0(f |θ1)

p(D|θ1,θ2)

N∏
n=1

[
(1− π)N (yn|fn, σ2

r ) + πN (yn|fn, σ2
o)
]

(12a)

where the evidence is

p(D|θ1,θ2) =
∫

df p0(f |θ1)
N∏

n=1

[
(1− π)N (yn|fn, σ2

r ) + πN (yn|fn, σ2
o)
]

. (12b)

This integral is analytically solvable but rewriting it in terms of Gaussian integrals involves a change in
the order of summation and the product. This leads to a combinatorial explosion in the number of terms
and the resulting posterior comes in the form of a mixture of2N normal distributions. Therefore, for real
problems the large number of components makes it computationally intractable and we have to resort
to approximations. Note that the posterior process for the mixture noise model is not aGP anymore.
In fact it becomes a mixture of Gaussian processes, i.e.ppost(f∗|D,x∗) becomes a mixture of Gaussian
distributions which can be multi-modal as illustrated in Figure 3.

Various approximation techniques have been proposed that facilitate the implementation ofGPmodels
for inference tasks in which the posterior cannot be computed analytically. For example in the case ofGP
classification Williams and Barber (1998) propose a Laplace approximation, Gibbs and MacKay (2000)
use variational techniques, and Opper and Winther (2000) apply mean field methods. ForGP regression
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Figure 3: Sampled functions from the posterior process of aGP model with Gaussian mixture noise. The data (circles) have
been designed in order to offer multiple alternative hypotheses to explain the data. Accordingly, the model shows uncertainty
about whether the observations in the upper- and/or lower arc should be consideredoutliers. Therefore several hypotheses are
mixed which leads to a multimodalilty in the conflicting region. The samples have been generated using MCMC as described
in Section 4.

Neal (1997) describes an MCMC scheme for implementing robust regression usingt-distributed noise.
In the context of theRelevance Vector Machineframework a variational approach has been proposed
for mixture noise models andt-distributed noise by Faul and Tipping (2001) and Lawrence and Tipping
(2003) respectively.

In this article we implement and compare two methods for approximate inference for theGP regres-
sion model with mixture noise: an analyticexpectation-propagationapproximation (Section 3) and a
sampling based approximation usingMarkov chain Monte Carlotechniques (Section 4).

3 Expectation Propagation for Gaussian Process Models

As described above, for non-Gaussian likelihoods computing the posterior inGP models becomes in-
tractable. In this section we describeexpectation propagation(EP) as a method to approximate the
posterior by a Gaussian distribution. We start with a general description of the method and later exem-
plify its use for the mixture noiseGP regression model in combination with ML-II parameter estimation.
In describing the algorithm we follow Opper and Winther (2000) and Minka (2001).
Expectation propagation aims at minimising the Kullback-Leibler (KL) divergence

KL [ppost(f)‖N (f |m,A)] =
∫

df ppost(f) ln
(

ppost(f)
N (f |m,A)

)
(13)

between the posterior distributionppost(f) and its Gaussian approximation with meanm and covariance
A. The minimum of (13) is taken for a normal distribution that matches the posteriors moments,m =
µpost andA = Σpost,whereµpost andΣpost denote mean and covariance of the posterior distribution3.
For non-Gaussian likelihoods—just as the mixture model—calculation of the moments is not possible.
Expectation propagation approximates those moments.

Starting point of EP is to impose a factorising structure

N (f |m,A) ∝ p0(f)
N∏

n=1

tn(fn) (14)

on the approximation which resembles the structure of a factorising likelihood times prior. Since the
termstn(fn) depend only on a singlefn Seeger (2003) calls themsite functions. As the approximated
posterior is to be Gaussian, the site functionstn have to be quadratic exponentials

tn(fn|µn, σ2
n, Cn) def= Cn exp

(
−(fn − µn)2

2σ2
n

)
. (15)

3This result can be obtained by writing the multivariate normal aspappr(f |α, β,Λ) = exp
(
α + βT f + fT Λf

)
and using

a Lagrange parameter on the normalisation constraint.
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There is no need for the individual sitestn(fn) to be normalizable, so we do not restrict them to
be distributions. It is sufficient to constrain the resulting covariance matrixA to be positive-definite,
i.e.N (f |m,A) to be a proper distribution.

For the Gaussian approximation constrained to the form of (14) the mean and covariance are

m def= AΣ−1µ , A def=
(
K−1 + Σ−1

)−1
(16a)

whereµ = (µ1, . . . , µN )> andΣ = diag(σ2
1, . . . , σ

2
N ). The objective is to minimise the KL-divergence

(13)

{µ, Σ} = argmin
µ,Σ

KL [ppost(f)‖N (f |m,A)] ; wherem,A are given by (16a). (16b)

Note that sinceA is constrained, it might not be possible to match all elements of the covariance of the
posteriorΣpost exactly.

Before we give a formal derivation of the EP algorithm, we provide an intuitive description of how the
approximationN (f |m,A) is found. Assume we have given all but thenth site function such that the
following approximation holds:

p0(f)
∏
j 6=n

p(yj |fj ,θ2) ≈ p0(f)
∏
j 6=n

t(fj) . (17)

We aim at finding parameters of the remainingtn such that the resulting approximation (14) is as close to
the posterior as possible. Trying to match allmi andAij to the moments of the posterior is too ambitious
as we have only two parametersµn andσn. Therefore we restrict ourselves to matching the moments
mn andAnn. This corresponds to finding the parametersµn andσn such that〈fk

n〉N (f |m,A) = 〈fk
n〉post

for k = 1, 2. Assuming (17) holds we approximate the posterior moments:

〈fk
n〉post =

1
p(D|θ1,θ2)

∫
df fk

n p(yn|fn,θ2) p0(f)
∏
j 6=n

p(yj |fj ,θ2) (18a)

≈ 1
p(D|θ1,θ2)

∫
df fk

n p(yn|fn,θ2) p0(f)
∏
j 6=n

t(fj) . (18b)

After calculating the integrals we can match the moments and find the corresponding parameter values
of µn andσn. The EP scheme iteratively updates the site functions in random order until the system
converges. Changingtn affects all elements ofm andA globally through (16a). At convergence the
approximate posteriorN (f |m,A) is guaranteed only to match posterior mean and diagonal entries of
the covariance matrix exactly. However, as we imposed the posteriors factorising structure in (14), we
can expect that this leads to a good global approximation in the sense of (13).

3.1 Derivation of Expectation Propagation

While the above description is an attempt to provide an intuition on how EP finds an approximation to
the posterior, in this section we reformulate the derivation given by Opper and Winther (2000). The
derivation of EP comes as a sequence of approximation steps which lead to a set of nonlinear equations
that characterise the optimal parametersµ andΣ for the site terms. If we could find a Gaussian approx-
imationN (f |m,A) that matched the first two moments of the posterior distribution exactly we would
have the solution to (16), but due to the structural constraints in (16a) an exact match between moments
might not be possible. Therefore instead of matching the mean and the complete covariance matrix, we
only match meansµpost

n = 〈fn〉post and diagonal elementsΣpost
nn = var(fn)post of the covariance matrix.
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So only the first and second moments〈fk
n〉post, k = 1, 2 have to be computed. Thekth moment offn

under the posterior distribution is

〈fk
n〉post =

1
p(D|θ1,θ2)

∫
df fk

n p0(f)
N∏

j=1

p(yj |fj ,θ2) (19a)

=
1

p(D|θ1,θ2)

∫
dfn fk

n p(yn|fn,θ2)
∫

df\n p0(f)
∏
j 6=n

p(yj |fj ,θ2) (19b)

def=
1

p(D|θ1,θ2)

∫
dfn fk

n p(yn|fn,θ2) q\n(fn) (19c)

where in (19c) we have grouped and integrated out thef\n which denotesf exceptfor the site variable
fn. We defined thecavityfunctionq\n(fn) according to Opper and Winther (2000). The cavity function
is proportional to the predictive distribution offn given all but thenth sample.

Since the definition ofq\n(fn) in (19c) includes all likelihood terms exceptp(yn|fn,θ2), computing
the integral is still unfeasible. Therefore we need an approximation to the cavity function. As we
approximate the posterior by a Gaussian distribution we approximate the cavity functionq\n(fn) by
an unnormalised Gaussian distributionq̃\n(fn) ∝ N (fn|µ\n, σ2

\n) (for details see Opper and Winther
(2000)). Consequently we can identify

q̃\n(fn) =
∫

df\n p0(f)
∏
j 6=n

tj(fj). (20)

The integral only involves quadratic exponentials and we can find analytic expressions for the parameters
of q̃\n(fn). We have

q̃\n(fn) t(fn) =
∫

df\n N (f |0,K)
∏
j

t(fj) (21a)

∝
∫

df\n N (f |0,K)N (f |µ,Σ) = N (fn|mn,Ann) (21b)

and thereforeN (fn|µ\n, σ2
\n)t(fn) ∝ N (fn|mn,Ann) which we can solve for the parameters of the

approximate cavity function:

σ2
\n =

(
1

Ann
− 1

σ2
n

)−1

and µ\n = σ2
\n

(
mn

Ann
− µn

σ2
n

)
. (22)

In (22) one identifies the covariance matrixA = (K−1 + Σ−1)−1 as a link between the equations for
all sites.

The next step in the derivation of EP leads to a set of nonlinear equations that characterise the solution.
Using approximation (20) we state expressions for moment matching〈fk

n〉N (f |m,A) = 〈fk
n〉post for k =

0, 1, 2. The moments〈fk
n〉post of the approximate marginal posterior, including the true likelihood term

Z∗
n

def=
∫

dfn q̃\n(fn) p(yn|fn,θ2) (23a)

Fµn

def=
1

Z∗
n

∫
dfn fn q̃\n(fn) p(yn|fn,θ2) (23b)

Fσ2
n

+ F 2
µn

def=
1

Z∗
n

∫
dfn f2

n q̃\n(fn) p(yn|fn,θ2) . (23c)
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must be calculated by solving the one-dimensional integrals. Being able to solve the integrals is crucial
for applying EP. Sincẽq\n is Gaussian this can be done analytically for various functional forms of
likelihoodsp(yn|fn,θ2). For cases where there is no analytical solution, Seeger (2003, app. C) proposes
calculating the one-dimensional integrals numerically using Gauss-Hermite quadrature.

We now equate these moments with the according moments〈fk
n〉N (f |m,A) of the approximation in

which the site function replaces the likelihood term:

Z∗
n

!=
∫

dfn q̃\n(fn) tn(fn) (24a)

Fµn

!=
1

Z∗
n

∫
dfn fn q̃\n(fn) tn(fn) (24b)

Fσ2
n

+ F 2
µn

!=
1

Z∗
n

∫
dfn f2

n q̃\n(fn) tn(fn) (24c)

Using basic Gaussian identities we obtain the following set of coupled nonlinear equations for the pa-
rametersCn, µn andσn of the site function:

Cn =
Z∗

n

Zn
with Zn

def=
∫

dfn q̃\n(fn) exp
(
−(fn − µn)2

2σ2
n

)
(25a)

σ2
n =

(
F−1

σ2
n
− σ−2

\n

)−1
(25b)

µn = σ2
n

(
F−1

σ2
n

Fµn − σ−2
\n µ\n

)
. (25c)

The solutionsµ andΣ form the fixed point of the above set of equations. They can be found by iter-
atively updating the parameters of the individual sites as shown in Algorithm 1. However, convergence
cannot be guaranteed.

Algorithm 1 Expectation Propagation Scheme for Gaussian Process Models
Given: K, y, p(y|f,θ2), convergence toleranceε
Initialise: A← K and site function parametersσ2

n, µn

repeat
for all site functionsn in random orderdo

1. Compute cavity distribution q̃\n(fn) = N (fn|µ\n, σ2
\n) using equations (22).

2. Compute momentsFσ2
n
, Fµn , Zn andZ∗

n analytically or by numerical integration.
3. Update the parametersof tn(fn) according to (25)(a–c).
4. Updatem and A using (16a).

end for
until absolute change inZ∗

n, σ2
n andµn smaller thanε

In the description of EP we have not restricted ourselves to a particular likelihood function. The algo-
rithm was formulated using the expectations in (23) and update equations (25), where thep(yn|fn,θ2)
denote the likelihood terms, and the cavity functions are approximated by Gaussians. For many likeli-
hood models these integrals forZ∗

n, Fµn andFσ2
n

can be calculated analytically. Thus in order to use
EP for a particular model one has to compute the moments (23) and plug the corresponding terms into
Algorithm 1. In the following we describe how EP can be implemented for theGP regression model
with mixture noise in conjunction with an ML-II parameter estimation.

3.2 Implementing EP for the Gaussian Process Mixture Model

While in the previous section the EP approximation scheme has been described for Gaussian process
models from a rather abstract viewpoint we now concentrate on the implementation. For the mixture

9



noise model we work out all necessary steps in detail and state the according results for other prominent
likelihood functions.

In the above sections we used meanµn and varianceσ2
n to parametrize the site functionstn(fn). This

way, however, not all relevant cases are captured, for example the case of a constanttn(fn) = Cne0

cannot be represented. The natural parametrisation of the exponential family in contrast to moments
not only encloses the whole set of possible functions but also leads to a very convenient algebra when
handling these function. Seeger (2003) describes the necessary background in detail. In numerical
implementation we therefore switch to these natural parametersr̄n = σ−2

n and ¯̄rn = σ−2
n µn so that

tn(fn) = Cn exp[−1
2(r̄nf2

n − ¯̄rn)].
Note that in the update equations (25) of the site function parameters we ignored the possibility that

updates lead to an invalid, non-positive definite covariance matrixA. In a numerical implementation in
those cases one can soften the update according toσ−2

n ← γσ−2
n + (1 − γ)σ−2

n old choosingγ to be just
small enough to obtain a positive definiteA. Each inner loop in Algorithm 1 gives new values to the
parameters of one site term and the covariance matrix can efficiently be updated using rank one updates
on its Cholesky decomposition, see Seeger (2003, app. A) for details.

For notational convenience in the remainder of this section we reparameterise the Gaussian mixture
noise model (3) by settingπ1 = (1−π), π2 = π, σ1 = σr andσ2 = σo so that we can write everything in
terms of sums. While in the following only a mixture ofk = 2 Gaussian distributions will be considered,
note that the equations below also generalise to mixtures of any number of Gaussian distributions.

3.2.1 Computing the Moments

In equations (23) we have left the momentsZ∗
n, Fµi andFσ2

i
in their integral form. For the mixture

of Gaussians they can be calculated analytically using the moment generating function (DeGroot and
Schervish, 2002, ch. 4.4), the same procedure applies for many other models. We have

Mn(λ) def=
∫

dfn eλfn q̃\n(fn) p(yn|fn,θ2) = N\n
∑

j

πj
egn,j(λ)

√
2π
√

σ2
j + σ2

\n

(26a)

whereN\n, µ\n andσ2
\n are, respectively, the normalising constant, mean and variance of the cavity

function q̃\n(fn) and

gn,j(λ) = −1
2

(µ\n

σ\n

)2

+
(

yn

σj

)2

−

(
1
σ2

j

+
1

σ2
\n

)−1(
µ\n

σ2
\n

+
yn

σ2
j

+ λ

)2
 . (26b)

We obtain the moments as derivatives of the generating function:

Z∗
n = Mn(0) (27a)

Fµn =
M ′

n(0)
Z∗

n

=
N\n

Z∗
n

∑
j

πj

g′n,j(0) egn,j(0)

√
2π
√

σ2
j + σ2

\n

(27b)

Fσ2
n

+ F 2
µn

=
M ′′

n(0)
Z∗

n

=
N\n

Z∗
n

∑
j

πj

(g′2n,j(0) + g′′n,j(0)) egn,j(0)

√
2π
√

σ2
j + σ2

\n

. (27c)

These equations constitute all we need to implement EP. For each update step in Algorithm 1 we pick a
site, use equations (27) to compute the moments and solve for the parameters of the site terms according
to equations (25).
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3.2.2 ML-II Parameter Estimation

So far we have only described how to find the approximate posterior for givenθ1 andθ2. Having found
it, we can also calculate an approximation to the evidencep(D|θ1,θ2) which allows us to implement
ML-II parameter estimation. The evidence can be approximated using (14) and the terms in (25a). It has
a form corresponding to the one in (11) with likelihoods replaced by site functions, and factors including
Zn andZ∗

n from the EP approximation:

ln p(D|θ1,θ2) = ln
∫

df p0(f |θ1)
N∏

n=1

p(yn|fn,θ2) (28a)

≈ ln
∫

df p0(f |θ1)
N∏

n=1

tn(fn) (28b)

=
1
2

N∑
n=1

lnσ2
n +

N∑
n=1

lnCn −
1
2

ln |Σ +K| − 1
2
µ>(Σ +K)−1µ. (28c)

The evidence depends on both the hyper-parameters of theGPprior θ1 and of the model parametersθ2.
In our EP implementation for theGPmixture model we optimise the approximate evidence (28b) wrt.θ1

andθ2 using a conjugate gradient scheme. In this optimisation EP is used to compute the approximate
evidence and its gradients for given parameter values.

The gradients of the evidence wrt. the parameters can be calculated analytically as follows. It can be
shown4 that at the fixed point approached by EP the derivatives with respect to the site parameters vanish:

∂ ln p(D|θ1,θ2)
∂(µn, σn)

= 0 . (29)

This means that when differentiating wrt.θ1,2 we only have to take explicit dependencies into account.
We can therefore neglect changes induced by changingµn(θ1,θ2) andσn(θ1,θ2), and give analytic
expressions for the gradient:

∂

∂θ1
ln p(D|θ1,θ2) = −1

2
∂

∂θ1

(
ln |Σ +K(θ1)|+ µ>(Σ +K(θ1))−1µ

)
(30a)

∂

∂θ2
ln p(D|θ1,θ2) =

∂

∂θ2

N∑
n=1

lnZ∗
n(θ2) (30b)

Terms appearing in (30a) depend onθ2 only via site parametersΣ andµ, and likewise the term in (30b)
is independent ofθ1. For theGPmixture model the gradients (30) result to be

∂

∂θ1
ln p(D|θ1,θ2) = −1

2
tr
(
Q−1 ∂K

∂θ1

)
+

1
2
µ>
(
Q−1 ∂K

∂θ1
Q−1

)
µ (31a)

∂

∂πj
ln p(D|θ1,θ2) =

∑
n

N\n

Z∗
n

egn,j(0)

√
2π
√

σ2
j + σ2

\n

(31b)

∂

∂σj
ln p(D|θ1,θ2) =

∑
n

N\n

Z∗
n

πj σj egn,j(0)

(µ\n − yn

σ2
j + σ2

\n

)2

− 1(
σ2

j + σ2
\n

) 3
2

 (31c)

whereQ = K+Σ. For theGPmixture model EP does not converge for all values of the parameters. In
those cases no evidence can be calculated and we have to resort to a workaround to make the conjugate

4See M. Seeger’s noteExpectation Propagation for Exponential Familiesfrom the author’s web page.
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ascent work. When EP fails to converge after a given number of iterations, a low evidence is returned
which makes the optimiser search in other regions of the parameter space.

The presented scheme to link EP and gradient based ML-II optimisation can be conveniently gener-
alised to other likelihood models. Just as the moments (27) can be adapted to new likelihood models, so
can be the gradients (31).

3.2.3 Prediction

Once the ML-II parameters and the normal approximation to the posterior are found, the predictive
distribution off∗ corresponding to input locationx∗ is again a normal distribution. Its moments can be
calculated analogously to the case of Gaussian noise (7) wherey is replaced byµ andΣ replacesΠ.

4 Approximate Inference by Markov Chain Monte Carlo Sampling

In later experiments we are interested in how well the EP technique works for the Gaussian mixture noise
regression model. We therefore describe a Markov chain Monte Carlo implementation which we use for
comparison. We start this section with a short introduction of the general idea of using Markov chain
Monte Carlo (MCMC) methods for approximate Bayesian inference (for details the reader is referred to
Gilks and Richardson (1996) and Neal (1993)). At first, we will use a simplified notation to describe the
basic concepts and later describe our implementation of an MCMC scheme for theGP regression model
with mixture noise.

In a nutshell, assume a modelp(D|θ) whereθ ∈ Θ denotes the parameters5, Θ the parameter space,
andD the observed data. In an inference step we update our beliefs aboutθ in the light of observed data
D according to Bayes rule

ppost(θ|D) =
p(D|θ) p0(θ)∫

dθ p(D|θ) p0(θ)
. (32)

Problems arise for most nontrivial models because we are unable to solve the integral in the denominator
and so to obtain the posteriorppost(θ|D) analytically.

Now the task is to find a method of approximate inference which is computationally feasible yet
adequately accurate. As seen in the previous sections, one approach is to approximate the posterior by
another distribution. Instead, in situations wherep(D|θ)p0(θ) can be evaluated we can use MCMC
methods to generate samplesθ(i) from the posterior distributionppost(θ|D) of the parameters. These
samples can be used for inspection or for approximating expectations of a given functionh(θ) wrt. the
posterior distribution according to

∫
dθ h(θ) ppost(θ|D) ≈ 1

T

T∑
i=1

h(θ(i)) (33)

whereθ(i) are approximately independent samples from the posterior. In order to generate these samples
a Markov Chain in the parameter space is constructed such that the distribution of the states ∈ Θ
is asymptotically identical to the posterior distribution of the parametersθ. Then the Markov chain
is simulated and its states are interpreted as samples fromppost(θ|D). The challenge is to construct a
Markov chain properly such that it explores the whole posterior distribution efficiently, in order to obtain
a number of approximately independent samplesθ(1), . . . ,θ(T ) in reasonable time.

The basic technique to construct such a chain is theMetropolis-Hastingsalgorithm and practically all
MCMC methods are refined versions thereof. Letst denote the state of the chain at timet. In order to

5Although we aim at describing the concepts independently of the later application, for the proposedGP regression model
one can think ofθ = [θ1, θ2].
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find the next statest+1 a candidatẽst+1 is proposed as a sample from aproposal distributionq(s̃t+1|st).
The proposal is accepted as the consecutive state of the Markov chain (st+1 ← s̃t+1) if

p(D|s̃t+1) p0(s̃t+1) q(st|s̃t+1)
p(D|st) p0(st) q(s̃t+1|st)

> a (34)

wherea is a sample from an uniform distribution on[0, 1]. Ignoring the role ofq for a moment, the above
algorithm has an intuitive interpretation. The decision whethers̃t+1 is accepted as next state depends on
the ratio of the target distribution evaluated ats̃t+1 andst. If this ratio is larger than one, i.e.s̃t+1 yields
a higher value, the proposal is always accepted. Otherwise the probability of acceptance is equivalent to
the ratio of values under the posterior.

While simulating the Markov chain, states that occur close-by in the chain are highly dependent. We
therefore subsampleθ(1), . . . ,θ(T ) from the observed sequences1, s2, . . . to obtain samples which are
approximately independent and distributed according to the posterior.

Most refinements of this scheme are directed towards clever proposal distributionsq so that the
probability of accepting a proposed state is increased—so that the procedure is computationally more
efficient—while the chain is moving around quickly in the support of the target distribution.

4.1 Sampling Scheme for the Gaussian Process Mixture Model

In the remainder of this section we describe our implementation of a MCMC scheme for the mixture
noiseGP regression model. Again, letθ1 denote the parameters of the covariance function andθ2

collect the parameters of the noise model. We presumeyi = f(xi) + εi whereεi is iid. according to a
mixture of Gaussians. In order to model this we introduce a vector of binary indicator variablesc such
that

εi|ci, σ
2
r , σ

2
o ∼ (1− ci)N (0, σ2

r ) + ciN (0, σ2
o) (35)

andθ2 = [c, σ2
r , σ

2
o ]. So ci indicates whetherεi is attributed to the noise component with (larger)

varianceσ2
o . This corresponds to the likelihood

p(y|f ,θ2) =
N∏

i=1

[
(1− ci)N (yi|fi, σ

2
r ) + ciN (yi|fi, σ

2
o)
]

. (36)

Note that in principle there are two possible implementations of MCMC for the Gaussian mixture
model. Either one introduces the indicator variablesc or represents the latent function valuesf explicitly
as proposed by Neal (1997).

Again we use a Gaussian process priorp0(f |θ1) with zero-mean and squared exponential covariance
function (5) so thatθ1 = [σ2

s ,w]. Note that we will also make inference over the elements ofθ1 andθ2.
We have to specify prior distributions for the parameters of interest—namely the elements ofθ1 and

θ2. Theci are Bernoulli variablesp(ci|π) = Bernoulli(π) whereπ is the fraction of samples attributed
to noise varianceσ2

o . On π we put a beta priorp0(π|α, β) = Beta(α, β) introducing two more hyper-
parameters. Furthermore we use a log-normal priorp0(lnw|σ2

w) = N (0, Iσ2
w) on the ARD weights of

the covariance function. For the signal varianceσ2
s as well as for the noise variancesσ2

r andσ2
o we use

flat (constant, degenerate) priors. Letψ = [α, β, σ2
w] denote the hyper-parameters. The inference step is

ppost(f ,θ1,θ2|D,ψ) ∝ p(y|f ,θ2) p0(f |X,θ1) p0(θ1|ψ) p0(θ2|ψ) (37)

and we can approximate the marginal distribution over function values by

p(f |D,ψ) =
∫

p(f ,θ1,θ2|D,ψ) dθ1dθ2 (38a)

≈ 1
T

T∑
t=1

p(f |θ(t)
1 ,θ

(t)
2 ,D,ψ) (38b)
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whereθ(t)
1 andθ(t)

2 are MCMC samples from the posteriorppost(θ1,θ2|D,ψ).
To generate these samples we have to construct a Markov chain whose states vectorst = [θ(t)

1 ,θ
(t)
2 ]

corresponds to the parameters we want to sum over in equation (38b). The Markov chain is constructed
according to theMetropolis-Hastingsprocedure. We now describe how proposal statess̃t+1 are gener-
ated. The implemented sampling scheme iterates betweenGibbsupdates for the indicator variablesc
andπ andHamiltonian(also known ashybrid) Monte Carlo updates forw, σ2

s , σ2
r andσ2

o . We employ
different sampling techniques to exploit efficiently the structure of the model. Algorithm 2 provides a
schematic overview of the sampling scheme and each step will be described in detail below.

Algorithm 2 MCMC sampling scheme forGP regression with mixture noise

Given: D, α, β, σ2
w, Numberτ and sizeετ of leapfrog steps for Hamiltonian updates

Initialisation
Sampleπ from Beta(α, β)
Samplec element wise from Bernoulli(π)
Find initial values forw, σ2

s , σ2
r andσ2

o (e.g. by maximising the evidence of a model with simple
Gaussian noise and settingσ2

o ← 2σ2
r )

t← 0
for each step of the Markov chain we simulatedo

t← t + 1
Gibbs sampling of indicator variables
for all ci do

Compute

π̃i =
p(D|ci = 1, c\i, σ2

r , σ
2
o ,θ1) π

p(D|ci = 0, c\i, σ2
r , σ

2
o ,θ1) (1− π) + p(D|ci = 1, c\i, σ2

r , σ
2
o ,θ1) π

Updateci by a sample from Bernoulli(π̃i)
end for
Sampleπ from Beta(α + |c|, β + N − |c|)
Hamiltonian updates
Updateθ1, σ2

r , andσ2
o using Hamiltonian MCMC (see code in MacKay (2003, p. 388))

Save statest = [π(t),θ
(t)
1 ,θ

(t)
2 ]

end for

First, however, we have to describe how the states1 is initialised. We initialiseπ by a sample from its
prior distribution Beta(α, β) and consecutively samplec element-wise from a Bernoulli(π). Since we
did not specify proper prior distributions forw, σ2

r , σ2
o andσ2

s we could find initial values by random
samples from a log-normal distribution. Alternatively we can use ML-II estimates forσ2

r , σ2
s andw

from a model with simple Gaussian noise. The initial value ofσ2
o is simply set to2σ2

r afterwards. In
the following we describe how we update the elements of the state—the value of the parameters—in the
Markov chain.

4.1.1 The Gibbs Updates

Gibbs sampling is a common MCMC technique in which the state is updated dimension-wise by sam-
pling from the conditional distributions (in the above notation this would bep(θi|θ\i,D)). The method is
very appealing since the proposed updates are always accepted and no further parameters are introduced
(see again Gilks and Richardson (1996), Neal (1993, ch. 4) or MacKay (2003, ch. 29)). We can use this
method to sample the fraction of outliersπ and indicator variablesc. Therefore we have to sample from
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the conditional distribution ofci given all values of the other variablesp(ci|c\i, σ2
r , σ

2
o ,θ1,D,ψ) where

c\i denotes all elements ofc except for theith. We can decompose this probability

p(ci|c\i, σ2
r , σ

2
o ,θ1,D,ψ) =

p(D|c, σ2
r , σ

2
o ,θ1,ψ)p(c|ψ)

p(D|σ2
r , σ

2
o ,θ1,ψ)p(c\i|σ2

r , σ
2
o ,θ1,D,ψ)

(39)

and observe thatp(ci|c\i,θ1, σ
2
r , σ

2
o ,D,ψ) ∝ p(D|θ1,θ2,ψ)p(c|ψ). Sinceci is a binary indicator it is

Bernoulli distributed. The probability of successπ̃i of this Bernoulli distribution can be computed by
comparingp(D|θ1,θ2,ψ)p(c|ψ) evaluated forci = 1 andci = 0. Terms independent ofci cancel and
we findπ̃i by looking at the ratio

π̃i =
p(D|ci = 1, c\i, σ2

r , σ
2
o ,θ1) π

p(D|ci = 0, c\i, σ2
r , σ

2
o ,θ1) (1− π) + p(D|ci = 1, c\i, σ2

r , σ
2
o ,θ1) π

(40)

which can be interpreted as the relative plausibility of theith sample being anoutlier given the current
values of all other variables. Technically equation (40) compares the marginal likelihood evaluated for
both values ofci weighted by the current value ofπ.

The marginal likelihoodp(D|θ1,θ2) can be computed according to (11) where the noise termΠ(θ2)
becomes a diagonal matrix with entries

Πjj = (1− cj)σ2
r + cjσ

2
o (41)

reflecting the currently assumed noise on the observations respectively. So we can updateci easily by a
sample from Bernoulli(π̃i).

As will be discussed later, a drawback of Gibbs sampling is that variables cannot change in a coordi-
nated way. We useordered overrelaxationas described by Neal (1998) to improve the mixing behaviour.

The next step in the sampling scheme is a Gibbs update of the mixing proportionπ by a sample from
p(π|c, α, β) = Beta(α + |c|, β + N − |c|) where|c| is the sum over elements ofc. This is a standard
result, since the beta distribution is conjugate to the binomial (see for example, O’Hagan (1994, ch. 1)).

4.1.2 The Hamiltonian Updates

For updating the part of the state corresponding tow, σ2
s , σ2

r andσ2
o we use Hamiltonian updates

which utilise gradient information of the posterior distribution to propose samples which are morelikely
to be accepted. Figuratively speaking, the gradient of the unnormalised (log) posterior distribution shows
the way to high density regions and Hamiltonian MCMC can be understood as a gradient ascent with
added noise (MacKay, 2003, ch. 30).

All we have to compute is the value of the log-evidence (11), whereΠ is as described in equation (41)
and the value of the log-prior. We also have to provide derivatives of these quantities wrt. the parameters
of interestw, σ2

s , σ2
r andσ2

o .
Hamiltonian MCMC needs (at least) two additional parameters: the number ofleapfrogsteps and the

step size(s) (for details on the method see Neal (1993) or MacKay (2003, ch. 30)). Both parameters
determine the speed at which the chain mixes, i.e. the speed at which the chain moves in the support of
the posterior. In the experiments presented in Section 5 we first set the value of the step size. As a rough
rule of thumb: since having a large step size is computationally cheaper than increasing the number of
steps, we first increase the step size until the acceptance rate is down to50% − 70% before increasing
the number of steps to values such that the expected runtime remains bearable.

4.2 Prediction

Assume we have simulated the chain as described above and observed a sequences1, s2, . . . of states. We
inspect the convergence and mixing of the chain by plotting the parameters over time and computing the
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autocorrelation (acf) of parameters (see Gilks and Richardson (1996, ch. 8) or Cowles and Carlin (1996)
for practical aspects of monitoring convergence). We also discard the first part of the chain as “burn-in
period” in which the parameters show a clear trend leading them from their initial values into their high
posterior density region. As mentioned above, states close in the chain are likely to be highly dependent.
Therefore we subsample the chain and obtain parameter configurations[θ(i)

1 ,θ
(i)
2 ] i = 1, . . . , T which

we hope to be a representative sample from their posterior distribution. In order to make predictions for a
test casex∗ we simply have to average (33) the predictive distributions based on each of theT parameter
configurations

p(f∗|x∗,D) ≈ 1
T

T∑
i=1

p(f∗|x∗,D,θ
(i)
1 ,θ

(i)
2 ) . (42)

Since for each parameter set the predictive distribution is Gaussian we obtain a mixture ofT Gaussian
distributions. For parametersθ(i)

1 andθ(i)
2 the moments ofp(f∗|x∗,D,θ

(i)
1 ,θ

(i)
2 ) can be calculated from

(7) where we have to plug in the mixture noise term (41). The mean of the predictive distribution
p(f∗|x∗,D) is equal to the mean of theT predictive means. The variance of the predictive distribution
can be obtained as the variance of the mean predictions plus the mean of the predictive variances.

5 Experiments

In this section we report experiments in order to compare and discuss several regression models and their
performance. We are interested in whether the proposed robustGP model leads to improved predictive
performance. We also describe problems which have become apparent in practical implementations of
the algorithms.

Another aspect of interest is to analyse empirically the quality of the EP approximation relative to
approximate inference using MCMC. ForGP regression with Gaussian mixture noise we compare the
predictive performance of the EP approximation to the MCMC predictions. Theoretically the MCMC
approach leads to asymptotically correct results as the number of posterior samples increases. But prac-
tically it is difficult to ascertain that the Markov chains converge during simulation and that the obtained
samples are approximately iid. samples from the posterior.

In order to get a better absolute impression of the performance, we will compare theGP model with
mixture noise to one with simple Gaussian noise. For this model we report results obtained by ML-
II parameter estimation (see Section 2 or Williams and Rasmussen (1996)) and a MCMC treatment as
described by Neal (1997).

Furthermore we report the performance ofε-support vector regression(SVR) using an RBF kernel
(Scḧolkopf and Smola, 2002, ch. 9). This variant of support vector regression is based on theε-insensitive
loss function

|yi − f(xi)|ε = max{0, |yi − f(xi)| − ε} (43)

which is summed over alli = 1, . . . , N training cases. This loss function is zero for residuals smaller
thanε and linear in the absolute value of the residual otherwise. In SVR the sum of theε-insensitive
loss and a regularisation term is minimised. Theε-insensitive loss function is robust—in the sense of
Huber (1981, ch. 7) or Rousseeuw and Leroy (1987, ch. 1)—similar to theL1 loss. For details on the
connection between SVR and frequentist robust estimators the reader is referred to Schölkopf and Smola
(2002, ch. 9). The RBF kernel used in the experiments is similar to the squared exponential (5) where
σ2

s = 1 and all elements ofw = 1w have the same value, so that all input dimensions are weighted
equally. This is a clear disadvantage compared to the ARD parameterisation we implemented in the
GP models because the scaling of input variables becomes a sensitive issue. The algorithm has three
parameters, i.e. the insensitivity parameterε, a regularisation parameterC, and the widthw of the RBF
kernel. In the experiments we find values for all three parameters by 5-fold cross-validations on the
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training data. We manually refine the parameter grids and repeat the cross-validation procedure until the
performance on the training data stabilises. The performance of the estimated model is reported for a
separate test set.

We will use the following abbreviations to refer to the different models in the comparison:

• OLS – ordinary least squares linear regression (Mardia et al., 1979, ch. 6).

• SVR – support vector regression with anε-insensitive loss function (Schölkopf and Smola, 2002,
ch. 9). We use the implementation provided by Chang and Lin (2001).

• snMLII – GP regression model with simple Gaussian noise where values forθ1 andθ2 are found
by ML-II estimation using conjugate gradient optimisation (Williams and Rasmussen, 1996).

• snMCMC –GPregression model with simple Gaussian noise where we sampleθ1 andθ2 from their
respective posterior using MCMC (Neal, 1997). We use a wide log-normal prior for the elements
of w while we use constant priors on all other parameters.

• mnEP – expectation propagation approximation of the posterior in theGP regression model with
mixture noise (Section 3).

• mnMCMC – approximate inference in theGP regression model with mixture noise using MCMC
(Section 4).

In the sampling basedGP methods snMCMC and mnMCMC we perform approximate inference over
the elements ofθ1 andθ2 and so we have to specify prior distributions over their elements respectively.
In order to be as fair as possible we used constant, uniform (e.g.p0(π) = Beta(1, 1)) or very broad priors
and we believe their influence on the posterior to be negligible relative to the influence of the observed
samples.

For comparing the predictive performance of the various models we report theroot mean square error
(RMSE) and themean absolute error(MAE). In case full predictive distribution is provided we state the
negative log predictive probability(NLP) of the test cases. For artificial data sets these measures will be
given for separate test sets, while for real-world datasets a 10-fold cross-testing will be used. LetX∗
denote test inputs andt∗ the corresponding test targets. Theroot mean square erroris defined as

RMSE(t∗,f∗) =

√√√√ 1
N∗

N∗∑
i=1

(t∗i − 〈f∗i 〉)2 (44)

whereN∗ denotes the number of test cases. The RMSE can be highly dominated by a few large residuals,
so we also report themean absolute error

MAE(t∗,f∗) =
1

N∗

N∗∑
i=1

|t∗i − 〈f∗i 〉| (45)

in which the influence of a single observation is linear. Gaussian process models provide predictive
distributions for the latent function valuesp(f∗|D,X∗) and including the inferred noise we can compute
p(y∗|D,X∗). By negative log predictive probabilitywe refer to the average negative logarithmic value
of the predictive distribution

NLP(t∗,X∗,M) = − 1
N∗

N∗∑
i=1

ln p(t∗i |M,X∗) (46)
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Figure 4: Three model fits to one of the generatedsinc data sets. The dashed line describes the underlyingsinc function and
circles mark the training examples. Figure (a) shows the SVR fit. In Figure (b) theGP fit with a single Gaussian noise model
(snMLII) is plotted. The solid line links the predictive means of the test cases and dotted lines are two standard deviations away.
Figure (c) shows the MCMC fit of the mixture noise model (mnMCMC).

evaluated at the test samples whereM denotes the model. The NLP is a measure of accuracy of the
predictive distribution. For artificially generated data the test targetst∗ are noise-free function values so
we use the predictive distributionp(f∗|M,X∗), while for real world data sets only noisy test targetsy∗
are given and we usep(y∗|M,X∗).

5.1 One-dimensional Toy Problem

For illustration purposes, the first set of experiments we report are on artificially generated samples from
the sinc function y = sin(x)/x + ε whereε is distributed according to our model assumptions. We
generate10 training sets of eachN = 25 examples. The inputsx are uniformly sampled from the
interval[−10, 10]. We compute the function values and subsequently pick fiveoutlier samples randomly
per set to which we add Gaussian noise with varianceσ2

o = 1. To the remaining20 samples we add
Gaussian noise with varianceσ2

r = 10−4. This exactly corresponds to the noise mixture model described
in Section 1. The test set consists ofN∗ = 500 noise free samples of thesinc function where the test
inputs are uniformly sampled from the[−10, 10] interval.

Running the algorithms on the10 training sets it becomes apparent that the sets broadly vary indiffi-
culty, i.e. we see a large variance in performance over the training sets. Three model fits to one of the
training sets are illustrated in Figure 4. Summarising the performance on the10 training sets Figure 5
shows box and whisker plots of the RMSE and MAE measures on the test set. The performances vary
widely for different training sets. Screening the model fits for the individual training sets we observe
that even the mixture noise model has large posterior uncertainty about the underlying function in one
case. This one training set is difficult to fit for all the methods in the comparison and is responsible for
the large span of the performance measures. Nevertheless, because we have generated the data accord-
ingly, it comes with no surprise that the noise mixture model outperforms the other models in all three
measures. Comparing mnMCMC and mnEP we obtain slightly better results on average for mnMCMC.
Also the variance of the measure for mnMCMC appears to be smaller.

The simple Gaussian noiseGPmodels (snMLII and snMCMC) shows serious difficulties in explaining
the training data. The snMLII optimisations often produces solutions which have large predictive uncer-
tainty while the mean function interpolates the training examples. Note that the optimisation problem is
non-convex and therefore the occurrence of local maxima are a serious problem. For some training sets
the optimisation even leads to estimates ofθ1 andθ2 such that all observations are explained as noise
and the mean function of the posteriorGP remains zero. Inspecting the parameter sets sampled using
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Figure 5: RMSE and MAE model comparison based on 10 artificially generated data sets from thesinc function. Figure (a)
shows box and whisker plots of the root mean square errors obtained by the respective methods. The box and whisker plots
illustrate the span, lower quartile, median, and upper quartile. Figure (b) shows box and whisker plots of the mean absolute
errors. Both measures of fit show the same structure. Although the ranges are large it can be said that the noise mixtureGP
model clearly outperforms SVR and simple Gaussian noiseGPmodels. OLS results are omitted (average RMSE= 0.39).

MCMC (snMCMC) it becomes apparent that the posterior uncertainty is large, and averaged over this
uncertainty, the models shows poor predictive performance. In comparison, support vector regression
performs relatively well on the data sets. Note that for one-dimensional inputs the covariance function of
theGP model and the kernel in SVR only differ by the signal variance parameterσ2

s and theGP models
do not profit from their ARD capability.

The mnEP implementation also relies on ML-II parameter estimation. Due to the non-convexity of the
problem the conjugate gradient based optimisation can get stuck in local maxima, so that the parameter
estimates can depend on the starting point. Performing several runs of mnEP from different starting
points we have observed that the algorithm converges to different parameter configurations in some
cases. A practical way of dealing with this problem is to run mnEP several times initialised with different
parameter configurations and to pick the solution showing highest evidence (28b). All results on mnEP
presented in this paper have been obtained by picking the solution that showed highest evidence from
several, i.e. 3 to 5, runs of the algorithm. As discussed in Section 3.2.2, convergence of the EP algorithm
is not guaranteed. In some cases, especially for difficult folds, we observe this problem.

The NLP measures for the mixture noiseGP models give consistently better values than for simple
Gaussian noise. Among the mixture noise models mnMCMC gives NLP= −2.11 averaged over the
training sets which is slightly better than mnEP with NLP= −2.04. The NLP measures for simple
Gaussian noise models are orders of magnitude larger which again indicates their inability to explain the
data.

For model comparison we relate the average marginal likelihoods obtained by snMLII and mnEP
on the training data. Letp(D|M) denote the marginal likelihood of modelM on training setD. We
compute the log of themarginal likelihood ratio(MLR)

logMLR = ln
(

p(D|mnEP)
p(D|snMLII)

)
= ln p(D|mnEP)− ln p(D|snMLII) (47)

which averaged over the10 training sets in our experiments gives a value of19.7. Computing the average
MLR per training exampleN

√
MLR = 2.19 we see that the MLR clearly favours the mnEP model. The

value of the average MLR per training example can be interpreted in a sense that on average each training
example is explained twice as well by the mnEP model than by snMLII. Note that the logMLR value is
equivalent to the log posterior odds ratio when our prior belief in the models is equal (Jaynes, 2003, ch.
20).
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5.2 Friedman Data

In this section we report experiments on artificially generated data which are derived from a problem
introduced by Friedman (1991). Given10-dimensional input vectorsx the function valuef depends on
the first five input dimensions only

f(x) = 10 sin(π x1 x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 , (48)

while the purpose of the remaining input dimensionsx6, . . . , x10 is only to complicate the problem. We
generate10 training sets ofN = 100 examples respectively. The inputsx are randomly sampled from
the uniform distribution on the unit hyper-cube[0, 1]10. We then compute the corresponding function
values and add Gaussian noise with zero mean and unit variance. In each training set we replace10
outputs by samples drawn from a normal distribution with meanµ = 15 and varianceσ2

o = 9. So we
generateoutliers which are unrelated to the function (48) but are likely to lie in the same range as the
function values. For testing we generate a data set of1000 noise-free samples.

In the experiments none of the implementations showed obvious difficulties. As described above,
for mnEP we let the algorithm start with different initial values and picked the solutions with highest
marginal likelihood. The results are presented in Figure 6. The RMSE and MAE measures show that
theGPmodels with noise mixture perform consistently better than the ones with simple Gaussian noise.
The performance of mnEP and mnMCMC appears to be very similar with a small advantage of the latter
on average. The variances of RMSE and MAE over the training sets are small compared to thesinc-
problem. This may be explained as a consequence of the larger signal-to-noise ratio and the increased
homogeneity of the different training sets due to larger sample size. TheGPmodels clearly benefit from
the ARD capability, which allows them to ignore the input dimensions which do not prove to be infor-
mative about the output. The absence of a similar mechanism may explain the rather poor performance
of support vector regression. The NLP measures in Figure 6(c) show that mnMCMC and mnEP provide
similarly accurate predictive distributions. As one would expect, theGP models with simple Gaussian
noise also exhibit worse NLP values.

Computing the average logMLR (47) over training sets between mnEP and snMLII we obtain a value
of 16.64 which corresponds to an average MLR per training example of1.18. This affirms that the
mixture noise model explains the data better. The average MLR per example is lower than for thesinc
problem, which can be explained by the smaller fraction of outliers in the training data.

5.3 Boston Housing Data

We now report experiments carried out on theBoston housingdata set. These data have been analysed
by Harrison and Rubinfeld (1978) and since then the data-set has become a popular reference problem
in nonlinear regression. The task is to predict the median price of houses in different parts of the Boston
metropolitan area based on13 input variables. The target variable appears to be truncated at $50,000.
For a more detailed description, the reader is referred to Neal (1996, ch. 4.4.2). The data set consists of
N = 506 observations which we normalise to zero mean and unit variance. We then split the data into
10 folds. Since we want to compare to the results given by Neal (1996) we use exactly the same split.
We use a10 fold cross-testing procedure which means that each of the folds is left out once as a test
set, while the remaining nine folds constitute the training data. The experimental results are illustrated
in Figure 7. We state the RMSE and MAE values reported by Neal (1996, ch. 4.4.2) for a two hidden
layer neural network with Gaussian priors on the network weights andt-distributed additive noise. In the
cited study approximate Bayesian inference is performed over the weights in the neural network using
the Hamiltonian MCMC method.

At first sight theGP models and the Bayesian neural network show similar performance wrt. average
RMSE and MAE. The Bayesian neural network has a slightly lower average(RMSE = 2.49) and less
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Figure 6: Results for RMSE, MAE and NLP on the Friedman data sets. Figure (a) shows box and whisker plots of the root
mean square errors obtained by the respective methods. Figure (b) shows box and whisker plots of the mean absolute errors. In
(c) we show the NLP measures of the test set for the models obtained from the individual training sets.

variance over the folds compared with the bestGP model mnEP(RMSE= 2.55). Nevertheless, theGP
models and the Bayesian neural network perform very similarly on average. Support vector regression
gives worse results on average and larger variance over the folds. Other experiments using SVR on the
Boston housing data—in a different experimental setting—can be found in Schölkopf and Smola (2002,
ch. 9.6) and Stitson et al. (1999). Breaking the results down to the individual folds in Figure 7(c) we
cannot observe a regular pattern anymore.

Inspecting the Markov chains of several mnMCMC simulations we observed that—especially for folds
#5 and #7—the chains had not mixed properly, i.e. the state of the chain did not travel the support of the
posterior evenly but rather infrequently switched between discrete areas. This behaviour indicates the
presence of local modes of the posterior. The Markov chain should switch between the modes and sample
from them proportionally. The indicator variablesc appear to be the crucial factor. Recall that for each
state of the chain the indicator variables mark observations which are consideredoutliers. Whether an
observation is likely to be considered an outlier depends on the configuration of the other outliers. One
can think of several configurations of outliers which are plausible under the posterior and so form local
modes of the distribution. Intuitively these local modes can be understood as alternative hypotheses about
which subset of samples areoutliersand whichregular samples have to be explained by the model (see
again Figure 3). In order to switch between these hypotheses several indicator variables have to change
their values in a coordinated manner. But the Gibbs updates we use in the mnMCMC sampling scheme
allow the indicators to change one at a time given all the other indicators. This makes a switch between
hypotheses very difficult. Dealing with this problem is difficult and outside the scope of this paper. We
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Figure 7: RMSE, MAE and NLP obtained by 10 fold cross-testing on the Boston housing data set. Figures (a) and (b) give on
overview of the RMSE and MAE measures using box and whisker plots. The values for “Neal NN” are taken from Neal (1996,
p. 134). Figure (c) shows the RMSE for the individual fold. For theGPmodels the NLP measures are given in Figure (d).
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believe that this behaviour did not occur in the previous examples because the problems were such that
one hypothesis clearly displaced the alternatives.

For the folds #5 and #7 the model shows uncertainty whether a few training samples with maxi-
mum (truncated) target value should be fitted as regular observations or should be ignored as outliers.
Therefore the model is cautious to predict largey-values for test data which leads to a tendency to un-
derestimate the value for test cases which indeed have maximum target value. This explains the large
RMSE and MAE values for mnMCMC.

The simulation time per training set for mnMCMC was in the order of one night. For mnEP the ML-II
parameter optimisations converged slowly and the runtime per fold was similar to mnMCMC, although
each evaluation of the approximate marginal likelihood using EP took several minutes only.

The fraction of outliersπ inferred by mnEP and mnMCMC lies in the range of2%− 4% for all folds
and forσ2

o we obtain values that are an order of magnitude larger thanσ2
r . For model comparison we

compute the logMLR (47) between mnEP and snMLII which results in a value of17.72. The corre-
sponding average MLR per training example isN

√
MLR = 1.04. It should be mentioned again that the

value of the marginal likelihood for mnEP (28b) is an approximation. The average ratio of predictive
densities evaluated at the test data

p(D∗|mnEP)
p(D∗|snML)

= 1.16 (49)

which can be calculated from the NLP values illustrated in Figure 7(d) also favours mnEP. The average
RMSE for snMLII is 2.74 compared to2.55 for mnEP, which is an improvement of7.5%. Note that
the average RMSE for snMCMC is2.62 which advises caution when attributing the improvement to the
noise model only. Thus we can conclude that the experiments provide some evidence that the mixture
noiseGPmodel is better suited to explaining the data.

6 Summary & Conclusions

In applied regression analysis the potential existence ofoutliers in the data can rarely be ruled out with
certainty. In this situation the analyst should choose a model which takes this belief explicitly into
account. As we argued above, one way of doing this is to use a mixture of models which in the simplest
form leads to a “two-model model” approach, combining a model forregular observations and one for
outliers.

In this work we addressed robustness in the context ofGP regression. We proposed the use of a mix-
ture of Gaussian noise model and described why analytic inference in this case becomes intractable. We
then presented and compared two schemes for approximate inference. First expectation propagation ap-
proximation was described in general form forGPmodels and for the mixture noise model in particular.
Second, for comparison we described how Markov chain Monte Carlo sampling can be implemented.
We then compared the performance of the mixture noiseGP model—or rather the two approximations
thereof—and several other regression techniques on three data sets. In the description of experiments,
some problems of the respective methods were already mentioned. In the remainder we summarise our
conclusions:

• Experiments on artificially generated data show that the mixture noiseGP model outperforms the
other models in this comparison when outliers iny are present in the training data. The predictive
performance of mnMCMC and mnEP was very similar in our experiments, indicating that the EP
approximation works satisfyingly.

• In terms of RMSE the performance ofGP models on the Boston housing data set could not be
improved significantly. Since the target variable is themedianof house prices in a given area the
presence of outliers also seems unlikely. Nevertheless a model comparison using marginal likeli-
hood ratios indicates that the experiments provide some evidence in favour of the mixture model
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compared to simple Gaussian noise. There are arguments suggesting that the noise is not Gaussian,
but whether outliers iny are present is unclear. Note that using alocal covariance function, for
example the squared exponential (5),GP regression methods are inherently robust wrt. outliers in
x. Unfortunately we could not find reference problems fornon-linear regression with outliers in
the literature.

• In the proposed mixture noiseGP model the marginal posterior distributionppost(f |D) comes in
the form of a mixture of Gaussians. The approximation by a single Gaussian as in EP can be poor
if the posterior is highly multimodal, in which case MCMC sampling is also difficult. Intuitively,
the posterior is highly multimodal if the model can explain the data in various distinct but equally
plausible ways. For simpler outlier-structures this problem might be negligible, since the posterior
can be expected to have a strongly dominant mode.

• The proposed mnEP scheme iterates between approximate inference over the latent function and
ML-II estimation of the remaining parameters. Our mnEP implementation suffers from convergence
problems in two ways. The first is that for given parameters EP might not converge. We observed
that its convergence behaviour highly depends on the values of the parameters. Thus in case EP
does not converge we make the gradient ascent search in other regions of the parameter space. The
second problem is inherent to the ML-II parameter estimation, where our gradient ascent method
can get caught in local maxima. Doing multiple runs of the algorithm on the same data sets the
respective approximated marginal likelihood values, however, provide a reliable indication as to
which solution to choose. Note that For large data sets(N > 1000) one could explore sparse EP
approximations to the posterior process following the lines of Csató and Opper (2002).

• MCMC sampling in the mixture noiseGP model (mnMCMC) was the computationally most de-
manding method in the comparison. A conceptual advantage is that inference is performed over
the function and the parametersθ1,2 jointly. In mnMCMC problems related to multimodal poste-
rior distributions can be alleviated by running several shorter chains from different initial states in
favour of a single long chain, which in finite simulation can get stuck in a local mode. However,
setting the parameters in the mnMCMC sampling scheme and inspecting the chains requires some
experience.

In summary, the proposed noise mixture model is a practical way of applyingGP regression in situa-
tions in which the potential existence of outliers in the data cannot be ruled out. We exemplified the use
of the EP approximation and compared to MCMC sampling inGP regression models for non-standard
likelihoods. This approach should encourage researchers to choose a noise model not for analytical con-
venience but to represent prior beliefs. In a practical problem the prior beliefs might be better reflected
using different noise models, e.g.t-distributions (Lawrence and Tipping, 2003). Performing approximate
inference follows similar schemes to those presented here.
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