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Abstract
How can we generate realistic networks? In addition, how can we do so with a mathematically
tractable model that allows for rigorous analysis of network properties? Real networks exhibit a
long list of surprising properties: Heavy tails for the in- and out-degree distribution, heavy tails for
the eigenvalues and eigenvectors, small diameters, and densification and shrinking diameters over
time. Current network models and generators either fail to match several of the above properties, are
complicated to analyze mathematically, or both. Here we propose a generative model for networks
that is both mathematically tractable and can generate networks that have all the above mentioned
structural properties. Our main idea here is to use a non-standard matrix operation, the Kronecker
product, to generate graphs which we refer to as “Kronecker graphs”.

First, we show that Kronecker graphs naturally obey common network properties. In fact,
we rigorously prove that they do so. We also provide empirical evidence showing that Kronecker
graphs can effectively model the structure of real networks.

We then present KRONFIT, a fast and scalable algorithm for fitting the Kronecker graph gen-
eration model to large real networks. A naive approach to fitting would take super-exponential
time. In contrast, KRONFIT takes linear time, by exploiting the structure of Kronecker matrix
multiplication and by using statistical simulation techniques.

Experiments on a wide range of large real and synthetic networks show that KRONFIT finds
accurate parameters that very well mimic the properties of target networks. In fact, using just
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four parameters we can accurately model several aspects of global network structure. Once fitted,
the model parameters can be used to gain insights about the network structure, and the resulting
synthetic graphs can be used for null-models, anonymization, extrapolations, and graph summa-
rization.
Keywords: Kronecker graphs, network analysis, network models, social networks, graph genera-
tors, graph mining, network evolution

1. Introduction

What do real graphs look like? How do they evolve over time? How can we generate synthetic, but
realistic looking, time-evolving graphs? Recently, network analysis has been attracting much inter-
est, with an emphasis on finding patterns and abnormalities in social networks, computer networks,
e-mail interactions, gene regulatory networks, and many more. Most of the work focuses on static
snapshots of graphs, where fascinating “laws” have been discovered, including small diameters and
heavy-tailed degree distributions.

In parallel with discoveries of such structural “laws” there has been effort to find mechanisms
and models of network formation that generate networks with such structures. So, a good realistic
network generation model is important for at least two reasons. The first is that it can generate
graphs for extrapolations, hypothesis testing, “what-if” scenarios, and simulations, when real graphs
are difficult or impossible to collect. For example, how well will a given protocol run on the Internet
five years from now? Accurate network models can produce more realistic models for the future
Internet, on which simulations can be run. The second reason is more subtle. It forces us to think
about network properties that generative models should obey to be realistic.

In this paper we introduce Kronecker graphs, a generative network model which obeys all the
main static network patterns that have appeared in the literature (Faloutsos et al., 1999; Albert et al.,
1999; Chakrabarti et al., 2004; Farkas et al., 2001; Mihail and Papadimitriou, 2002; Watts and Stro-
gatz, 1998). Our model also obeys recently discovered temporal evolution patterns (Leskovec et al.,
2005b, 2007a). And, contrary to other models that match this combination of network properties
(as for example, Bu and Towsley, 2002; Klemm and Eguı́luz, 2002; Vázquez, 2003; Leskovec et al.,
2005b; Zheleva et al., 2009), Kronecker graphs also lead to tractable analysis and rigorous proofs.
Furthermore, the Kronecker graphs generative process also has a nice natural interpretation and
justification.

Our model is based on a matrix operation, the Kronecker product. There are several known
theorems on Kronecker products. They correspond exactly to a significant portion of what we want
to prove: heavy-tailed distributions for in-degree, out-degree, eigenvalues, and eigenvectors. We
also demonstrate how a Kronecker graphs can match the behavior of several real networks (social
networks, citations, web, internet, and others). While Kronecker products have been studied by
the algebraic combinatorics community (see, e.g., Chow, 1997; Imrich, 1998; Imrich and Klavžar,
2000; Hammack, 2009), the present work is the first to employ this operation in the design of
network models to match real data.

Then we also make a step further and tackle the following problem: Given a large real network,
we want to generate a synthetic graph, so that the resulting synthetic graph matches the properties
of the real network as well as possible.

Ideally we would like: (a) A graph generation model that naturally produces networks where
many properties that are also found in real networks naturally emerge. (b) The model parameter
estimation should be fast and scalable, so that we can handle networks with millions of nodes. (c)
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The resulting set of parameters should generate realistic-looking networks that match the statistical
properties of the target, real networks.

In general the problem of modeling network structure presents several conceptual and engineer-
ing challenges: Which generative model should we choose, among the many in the literature? How
do we measure the goodness of the fit? (Least squares don’t work well for power laws, for subtle
reasons!) If we use likelihood, how do we estimate it faster than in time quadratic on the number of
nodes? How do we solve the node correspondence problem, that is, which node of the real network
corresponds to what node of the synthetic one?

To answer the above questions we present KRONFIT, a fast and scalable algorithm for fitting
Kronecker graphs by using the maximum likelihood principle. When calculating the likelihood there
are two challenges: First, one needs to solve the node correspondence problem by matching the
nodes of the real and the synthetic network. Essentially, one has to consider all mappings of nodes
of the network to the rows and columns of the graph adjacency matrix. This becomes intractable
for graphs with more than tens of nodes. Even when given the “true” node correspondences, just
evaluating the likelihood is still prohibitively expensive for large graphs that we consider, as one
needs to evaluate the probability of each possible edge. We present solutions to both of these
problems: We develop a Metropolis sampling algorithm for sampling node correspondences, and
approximate the likelihood to obtain a linear time algorithm for Kronecker graph model parameter
estimation that scales to large networks with millions of nodes and edges. KRONFIT gives orders
of magnitude speed-ups against older methods (20 minutes on a commodity PC, versus 2 days on a
50-machine cluster).

Our extensive experiments on synthetic and real networks show that Kronecker graphs can ef-
ficiently model statistical properties of networks, like degree distribution and diameter, while using
only four parameters.

Once the model is fitted to the real network, there are several benefits and applications:

(a) Network structure: the parameters give us insight into the global structure of the network
itself.

(b) Null-model: when working with network data we would often like to assess the significance
or the extent to which a certain network property is expressed. We can use Kronecker graph
as an accurate null-model.

(c) Simulations: given an algorithm working on a graph we would like to evaluate how its per-
formance depends on various properties of the network. Using our model one can generate
graphs that exhibit various combinations of such properties, and then evaluate the algorithm.

(d) Extrapolations: we can use the model to generate a larger graph, to help us understand how
the network will look like in the future.

(e) Sampling: conversely, we can also generate a smaller graph, which may be useful for run-
ning simulation experiments (e.g., simulating routing algorithms in computer networks, or
virus/worm propagation algorithms), when these algorithms may be too slow to run on large
graphs.

(f) Graph similarity: to compare the similarity of the structure of different networks (even of
different sizes) one can use the differences in estimated parameters as a similarity measure.
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(g) Graph visualization and compression: we can compress the graph, by storing just the model
parameters, and the deviations between the real and the synthetic graph. Similarly, for visual-
ization purposes one can use the structure of the parameter matrix to visualize the backbone
of the network, and then display the edges that deviate from the backbone structure.

(h) Anonymization: suppose that the real graph cannot be publicized, like, for example, corporate
e-mail network or customer-product sales in a recommendation system. Yet, we would like
to share our network. Our work gives ways to such a realistic, ’similar’ network.

The current paper builds on our previous work on Kronecker graphs (Leskovec et al., 2005a;
Leskovec and Faloutsos, 2007) and is organized as follows: Section 2 briefly surveys the related
literature. In section 3 we introduce the Kronecker graph model, and give formal statements about
the properties of networks it generates. We investigate the model using simulation in Section 4
and continue by introducing KRONFIT, the Kronecker graphs parameter estimation algorithm, in
Section 5. We present experimental results on a wide range of real and synthetic networks in
Section 6. We close with discussion and conclusions in Sections 7 and 8.

2. Relation to Previous Work on Network Modeling

Networks across a wide range of domains present surprising regularities, such as power laws, small
diameters, communities, and so on. We use these patterns as sanity checks, that is, our synthetic
graphs should match those properties of the real target graph.

Most of the related work in this field has concentrated on two aspects: properties and pat-
terns found in real-world networks, and then ways to find models to build understanding about the
emergence of these properties. First, we will discuss the commonly found patterns in (static and
temporally evolving) graphs, and finally, the state of the art in graph generation methods.

2.1 Graph Patterns

Here we briefly introduce the network patterns (also referred to as properties or statistics) that we
will later use to compare the similarity between the real networks and their synthetic counterparts
produced by the Kronecker graphs model. While many patterns have been discovered, two of the
principal ones are heavy-tailed degree distributions and small diameters.

Degree distribution: The degree-distribution of a graph is a power law if the number of nodes
Nd with degree d is given by Nd ∝ d−γ (γ > 0) where γ is called the power law exponent. Power
laws have been found in the Internet (Faloutsos et al., 1999), the Web (Kleinberg et al., 1999; Broder
et al., 2000), citation graphs (Redner, 1998), online social networks (Chakrabarti et al., 2004) and
many others.

Small diameter: Most real-world graphs exhibit relatively small diameter (the “small- world”
phenomenon, or “six degrees of separation” Milgram, 1967): A graph has diameter D if every pair
of nodes can be connected by a path of length at most D edges. The diameter D is susceptible to
outliers. Thus, a more robust measure of the pair wise distances between nodes in a graph is the
integer effective diameter (Tauro et al., 2001), which is the minimum number of links (steps/hops)
in which some fraction (or quantile q, say q = 0.9) of all connected pairs of nodes can reach each
other. Here we make use of effective diameter which we define as follows (Leskovec et al., 2005b).
For each natural number h, let g(h) denote the fraction of connected node pairs whose shortest
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connecting path has length at most h, that is, at most h hops away. We then consider a function
defined over all positive real numbers x by linearly interpolating between the points (h,g(h)) and
(h+ 1,g(h+ 1)) for each x, where h = #x$, and we define the effective diameter of the network to
be the value x at which the function g(x) achieves the value 0.9. The effective diameter has been
found to be small for large real-world graphs, like Internet, Web, and online social networks (Albert
and Barabási, 2002; Milgram, 1967; Leskovec et al., 2005b).

Hop-plot: It extends the notion of diameter by plotting the number of reachable pairs g(h)
within h hops, as a function of the number of hops h (Palmer et al., 2002). It gives us a sense of how
quickly nodes’ neighborhoods expand with the number of hops.

Scree plot: This is a plot of the eigenvalues (or singular values) of the graph adjacency matrix,
versus their rank, using the logarithmic scale. The scree plot is also often found to approximately
obey a power law (Chakrabarti et al., 2004; Farkas et al., 2001). Moreover, this pattern was also
found analytically for random power law graphs (Mihail and Papadimitriou, 2002; Chung et al.,
2003).

Network values: The distribution of eigenvector components (indicators of “network value”)
associated to the largest eigenvalue of the graph adjacency matrix has also been found to be skewed
(Chakrabarti et al., 2004).

Node triangle participation: Edges in real-world networks and especially in social networks
tend to cluster (Watts and Strogatz, 1998) and form triads of connected nodes. Node triangle partic-
ipation is a measure of transitivity in networks. It counts the number of triangles a node participates
in, that is, the number of connections between the neighbors of a node. The plot of the number
of triangles Δ versus the number of nodes that participate in Δ triangles has also been found to be
skewed (Tsourakakis, 2008).

Densification power law: The relation between the number of edges E(t) and the number of
nodes N(t) in evolving network at time t obeys the densification power law (DPL), which states that
E(t) ∝ N(t)a. The densification exponent a is typically greater than 1, implying that the average
degree of a node in the network is increasing over time (as the network gains more nodes and
edges). This means that real networks tend to sprout many more edges than nodes, and thus densify
as they grow (Leskovec et al., 2005b, 2007a).

Shrinking diameter: The effective diameter of graphs tends to shrink or stabilize as the number
of nodes in a network grows over time (Leskovec et al., 2005b, 2007a). This is somewhat coun-
terintuitive since from common experience as one would expect that as the volume of the object (a
graph) grows, the size (i.e., the diameter) would also grow. But for real networks this does not hold
as the diameter shrinks and then seems to stabilize as the network grows.

2.2 Generative Models of Network Structure

The earliest probabilistic generative model for graphs was the Erdős-Rényi (Erdős and Rényi, 1960)
random graph model, where each pair of nodes has an identical, independent probability of being
joined by an edge. The study of this model has led to a rich mathematical theory. However, as the
model was not developed to model real-world networks it produces graphs that fail to match real
networks in a number of respects (for example, it does not produce heavy-tailed degree distribu-
tions).

The vast majority of recent network models involve some form of preferential attachment
(Barabási and Albert, 1999; Albert and Barabási, 2002; Winick and Jamin, 2002; Kleinberg et al.,
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1999; Kumar et al., 1999; Flaxman et al., 2007) that employs a simple rule: new node joins the
graph at each time step, and then creates a connection to an existing node u with the probability
proportional to the degree of the node u. This leads to the “rich get richer” phenomena and to power
law tails in degree distribution. However, the diameter in this model grows slowly with the number
of nodes N, which violates the “shrinking diameter” property mentioned above.

There are also many variations of preferential attachment model, all somehow employing the
“rich get richer” type mechanism, for example, the “copying model” (Kumar et al., 2000), the
“winner does not take all” model (Pennock et al., 2002), the “forest fire” model (Leskovec et al.,
2005b), the “random surfer model” (Blum et al., 2006), etc.

A different family of network methods strives for small diameter and local clustering in net-
works. Examples of such models include the small-world model (Watts and Strogatz, 1998) and
the Waxman generator (Waxman, 1988). Another family of models shows that heavy tails emerge
if nodes try to optimize their connectivity under resource constraints (Carlson and Doyle, 1999;
Fabrikant et al., 2002).

In summary, most current models focus on modeling only one (static) network property, and
neglect the others. In addition, it is usually hard to analytically analyze properties of the network
model. On the other hand, the Kronecker graph model we describe in the next section addresses
these issues as it matches multiple properties of real networks at the same time, while being analyt-
ically tractable and lending itself to rigorous analysis.

2.3 Parameter Estimation of Network Models

Until recently relatively little effort was made to fit the above network models to real data. One of
the difficulties is that most of the above models usually define a mechanism or a principle by which
a network is constructed, and thus parameter estimation is either trivial or almost impossible.

Most work in estimating network models comes from the area of social sciences, statistics and
social network analysis where the exponential random graphs, also known as p∗ model, were in-
troduced (Wasserman and Pattison, 1996). The model essentially defines a log linear model over all
possible graphs G, p(G|θ) ∝ exp(θT s(G)), where G is a graph, and s is a set of functions, that can
be viewed as summary statistics for the structural features of the network. The p∗ model usually
focuses on “local” structural features of networks (like, for example, characteristics of nodes that
determine a presence of an edge, link reciprocity, etc.). As exponential random graphs have been
very useful for modeling small networks, and individual nodes and edges, our goal here is different
in a sense that we aim to accurately model the structure of the network as a whole. Moreover, we
aim to model and estimate parameters of networks with millions of nodes, while even for graphs
of small size (> 100 nodes) the number of model parameters in exponential random graphs usually
becomes too large, and estimation prohibitively expensive, both in terms of computational time and
memory.

Regardless of a particular choice of a network model, a common theme when estimating the
likelihood P(G) of a graph G under some model is the challenge of finding the correspondence be-
tween the nodes of the true network and its synthetic counterpart. The node correspondence problem
results in the factorially many possible matchings of nodes. One can think of the correspondence
problem as a test of graph isomorphism. Two isomorphic graphs G and G′ with differently assigned
node IDs should have same likelihood P(G) =P(G′) so we aim to find an accurate mapping between
the nodes of the two graphs.
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SYMBOL DESCRIPTION

G Real network
N Number of nodes in G
E Number of edges in G
K Kronecker graph (synthetic estimate of G)
K1 Initiator of a Kronecker graphs
N1 Number of nodes in initiator K1
E1 Number of edges in K1 (the expected number of edges in P1, E1 = ∑θi j)
G⊗H Kronecker product of adjacency matrices of graphs G and H
K[k]

1 = Kk = K kth Kronecker power of K1
K1[i, j] Entry at row i and column j of K1
Θ= P1 Stochastic Kronecker initiator
P

[k]
1 = Pk = P kth Kronecker power of P1

θi j = P1[i, j] Entry at row i and column j of P1
pi j = Pk[i, j] Probability of an edge (i, j) in Pk, that is, entry at row i and column j of Pk
K = R(P ) Realization of a Stochastic Kronecker graph P
l(Θ) Log-likelihood. Log-prob. that Θ generated real graph G, logP(G|Θ)
Θ̂ Parameters at maximum likelihood, Θ̂= argmaxΘP(G|Θ)
σ Permutation that maps node IDs of G to those of P
a Densification power law exponent, E(t) ∝ N(t)a
D Diameter of a graph
Nc Number of nodes in the largest weakly connected component of a graph
ω Fraction of times SwapNodes permutation proposal distribution is used

Table 1: Table of symbols.

An ordering or a permutation defines the mapping of nodes in one network to nodes in the other
network. For example, Butts (2005) used permutation sampling to determine similarity between two
graph adjacency matrices, while Bezáková et al. (2006) used permutations for graph model selec-
tion. Recently, an approach for estimating parameters of the “copying” model was introduced (Wiuf
et al., 2006), however authors also note that the class of “copying” models may not be rich enough
to accurately model real networks. As we show later, Kronecker graph model seems to have the
necessary expressive power to mimic real networks well.

3. Kronecker Graph Model

The Kronecker graph model we propose here is based on a recursive construction. Defining the
recursion properly is somewhat subtle, as a number of standard, related graph construction methods
fail to produce graphs that densify according to the patterns observed in real networks, and they also
produce graphs whose diameters increase. To produce densifying graphs with constant/shrinking
diameter, and thereby match the qualitative behavior of a real network, we develop a procedure that
is best described in terms of the Kronecker product of matrices.
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3.1 Main Idea

The main intuition behind the model is to create self-similar graphs, recursively. We begin with an
initiator graph K1, with N1 nodes and E1 edges, and by recursion we produce successively larger
graphs K2,K3, . . . such that the kth graph Kk is on Nk =Nk

1 nodes. If we want these graphs to exhibit a
version of the Densification power law (Leskovec et al., 2005b), then Kk should have Ek = Ek1 edges.
This is a property that requires some care in order to get right, as standard recursive constructions
(for example, the traditional Cartesian product or the construction of Barabási et al., 2001) do not
yield graphs satisfying the densification power law.

It turns out that the Kronecker product of two matrices is the right tool for this goal. The
Kronecker product is defined as follows:

Definition 1 (Kronecker product of matrices) Given two matrices A= [ai, j] and B of sizes n×m
and n′ ×m′ respectively, the Kronecker product matrix C of dimensions (n ·n′)× (m ·m′) is given by

C= A⊗B .
=








a1,1B a1,2B . . . a1,mB
a2,1B a2,2B . . . a2,mB
...

... . . . ...
an,1B an,2B . . . an,mB








.

We then define the Kronecker product of two graphs simply as the Kronecker product of their
corresponding adjacency matrices.

Definition 2 (Kronecker product of graphs, Weichsel, 1962) If G and H are graphs with adja-
cency matrices A(G) and A(H) respectively, then the Kronecker product G⊗H is defined as the
graph with adjacency matrix A(G)⊗A(H).

Observation 1 (Edges in Kronecker-multiplied graphs)

Edge (Xi j,Xkl) ∈ G⊗H iff (Xi,Xk) ∈ G and (Xj,Xl) ∈ H.

where Xi j and Xkl are nodes in G⊗H, and Xi, Xj, Xk and Xl are the corresponding nodes in G and
H, as in Figure 1.

The last observation is crucial, and deserves elaboration. Basically, each node in G⊗H can be
represented as an ordered pair Xi j, with i a node of G and j a node of H, and with an edge joining
Xi j and Xkl precisely when (Xi,Xk) is an edge of G and (Xj,Xl) is an edge of H. This is a direct
consequence of the hierarchical nature of the Kronecker product. Figure 1(a–c) further illustrates
this by showing the recursive construction of G⊗H, when G=H is a 3-node chain. Consider node
X1,2 in Figure 1(c): It belongs to the H graph that replaced node X1 (see Figure 1(b)), and in fact is
the X2 node (i.e., the center) within this small H-graph.

We propose to produce a growing sequence of matrices by iterating the Kronecker product:

Definition 3 (Kronecker power) The kth power of K1 is defined as the matrix K
[k]
1 (abbreviated to

Kk), such that:

K[k]
1 = Kk = K1 ⊗K1 ⊗ . . .K1

︸ ︷︷ ︸

k times
= Kk−1 ⊗K1
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X

X

X

1

2

3

X3,3

X2,3

Central node is X                             2,2

X3,1 X3,2

X1,1 X1,2 X1,3

X2,1

(a) Graph K1 (b) Intermediate stage (c) Graph K2 = K1 ⊗K1

1   1   0
1   1   1
0   1   1

K1 K1
K1 K1

K1K1

K1

0

0

(d) Adjacency matrix (e) Adjacency matrix
of K1 of K2 = K1 ⊗K1

Figure 1: Example of Kronecker multiplication: Top: a “3-chain” initiator graph and its Kronecker
product with itself. Each of the Xi nodes gets expanded into 3 nodes, which are then
linked using Observation 1. Bottom row: the corresponding adjacency matrices. See
Figure 2 for adjacency matrices of K3 and K4.

(a) K3 adjacency matrix (27×27) (b) K4 adjacency matrix (81×81)

Figure 2: Adjacency matrices ofK3 andK4, the 3rd and 4th Kronecker power ofK1 matrix as defined
in Figure 1. Dots represent non-zero matrix entries, and white space represents zeros.
Notice the recursive self-similar structure of the adjacency matrix.

Definition 4 (Kronecker graph) Kronecker graph of order k is defined by the adjacency matrix
K[k]

1 , where K1 is the Kronecker initiator adjacency matrix.

The self-similar nature of the Kronecker graph product is clear: To produce Kk from Kk−1, we
“expand” (replace) each node of Kk−1 by converting it into a copy of K1, and we join these copies
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Initiator K1 K1 adjacency matrix K3 adjacency matrix

Figure 3: Two examples of Kronecker initiators on 4 nodes and the self-similar adjacency matrices
they produce.

together according to the adjacencies in Kk−1 (see Figure 1). This process is very natural: one
can imagine it as positing that communities within the graph grow recursively, with nodes in the
community recursively getting expanded into miniature copies of the community. Nodes in the
sub-community then link among themselves and also to nodes from other communities.

Note that there are many different names to refer to Kronecker product of graphs. Other names
for the Kronecker product are tensor product, categorical product, direct product, cardinal product,
relational product, conjunction, weak direct product or just product, and even Cartesian product (Im-
rich and Klavžar, 2000).

3.2 Analysis of Kronecker Graphs

We shall now discuss the properties of Kronecker graphs, specifically, their degree distributions,
diameters, eigenvalues, eigenvectors, and time-evolution. Our ability to prove analytical results
about all of these properties is a major advantage of Kronecker graphs over other network models.

3.2.1 DEGREE DISTRIBUTION

The next few theorems prove that several distributions of interest are multinomial for our Kronecker
graph model. This is important, because a careful choice of the initial graph K1 makes the result-
ing multinomial distribution to behave like a power law or Discrete Gaussian Exponential (DGX)
distribution (Bi et al., 2001; Clauset et al., 2007).

Theorem 5 (Multinomial degree distribution) Kronecker graphs have multinomial degree distri-
butions, for both in- and out-degrees.

994



KRONECKER GRAPHS: AN APPROACH TO MODELING NETWORKS

Proof Let the initiator K1 have the degree sequence d1,d2, . . . ,dN1 . Kronecker multiplication of
a node with degree d expands it into N1 nodes, with the corresponding degrees being d× d1,d×
d2, . . . ,d × dN1 . After Kronecker powering, the degree of each node in graph Kk is of the form
di1 ×di2 × . . .dik , with i1, i2, . . . , ik ∈ (1 . . .N1), and there is one node for each ordered combination.
This gives us the multinomial distribution on the degrees of Kk. So, graph Kk will have multinomial
degree distribution where the “events” (degrees) of the distribution will be combinations of degree
products: di11 d

i2
2 . . .diN1

N1
(where ∑N1

j=1 i j = k) and event (degree) probabilities will be proportional to
( k
i1i2...iN1

)

. Note also that this is equivalent to noticing that the degrees of nodes in Kk can be ex-
pressed as the kth Kronecker power of the vector (d1,d2, . . . ,dN1).

3.2.2 SPECTRAL PROPERTIES

Next we analyze the spectral properties of adjacency matrix of a Kronecker graph. We show that
both the distribution of eigenvalues and the distribution of component values of eigenvectors of the
graph adjacency matrix follow multinomial distributions.

Theorem 6 (Multinomial eigenvalue distribution) The Kronecker graph Kk has a multinomial
distribution for its eigenvalues.

Proof Let K1 have the eigenvalues λ1,λ2, . . . ,λN1 . By properties of the Kronecker multiplica-
tion (Loan, 2000; Langville and Stewart, 2004), the eigenvalues of Kk are the kth Kronecker power
of the vector of eigenvalues of the initiator matrix, (λ1,λ2, . . . ,λN1)

[k]. As in Theorem 5, the eigen-
value distribution is a multinomial.

A similar argument using properties of Kronecker matrix multiplication shows the following.

Theorem 7 (Multinomial eigenvector distribution) The components of each eigenvector of the
Kronecker graph Kk follow a multinomial distribution.

Proof Let K1 have the eigenvectors !v1,!v2, . . . ,!vN1 . By properties of the Kronecker multiplica-
tion (Loan, 2000; Langville and Stewart, 2004), the eigenvectors of Kk are given by the kth Kro-
necker power of the vector: (!v1,!v2, . . . ,!vN1), which gives a multinomial distribution for the compo-
nents of each eigenvector in Kk.

We have just covered several of the static graph patterns. Notice that the proofs were a direct
consequences of the Kronecker multiplication properties.

3.2.3 CONNECTIVITY OF KRONECKER GRAPHS

We now present a series of results on the connectivity of Kronecker graphs. We show, maybe a bit
surprisingly, that even if a Kronecker initiator graph is connected its Kronecker power can in fact
be disconnected.

Lemma 8 If at least one of G and H is a disconnected graph, then G⊗H is also disconnected.
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(a) Adjacency matrix (b) Adjacency matrix (c) Adjacency matrix
when G is disconnected when G is bipartite when H is bipartite

(d) Kronecker product of (e) Rearranged adjacency
two bipartite graphs G and H matrix from panel (d)

Figure 4: Graph adjacency matrices. Dark parts represent connected (filled with ones) and white
parts represent empty (filled with zeros) parts of the adjacency matrix. (a) When G is
disconnected, Kronecker multiplication with any matrix H will result in G⊗H being
disconnected. (b) Adjacency matrix of a connected bipartite graph G with node partitions
A and B. (c) Adjacency matrix of a connected bipartite graph G with node partitions C
and D. (e) Kronecker product of two bipartite graphs G and H. (d) After rearranging the
adjacency matrix G⊗H we clearly see the resulting graph is disconnected.

Proof Without loss of generality we can assume that G has two connected components, while H is
connected. Figure 4(a) illustrates the corresponding adjacency matrix forG. Using the notation from
Observation 1 let graph let G have nodes X1, . . . ,Xn, where nodes {X1, . . .Xr} and {Xr+1, . . . ,Xn}
form the two connected components. Now, note that (Xi j,Xkl) /∈ G⊗H for i ∈ {1, . . . ,r}, k ∈
{r+ 1, . . . ,n}, and all j, l. This follows directly from Observation 1 as (Xi,Xk) are not edges in G.
Thus, G⊗H must at least two connected components.

Actually it turns out that both G and H can be connected while G⊗H is disconnected. The
following theorem analyzes this case.

Theorem 9 If both G and H are connected but bipartite, then G⊗H is disconnected, and each of
the two connected components is again bipartite.

Proof Again without loss of generality let G be bipartite with two partitions A = {X1, . . .Xr} and
B = {Xr+1, . . . ,Xn}, where edges exists only between the partitions, and no edges exist inside the
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partition: (Xi,Xk) /∈G for i,k∈A or i,k∈B. Similarly, letH also be bipartite with two partitionsC=
{X1, . . .Xs} andD= {Xs+1, . . . ,Xm}. Figures 4(b) and (c) illustrate the structure of the corresponding
adjacency matrices.

Now, there will be two connected components in G⊗H: 1st component will be composed of
nodes {Xi j} ∈ G⊗H, where (i ∈ A, j ∈ D) or (i ∈ B, j ∈ C). And similarly, 2nd component will
be composed of nodes {Xi j}, where (i ∈ A, j ∈ C) or (i ∈ B, j ∈ D). Basically, there exist edges
between node sets (A,D) and (B,C), and similarly between (A,C) and (B,D) but not across the sets.
To see this we have to analyze the cases using Observation 1. For example, in G⊗H there exist
edges between nodes (A,C) and (B,D) as there exist edges (i,k) ∈G for i ∈ A,k ∈ B, and ( j, l) ∈H
for j ∈C and l ∈ D. Similar is true for nodes (A,C) and (B,D). However, there are no edges cross
the two sets, for example, nodes from (A,D) do not link to (A,C), as there are no edges between
nodes in A (since G is bipartite). See Figures 4(d) and 4(e) for a visual proof.

Note that bipartite graphs are triangle free and have no self-loops. Stars, chains, trees and cycles
of even length are all examples of bipartite graphs. In order to ensure that Kk is connected, for the
remained of the paper we focus on initiator graphs K1 with self loops on all of the vertices.

3.2.4 TEMPORAL PROPERTIES OF KRONECKER GRAPHS

We continue with the analysis of temporal patterns of evolution of Kronecker graphs: the densifica-
tion power law, and shrinking/stabilizing diameter (Leskovec et al., 2005b, 2007a).

Theorem 10 (Densification power law) Kronecker graphs follow the densification power law (DPL)
with densification exponent a= log(E1)/ log(N1).

Proof Since the kth Kronecker power Kk has Nk =Nk
1 nodes and Ek = Ek1 edges, it satisfies Ek =Na

k ,
where a= log(E1)/ log(N1). The crucial point is that a is independent of k, and hence the sequence
of Kronecker powers follows an exact version of the densification power law.

We now show how the Kronecker product also preserves the property of constant diameter, a
crucial ingredient for matching the diameter properties of many real-world network data sets. In
order to establish this, we will assume that the initiator graph K1 has a self-loop on every node.
Otherwise, its Kronecker powers may be disconnected.

Lemma 11 If G and H each have diameter at most D and each has a self-loop on every node, then
the Kronecker graph G⊗H also has diameter at most D.

Proof Each node in G⊗H can be represented as an ordered pair (v,w), with v a node of G and w a
node of H, and with an edge joining (v,w) and (x,y) precisely when (v,x) is an edge of G and (w,y)
is an edge of H. (Note this exactly the Observation 1.) Now, for an arbitrary pair of nodes (v,w)
and (v′,w′), we must show that there is a path of length at most D connecting them. Since G has
diameter at most D, there is a path v= v1,v2, . . . ,vr = v′, where r≤D. If r<D, we can convert this
into a path v = v1,v2, . . . ,vD = v′ of length exactly D, by simply repeating v′ at the end for D− r
times. By an analogous argument, we have a path w = w1,w2, . . . ,wD = w′. Now by the definition
of the Kronecker product, there is an edge joining (vi,wi) and (vi+1,wi+1) for all 1 ≤ i ≤ D− 1,
and so (v,w) = (v1,w1),(v2,w2), . . . ,(vD,wD) = (v′,w′) is a path of length D connecting (v,w) to
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(v′,w′), as required.

Theorem 12 If K1 has diameter D and a self-loop on every node, then for every k, the graph Kk
also has diameter D.

Proof This follows directly from the previous lemma, combined with induction on k.

As defined in Section 2 we also consider the effective diameter D∗. We defined the q-effective
diameter as the minimum D∗ such that, for a q fraction of the reachable node pairs, the path length
is at most D∗. The q-effective diameter is a more robust quantity than the diameter, the latter being
prone to the effects of degenerate structures in the graph (e.g., very long chains). However, the q-
effective diameter and diameter tend to exhibit qualitatively similar behavior. For reporting results
in subsequent sections, we will generally consider the q-effective diameter with q = 0.9, and refer
to this simply as the effective diameter.

Theorem 13 (Effective diameter) If K1 has diameter D and a self-loop on every node, then for
every q, the q-effective diameter of Kk converges to D (from below) as k increases.

Proof To prove this, it is sufficient to show that for two randomly selected nodes of Kk, the proba-
bility that their distance is D converges to 1 as k goes to infinity.

We establish this as follows. Each node in Kk can be represented as an ordered sequence of k
nodes from K1, and we can view the random selection of a node in Kk as a sequence of k indepen-
dent random node selections from K1. Suppose that v = (v1, . . . ,vk) and w = (w1, . . . ,wk) are two
such randomly selected nodes from Kk. Now, if x and y are two nodes in K1 at distance D (such a
pair (x,y) exists since K1 has diameter D), then with probability 1− (1− 1

N2
1
)k, there is some index

j for which {v j,wj} = {x,y}. If there is such an index, then the distance between v and w is D. As
the expression 1− (1− 1

N2
1
)k converges to 1 as k increases, it follows that the q-effective diameter is

converging to D.

3.3 Stochastic Kronecker Graphs

While the Kronecker power construction discussed so far yields graphs with a range of desired prop-
erties, its discrete nature produces “staircase effects” in the degrees and spectral quantities, simply
because individual values have large multiplicities. For example, degree distribution and distri-
bution of eigenvalues of graph adjacency matrix and the distribution of the principal eigenvector
components (i.e., the “network” value) are all impacted by this. These quantities are multinomi-
ally distributed which leads to individual values with large multiplicities. Figure 5 illustrates the
staircase effect.

Here we propose a stochastic version of Kronecker graphs that eliminates this effect. There
are many possible ways how one could introduce stochasticity into Kronecker graph model. Be-
fore introducing the proposed model, we introduce two simple ways of introducing randomness to
Kronecker graphs and describe why they do not work.
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Figure 5: The “staircase” effect. Kronecker initiator and the degree distribution and network value
plot for the 6th Kronecker power of the initiator. Notice the non-smoothness of the curves.

Probably the simplest (but wrong) idea is to generate a large deterministic Kronecker graph Kk,
and then uniformly at random flip some edges, that is, uniformly at random select entries of the
graph adjacency matrix and flip them (1 → 0,0 → 1). However, this will not work, as it will es-
sentially superimpose an Erdős-Rényi random graph, which would, for example, corrupt the degree
distribution—real networks usually have heavy tailed degree distributions, while random graphs
have Binomial degree distributions. A second idea could be to allow a weighted initiator matrix,
that is, values of entries of K1 are not restricted to values {0,1} but rather can be any non-negative
real number. Using such K1 one would generate Kk and then threshold the Kk matrix to obtain a bi-
nary adjacency matrix K, that is, for a chosen value of ε set K[i, j] = 1 if Kk[i, j] > ε else K[i, j] = 0.
This also would not work as the mechanism would selectively remove edges and thus the low degree
nodes which would have low weight edges would get isolated first.

Now we define Stochastic Kronecker graph model which overcomes the above issues. A more
natural way to introduce stochasticity to Kronecker graphs is to relax the assumption that entries of
the initiator matrix take only binary values. Instead we allow entries of the initiator to take values
on the interval [0,1]. This means now each entry of the initiator matrix encodes the probability of
that particular edge appearing. We then Kronecker-power such initiator matrix to obtain a large
stochastic adjacency matrix, where again each entry of the large matrix gives the probability of that
particular edge appearing in a big graph. Such a stochastic adjacency matrix defines a probability
distribution over all graphs. To obtain a graph we simply sample an instance from this distribution
by sampling individual edges, where each edge appears independently with probability given by the
entry of the large stochastic adjacency matrix. More formally, we define:

Definition 14 (Stochastic Kronecker graph) Let P1 be a N1 ×N1 probability matrix: the value
θi j ∈ P1 denotes the probability that edge (i, j) is present, θi j ∈ [0,1].

Then kth Kronecker power P [k]
1 = Pk, where each entry puv ∈ Pk encodes the probability of an

edge (u,v).
To obtain a graph, an instance (or realization), K = R(Pk) we include edge (u,v) in K with

probability puv, puv ∈ Pk.

First, note that sum of the entries of P1, ∑i j θi j, can be greater than 1. Second, notice that in
principle it takes O(N2k

1 ) time to generate an instance K of a Stochastic Kronecker graph from the
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probability matrix Pk. This means the time to get a realization K is quadratic in the size of Pk as
one has to flip a coin for each possible edge in the graph. Later we show how to generate Stochastic
Kronecker graphs much faster, in the time linear in the expected number of edges in Pk.

3.3.1 PROBABILITY OF AN EDGE

For the size of graphs we aim to model and generate here taking P1 (or K1) and then explicitly
performing the Kronecker product of the initiator matrix is infeasible. The reason for this is that P1
is usually dense, so Pk is also dense and one can not explicitly store it in memory to directly iterate
the Kronecker product. However, due to the structure of Kronecker multiplication one can easily
compute the probability of an edge in Pk.

The probability puv of an edge (u,v) occurring in k-th Kronecker power P =Pk can be calculated
in O(k) time as follows:

puv =
k−1

∏
i=0

P1

[
⌊u−1
Ni

1

⌋

(modN1)+1,
⌊v−1
Ni

1

⌋

(modN1)+1
]

. (1)

The equation imitates recursive descent into the matrix P , where at every level i the appropriate
entry of P1 is chosen. Since P has Nk

1 rows and columns it takesO(k logN1) to evaluate the equation.
Refer to Figure 6 for the illustration of the recursive structure of P .

3.4 Additional Properties of Kronecker Graphs

Stochastic Kronecker graphs with initiator matrix of size N1 = 2 were studied by Mahdian and Xu
(2007). The authors showed a phase transition for the emergence of the giant component and another
phase transition for connectivity, and proved that such graphs have constant diameters beyond the
connectivity threshold, but are not searchable using a decentralized algorithm (Kleinberg, 1999).

General overview of Kronecker product is given in Imrich and Klavžar (2000) and properties
of Kronecker graphs related to graph minors, planarity, cut vertex and cut edge have been explored
in Bottreau and Metivier (1998). Moreover, recently Tsourakakis (2008) gave a closed form ex-
pression for the number of triangles in a Kronecker graph that depends on the eigenvalues of the
initiator graph K1.

3.5 Two Interpretations of Kronecker Graphs

Next, we present two natural interpretations of the generative process behind the Kronecker graphs
that go beyond the purely mathematical construction of Kronecker graphs as introduced so far.

We already mentioned the first interpretation when we first defined Kronecker graphs. One
intuition is that networks are hierarchically organized into communities (clusters). Communities
then grow recursively, creating miniature copies of themselves. Figure 1 depicts the process of
the recursive community expansion. In fact, several researchers have argued that real networks are
hierarchically organized (Ravasz et al., 2002; Ravasz and Barabási, 2003) and algorithms to extract
the network hierarchical structure have also been developed (Sales-Pardo et al., 2007; Clauset et al.,
2008). Moreover, especially web graphs (Dill et al., 2002; Dorogovtsev et al., 2002; Crovella and
Bestavros, 1997) and biological networks (Ravasz and Barabási, 2003) were found to be self-similar
and “fractal”.

The second intuition comes from viewing every node of Pk as being described with an ordered
sequence of k nodes from P1. (This is similar to the Observation 1 and the proof of Theorem 13.)
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(a) 2×2 Stochastic (b) Probability matrix (c) Alternative view
Kronecker initiator P1 P2 = P1 ⊗P1 of P2 = P1 ⊗P1

Figure 6: Stochastic Kronecker initiator P1 and the corresponding 2nd Kronecker power P2. Notice
the recursive nature of the Kronecker product, with edge probabilities in P2 simply being
products of entries of P1.

Let’s label nodes of the initiator matrix P1, u1, . . . ,uN1 , and nodes of Pk as v1, . . . ,vNk
1
. Then

every node vi of Pk is described with a sequence (vi(1), . . . ,vi(k)) of node labels of P1, where vi(l)∈
{u1, . . . ,uk}. Similarly, consider also a second node v j with the label sequence (v j(1), . . . ,v j(k)).
Then the probability pe of an edge (vi,v j) in Pk is exactly:

pe(vi,v j) = Pk[vi,v j] =
k

∏
l=1

P1[vi(l),v j(l)].

(Note this is exactly the Equation 1.)
Now one can look at the description sequence of node vi as a k dimensional vector of attribute

values (vi(1), . . . ,vi(k)). Then pe(vi,v j) is exactly the coordinate-wise product of appropriate entries
of P1, where the node description sequence selects which entries of P1 to multiply. Thus, the P1
matrix can be thought of as the attribute similarity matrix, that is, it encodes the probability of
linking given that two nodes agree/disagree on the attribute value. Then the probability of an edge
is simply a product of individual attribute similarities over the k N1-valued attributes that describe
each of the two nodes.

This gives us a very natural interpretation of Stochastic Kronecker graphs: Each node is de-
scribed by a sequence of categorical attribute values or features. And then the probability of two
nodes linking depends on the product of individual attribute similarities. This way Kronecker graphs
can effectively model homophily (nodes with similar attribute values are more likely to link) by P1
having high value entries on the diagonal. Or heterophily (nodes that differ are more likely to link)
by P1 having high entries off the diagonal.

Figure 6 shows an example. Let’s label nodes of P1 u1,u2 as in Figure 6(a). Then every node
of Pk is described with an ordered sequence of k binary attributes. For example, Figure 6(b) shows
an instance for k = 2 where node v2 of P2 is described by (u1,u2), and similarly v3 by (u2,u1).
Then as shown in Figure 6(b), the probability of edge pe(v2,v3) = b · c, which is exactly P1[u2,u1] ·
P1[u1,u2] = b ·c—the product of entries of P1, where the corresponding elements of the description
of nodes v2 and v3 act as selectors of which entries of P1 to multiply.

Figure 6(c) further illustrates the recursive nature of Kronecker graphs. One can see Kronecker
product as recursive descent into the big adjacency matrix where at each stage one of the entries
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or blocks is chosen. For example, to get to entry (v2,v3) one first needs to dive into quadrant b
following by the quadrant c. This intuition will help us in Section 3.6 to devise a fast algorithm for
generating Kronecker graphs.

However, there are also two notes to make here. First, using a single initiator P1 we are implicitly
assuming that there is one single and universal attribute similarity matrix that holds across all k N1-
ary attributes. One can easily relax this assumption by taking a different initiator matrix for each
attribute (initiator matrices can even be of different sizes as attributes are of different arity), and then
Kronecker multiplying them to obtain a large network. Here each initiator matrix plays the role of
attribute similarity matrix for that particular attribute.

For simplicity and convenience we will work with a single initiator matrix but all our methods
can be trivially extended to handle multiple initiator matrices. Moreover, as we will see later in
Section 6 even a single 2× 2 initiator matrix seems to be enough to capture large scale statistical
properties of real-world networks.

The second assumption is harder to relax. When describing every node vi with a sequence of
attribute values we are implicitly assuming that the values of all attributes are uniformly distributed
(have same proportions), and that every node has a unique combination of attribute values. So,
all possible combinations of attribute values are taken. For example, node v1 in a large matrix Pk
has attribute sequence (u1,u1, . . . ,u1), and vN1 has (u1,u1, . . . ,u1,uN1), while the “last” node vNk

1
is

has attribute values (uN1 ,uN1 , . . . ,uN1). One can think of this as counting in N1-ary number sys-
tem, where node attribute descriptions range from 0 (i.e., “leftmost” node with attribute description
(u1,u1, . . . ,u1)) to Nk

1 (i.e., “rightmost” node attribute description (uN1 ,uN1 , . . . ,uN1)).
A simple way to relax the above assumption is to take a larger initiator matrix with a smaller

number of parameters than the number of entries. This means that multiple entries of P1 will share
the same value (parameter). For example, if attribute u1 takes one value 66% of the times, and the
other value 33% of the times, then one can model this by taking a 3× 3 initiator matrix with only
four parameters. Adopting the naming convention of Figure 6 this means that parameter a now
occupies a 2×2 block, which then also makes b and c occupy 2×1 and 1×2 blocks, and d a single
cell. This way one gets a four parameter model with uneven feature value distribution.

We note that the view of Kronecker graphs where every node is described with a set of features
and the initiator matrix encodes the probability of linking given the attribute values of two nodes
somewhat resembles the Random dot product graph model (Young and Scheinerman, 2007; Nickel,
2008). The important difference here is that we multiply individual linking probabilities, while in
Random dot product graphs one takes the sum of individual probabilities which seems somewhat
less natural.

3.6 Fast Generation of Stochastic Kronecker Graphs

Generating a Stochastic Kronecker graph K on N nodes naively takes O(N2) time. Here we present
a fast heuristic procedure that works well in practice and takes time linear in the number of edges
to generate a graph. The intuition for fast generation of Stochastic Kronecker graphs comes from
the recursive nature of the Kronecker product and is closely related to the R-MAT graph genera-
tor (Chakrabarti et al., 2004). In contrast to R-MAT Stochastic Kronecker graph initiator matrix
encodes both the total number of edges in a graph and their structure. ∑θi j encodes the number of
edges in the graph, while the proportions (ratios) of values θi j define how many edges each part of
graph adjacency matrix will contain.
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In order to illustrate the recursive nature of Kronecker graphs and to highlight the relation to
R-MAT graph generator Figure 6 shows how probability matrix in panel (b) can be recursively
decomposed as shown in panel (c) of Figure 6. To “arrive” to a particular edge (vi,v j) of Pk one has
to make a sequence of k (in our case k = 2) decisions among the entries of P1, multiply the chosen
entries of P1, and then placing the edge (vi,v j) with the obtained probability.

Thus, instead of flipping O(N2) = O(N2k
1 ) biased coins to determine the edges in a graph, we

place E edges by directly simulating the recursion of the Kronecker product. Basically, we recur-
sively choose sub-regions of matrix K with probability proportional to θi j, θi j ∈ P1 until in k steps
we descend to a single cell of the big adjacency matrix K and place an edge. For example, for
(v2,v3) in Figure 6(c) we first have to choose b following by c.

More generally, the probability of each individual edge of Pk follows a Bernoulli distribution,
as the edge occurrences are independent. By the Central Limit Theorem (Petrov, 1995) the number
of edges in Pk tends to a normal distribution with mean (∑N1

i, j=1θi j)
k = Ek1, where θi j ∈ P1. So,

given a stochastic initiator matrix P1 we first sample the expected number of edges E in Pk. Then
we place E edges in a graph K, by applying the recursive descent for k steps where at each step
we choose entry (i, j) with probability θi j/E1 where E1 = ∑i j θi j. Since we add E = Ek1 edges, the
probability that edge (vi,v j) appears in K is exactly Pk[vi,v j]. However, in practice it can happen
that more than one edge lands in the same (vi,v j) entry of big adjacency matrix K. If an edge lands
in a already occupied cell we simply insert it again. Even though values of P1 are usually skewed,
adjacency matrices of real networks are so sparse that collisions are not really a problem in practice
as only around 1% of edges collide. It is due to these edge collisions the above procedure does not
obtain exact samples from the graph distribution defined by the parameter matrix P . However, in
practice graphs generated by this fast linear time (O(E)) procedure are basically indistinguishable
from graphs generated with the exact exponential time (O(N2)) procedure.

Code for generating Kronecker graphs can be obtained at http://snap.stanford.edu.

3.7 Observations and Connections

Next, we describe several observations about the properties of Kronecker graphs and make connec-
tions to other network models.

• Bipartite graphs: Kronecker graphs can naturally model bipartite graphs. Instead of starting
with a square N1 ×N1 initiator matrix, one can choose arbitrary N1 ×M1 initiator matrix,
where rows define “left”, and columns the “right” side of the bipartite graph. Kronecker
multiplication will then generate bipartite graphs with partition sizes Nk

1 and Mk
1.

• Graph distributions: Pk defines a distribution over all graphs, as it encodes the probability
of all possible N2k

1 edges appearing in a graph by using an exponentially smaller number
of parameters (just N2

1 ). As we will later see, even a very small number of parameters, for
example, 4 (2× 2 initiator matrix) or 9 (3× 3 initiator), is enough to accurately model the
structure of large networks.

• Extension of Erdős-Rényi random graph model: Stochastic Kronecker graphs represent an
extension of Erdős-Rényi (Erdős and Rényi, 1960) random graphs. If one takes P1 = [θi j],
where every θi j = p then we obtain exactly the Erdős-Rényi model of random graphs Gn,p,
where every edge appears independently with probability p.
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• Relation to the R-MAT model: The recursive nature of Stochastic Kronecker graphs makes
them related to the R-MAT generator (Chakrabarti et al., 2004). The difference between the
two models is that in R-MAT one needs to separately specify the number of edges, while
in Stochastic Kronecker graphs initiator matrix P1 also encodes the number of edges in the
graph. Section 3.6 built on this similarity to devise a fast algorithm for generating Stochastic
Kronecker graphs.

• Densification: Similarly as with deterministic Kronecker graphs the number of nodes in
a Stochastic Kronecker graph grows as Nk

1 , and the expected number of edges grows as
(∑i j θi j)

k. This means one would want to choose values θi j of the initiator matrix P1 so
that ∑i j θi j > N1 in order for the resulting network to densify.

4. Simulations of Kronecker Graphs

Next we perform a set of simulation experiments to demonstrate the ability of Kronecker graphs to
match the patterns of real-world networks. We will tackle the problem of estimating the Kronecker
graph model from real data, that is, finding the most likely initiator P1, in the next section. Instead
here we present simulation experiments using Kronecker graphs to explore the parameter space, and
to compare properties of Kronecker graphs to those found in large real networks.

4.1 Comparison to Real Graphs

We observe two kinds of graph patterns—“static” and “temporal.” As mentioned earlier, common
static patterns include degree distribution, scree plot (eigenvalues of graph adjacency matrix vs.
rank) and distribution of components of the principal eigenvector of graph adjacency matrix. Tem-
poral patterns include the diameter over time, and the densification power law. For the diameter
computation, we use the effective diameter as defined in Section 2.

For the purpose of this section consider the following setting. Given a real graph G we want
to find Kronecker initiator that produces qualitatively similar graph. In principle one could try
choosing each of the N2

1 parameters for the matrix P1 separately. However, we reduce the number
of parameters from N2

1 to just two: α and β. Let K1 be the initiator matrix (binary, deterministic).
Then we create the corresponding stochastic initiator matrix P1 by replacing each “1” and “0” of K1
with α and β respectively (β≤ α). The resulting probability matrices maintain—with some random
noise—the self-similar structure of the Kronecker graphs in the previous section (which, for clarity,
we call deterministic Kronecker graphs). We defer the discussion of how to automatically estimate
P1 from data G to the next section.

The data sets we use here are:

• CIT-HEP-TH: This is a citation graph for High-Energy Physics Theory research papers from
pre-print archive ArXiv, with a total of N =29,555 papers and E =352,807 citations (Gehrke
et al., 2003). We follow its evolution from January 1993 to April 2003, with one data-point
per month.

• AS-ROUTEVIEWS: We also analyze a static data set consisting of a single snapshot of con-
nectivity among Internet Autonomous Systems (RouteViews, 1997) from January 2000, with
N =6,474 and E =26,467.
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Figure 7: Citation network (CIT-HEP-TH): Patterns from the real graph (top row), the deterministic
Kronecker graph with K1 being a star graph on 4 nodes (center + 3 satellites) (middle
row), and the Stochastic Kronecker graph (α = 0.41, β = 0.11 – bottom row). Static
patterns: (a) is the PDF of degrees in the graph (log-log scale), and (b) the distribution of
eigenvalues (log-log scale). Temporal patterns: (c) gives the effective diameter over time
(linear-linear scale), and (d) is the number of edges versus number of nodes over time
(log-log scale). Notice that the Stochastic Kronecker graphs qualitatively matches all the
patterns very well.

Results are shown in Figure 7 for the CIT-HEP-TH graph which evolves over time. We show
the plots of two static and two temporal patterns. We see that the deterministic Kronecker model
already to some degree captures the qualitative structure of the degree and eigenvalue distributions,
as well as the temporal patterns represented by the densification power law and the stabilizing di-
ameter. However, the deterministic nature of this model results in “staircase” behavior, as shown
in scree plot for the deterministic Kronecker graph of Figure 7 (column (b), second row). We see
that the Stochastic Kronecker graphs smooth out these distributions, further matching the qualita-
tive structure of the real data, and they also match the shrinking-before-stabilization trend of the
diameters of real graphs.

Similarly, Figure 8 shows plots for the static patterns in the Autonomous systems
(AS-ROUTEVIEWS) graph. Recall that we analyze a single, static network snapshot in this case.
In addition to the degree distribution and scree plot, we also show two typical plots (Chakrabarti
et al., 2004): the distribution of network values (principal eigenvector components, sorted, versus
rank) and the hop-plot (the number of reachable pairs g(h) within h hops or less, as a function of the

1005



LESKOVEC, CHAKRABARTI, KLEINBERG, FALOUTSOS AND GHAHRAMANI

Re
al

 g
ra

ph

100 101 102 103100

101

102

103

104

Degree

Co
un

t

100 101 102100

101

Rank

Ei
ge

nv
al

ue

100 101 102 10310−2

10−1

100

Rank

Ne
tw

or
k 

va
lu

e

0 2 4 6 8104

105

106

107

108

Hops

Ne
ig

hb
or

ho
od

 s
ize

K
ro

ne
ck

er
St

oc
ha

sti
c

100 101 102 103100

101

102

103

Degree

Co
un

t

100 101 102100

101

Rank
Ei

ge
nv

al
ue

100 101 102 10310−2

10−1

100

Rank

Ne
tw

or
k 

va
lu

e

0 2 4 6 8104

105

106

107

Hops

Ne
ig

hb
or

ho
od

 s
ize

(a) Degree (b) Scree plot (c) “Network value” (d) “Hop-plot”
distribution distribution

Figure 8: Autonomous systems (AS-ROUTEVIEWS): Real (top) versus Kronecker (bottom).
Columns (a) and (b) show the degree distribution and the scree plot, as before. Columns
(c) and (d) show two more static patterns (see text). Notice that, again, the Stochastic
Kronecker graph matches well the properties of the real graph.
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Figure 9: Effective diameter over time for a 4-node chain initiator graph. After each consecutive
Kronecker power we measure the effective diameter. We use different settings of α pa-
rameter. α= 0.38,0.43,0.54 and β= 0, respectively.

number of hops h). Notice that, again, the Stochastic Kronecker graph matches well the properties
of the real graph.

4.2 Parameter Space of Kronecker Graphs

Last we present simulation experiments that investigate the parameter space of Stochastic Kronecker
graphs.

First, in Figure 9 we show the ability of Kronecker Graphs to generate networks with increasing,
constant and decreasing/stabilizing effective diameter. We start with a 4-node chain initiator graph
(shown in top row of Figure 3), setting each “1” of K1 to α and each “0” to β = 0 to obtain P1
that we then use to generate a growing sequence of graphs. We plot the effective diameter of each
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Figure 10: Fraction of nodes in the largest weakly connected component (Nc/N) and the effective
diameter for 4-star initiator graph. (a) We fix β = 0.15 and vary α. (b) We vary both α
and β. (c) Effective diameter of the network, if network is disconnected or very dense
path lengths are short, the diameter is large when the network is barely connected.

R(Pk) as we generate a sequence of growing graphs R(P2),R(P3), . . . ,R(P10). R(P10) has exactly
1,048,576 nodes. Notice Stochastic Kronecker graphs is a very flexible model. When the generated
graph is very sparse (low value of α) we obtain graphs with slowly increasing effective diameter
(Figure 9(a)). For intermediate values of α we get graphs with constant diameter (Figure 9(b)) and
that in our case also slowly densify with densification exponent a= 1.05. Last, we see an example
of a graph with shrinking/stabilizing effective diameter. Here we set the α= 0.54 which results in a
densification exponent of a = 1.2. Note that these observations are not contradicting Theorem 11.
Actually, these simulations here agree well with the analysis of Mahdian and Xu (2007).

Next, we examine the parameter space of a Stochastic Kronecker graphs where we choose a star
on 4 nodes as a initiator graph and parameterized with α and β as before. The initiator graph and
the structure of the corresponding (deterministic) Kronecker graph adjacency matrix is shown in top
row of Figure 3.

Figure 10(a) shows the sharp transition in the fraction of the number of nodes that belong to the
largest weakly connected component as we fix β = 0.15 and slowly increase α. Such phase tran-
sitions on the size of the largest connected component also occur in Erdős-Rényi random graphs.
Figure 10(b) further explores this by plotting the fraction of nodes in the largest connected compo-
nent (Nc/N) over the full parameter space. Notice a sharp transition between disconnected (white
area) and connected graphs (dark).

Last, Figure 10(c) shows the effective diameter over the parameter space (α,β) for the 4-node
star initiator graph. Notice that when parameter values are small, the effective diameter is small,
since the graph is disconnected and not many pairs of nodes can be reached. The shape of the
transition between low-high diameter closely follows the shape of the emergence of the connected
component. Similarly, when parameter values are large, the graph is very dense, and the diameter is
small. There is a narrow band in parameter space where we get graphs with interesting diameters.

5. Kronecker Graph Model Estimation

In previous sections we investigated various properties of networks generated by the (Stochastic)
Kronecker graphs model. Many of these properties were also observed in real networks. Moreover,
we also gave closed form expressions (parametric forms) for values of these statistical network
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properties, which allow us to calculate a property (e.g., diameter, eigenvalue spectrum) of a network
directly from just the initiator matrix. So in principle, one could invert these equations and directly
get from a property (e.g., shape of degree distribution) to the values of initiator matrix.

However, in previous sections we did not say anything about how various network properties of
a Kronecker graph correlate and interdepend. For example, it could be the case that two network
properties are mutually exclusive. For instance, perhaps only could only match the network diameter
but not the degree distribution or vice versa. However, as we show later this is not the case.

Now we turn our attention to automatically estimating the Kronecker initiator graph. The setting
is that we are given a real network G and would like to find a Stochastic Kronecker initiator P1 that
produces a synthetic Kronecker graph K that is “similar” to G. One way to measure similarity is to
compare statistical network properties, like diameter and degree distribution, of graphs G and K.

Comparing statistical properties already suggests a very direct approach to this problem: One
could first identify the set of network properties (statistics) to match, then define a quality of fit
metric and somehow optimize over it. For example, one could use the KL divergence (Kullback and
Leibler, 1951), or the sum of squared differences between the degree distribution of the real network
G and its synthetic counterpart K. Moreover, as we are interested in matching several such statistics
between the networks one would have to meaningfully combine these individual error metrics into
a global error metric. So, one would have to specify what kind of properties he or she cares about
and then combine them accordingly. This would be a hard task as the patterns of interest have
very different magnitudes and scales. Moreover, as new network patterns are discovered, the error
functions would have to be changed and models re-estimated. And even then it is not clear how to
define the optimization procedure to maximize the quality of fit and how to perform optimization
over the parameter space.

Our approach here is different. Instead of committing to a set of network properties ahead
of time, we try to directly match the adjacency matrices of the real network G and its synthetic
counterpart K. The idea is that if the adjacency matrices are similar then the global statistical
properties (statistics computed over K and G) will also match. Moreover, by directly working with
the graph itself (and not summary statistics), we do not commit to any particular set of network
statistics (network properties/patterns) and as new statistical properties of networks are discovered
our models and estimated parameters will still hold.

5.1 Preliminaries

Stochastic graph models induce probability distributions over graphs. A generative model assigns
a probability P(G) to every graph G. P(G) is the likelihood that a given model (with a given set of
parameters) generates the graph G. We concentrate on the Stochastic Kronecker graphs model, and
consider fitting it to a real graph G, our data. We use the maximum likelihood approach, that is, we
aim to find parameter values, the initiator P1, that maximize P(G) under the Stochastic Kronecker
graph model.

This presents several challenges:

• Model selection: a graph is a single structure, and not a set of items drawn independently and
identically-distributed (i.i.d.) from some distribution. So one cannot split it into independent
training and test sets. The fitted parameters will thus be best to generate a particular instance
of a graph. Also, overfitting could be an issue since a more complex model generally fits
better.
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• Node correspondence: The second challenge is the node correspondence or node labeling
problem. The graph G has a set of N nodes, and each node has a unique label (index, ID).
Labels do not carry any particular meaning, they just uniquely denote or identify the nodes.
One can think of this as the graph is first generated and then the labels (node IDs) are randomly
assigned. This means that two isomorphic graphs that have different node labels should have
the same likelihood. A permutation σ is sufficient to describe the node correspondences as it
maps labels (IDs) to nodes of the graph. To compute the likelihood P(G) one has to consider
all node correspondences P(G) =∑σP(G|σ)P(σ), where the sum is over all N! permutations
σ of N nodes. Calculating this super-exponential sum explicitly is infeasible for any graph
with more than a handful of nodes. Intuitively, one can think of this summation as some
kind of graph isomorphism test where we are searching for best correspondence (mapping)
between nodes of G and P .

• Likelihood estimation: Even if we assume one can efficiently solve the node correspondence
problem, calculating P(G|σ) naively takes O(N2) as one has to evaluate the probability of
each of the N2 possible edges in the graph adjacency matrix. Again, for graphs of size we
want to model here, approaches with quadratic complexity are infeasible.

To develop our solution we use sampling to avoid the super-exponential sum over the node
correspondences. By exploiting the structure of the Kronecker matrix multiplication we develop an
algorithm to evaluate P(G|σ) in linear time O(E). Since real graphs are sparse, that is, the number
of edges is roughly of the same order as the number of nodes, this makes fitting of Kronecker graphs
to large networks feasible.

5.2 Problem Formulation

Suppose we are given a graph G on N = Nk
1 nodes (for some positive integer k), and an N1 ×N1

Stochastic Kronecker graphs initiator matrix P1. Here P1 is a parameter matrix, a set of parameters
that we aim to estimate. For now also assume N1, the size of the initiator matrix, is given. Later we
will show how to automatically select it. Next, using P1 we create a Stochastic Kronecker graphs
probability matrix Pk, where every entry puv of Pk contains a probability that node u links to node
v. We then evaluate the probability that G is a realization of Pk. The task is to find such P1 that has
the highest probability of realizing (generating) G.

Formally, we are solving:

argmax
P1

P(G|P1). (2)

To keep the notation simpler we use standard symbol Θ to denote the parameter matrix P1
that we are trying to estimate. We denote entries of Θ = P1 = [θi j], and similarly we denote P =
Pk = [pi j]. Note that here we slightly simplified the notation: we use Θ to refer to P1, and θi j are
elements of Θ. Similarly, pi j are elements of P (≡ Pk). Moreover, we denote K = R(P ), that is, K
is a realization of the Stochastic Kronecker graph sampled from probabilistic adjacency matrix P .

As noted before, the node IDs are assigned arbitrarily and they carry no significant information,
which means that we have to consider all the mappings of nodes from G to rows and columns of
stochastic adjacency matrix P . A priori all labelings are equally likely. A permutation σ of the set
{1, . . . ,N} defines this mapping of nodes from G to stochastic adjacency matrix P . To evaluate the
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Figure 11: Kronecker parameter estimation as an optimization problem. We search over the ini-
tiator matrices Θ (≡ P1). Using Kronecker multiplication we create probabilistic adja-
cency matrix Θ[k] that is of same size as real network G. Now, we evaluate the like-
lihood by simultaneously traversing and multiplying entries of G and Θ[k] (see Equa-
tion refeq:KronProbGPS). As shown by the figure permutation σ plays an important
role, as permuting rows and columns of G could make it look more similar to Θ[k] and
thus increase the likelihood.

likelihood of G one needs to consider all possible mappings of N nodes of G to rows (columns) of
P . For convenience we work with log-likelihood l(Θ), and solve Θ̂= argmaxΘ l(Θ), where l(Θ) is
defined as:

l(Θ) = logP(G|Θ) = log∑
σ
P(G|Θ,σ)P(σ|Θ)

= log∑
σ
P(G|Θ,σ)P(σ). (3)

The likelihood that a given initiator matrix Θ and permutation σ gave rise to the real graph G,
P(G|Θ,σ), is calculated naturally as follows. First, by using Θ we create the Stochastic Kronecker
graph adjacency matrix P = Pk = Θ[k]. Permutation σ defines the mapping of nodes of G to the
rows and columns of stochastic adjacency matrix P . (See Figure 11 for the illustration.)

We then model edges as independent Bernoulli random variables parameterized by the parame-
ter matrix Θ. So, each entry puv of P gives exactly the probability of edge (u,v) appearing.

We then define the likelihood:

P(G|P ,σ) = ∏
(u,v)∈G

P [σu,σv] ∏
(u,v)/∈G

(1−P [σu,σv]), (4)

where we denote σi as the ith element of the permutation σ, and P [i, j] is the element at row i, and
column j of matrix P =Θ[k].

The likelihood is defined very naturally. We traverse the entries of adjacency matrix G and then
based on whether a particular edge appeared in G or not we take the probability of edge occurring
(or not) as given by P , and multiply these probabilities. As one has to touch all the entries of the
stochastic adjacency matrix P evaluating Equation 4 takes O(N2) time.

We further illustrate the process of estimating Stochastic Kronecker initiator matrix Θ in Fig-
ure 11. We search over initiator matrices Θ to find the one that maximizes the likelihood P(G|Θ).
To estimate P(G|Θ) we are given a concrete Θ and now we use Kronecker multiplication to create
probabilistic adjacency matrix Θ[k] that is of same size as real network G. Now, we evaluate the
likelihood by traversing the corresponding entries of G and Θ[k]. Equation 4 basically traverses the
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adjacency matrix ofG, and maps every entry (u,v) ofG to a corresponding entry (σu,σv) of P . Then
in case that edge (u,v) exists in G (i.e., G[u,v] = 1) the likelihood that particular edge existing is
P [σu,σv], and similarly, in case the edge (u,v) does not exist the likelihood is simply 1−P [σu,σv].
This also demonstrates the importance of permutation σ, as permuting rows and columns ofG could
make the adjacency matrix look more “similar” to Θ[k], and would increase the likelihood.

So far we showed how to assess the quality (likelihood) of a particular Θ. So, naively one could
perform some kind of grid search to find best Θ. However, this is very inefficient. A better way of
doing it is to compute the gradient of the log-likelihood ∂

∂Θ l(Θ), and then use the gradient to update
the current estimate of Θ and move towards a solution of higher likelihood. Algorithm 1 gives an
outline of the optimization procedure.

However, there are several difficulties with this algorithm. First, we are assuming gradient
descent type optimization will find a good solution, that is, the problem does not have (too many)
local minima. Second, we are summing over exponentially many permutations in Equation 3. Third,
the evaluation of Equation 4 as it is written now takes O(N2) time and needs to be evaluated N!
times. So, given a concrete Θ just naively calculating the likelihood takes O(N!N2) time, and then
one also has to optimize over Θ.

Observation 2 The complexity of calculating the likelihood P(G|Θ) of the graph G naively is
O(N!N2), where N is the number of nodes in G.

Next, we show that all this can be done in linear time.

5.3 Summing Over the Node Labelings

To maximize Equation 2 using algorithm 1 we need to obtain the gradient of the log-likelihood
∂
∂Θ l(Θ). We can write:

∂
∂Θ

l(Θ) =
∑σ

∂
∂ΘP(G|σ,Θ)P(σ)

∑σ′ P(G|σ′,Θ)P(σ′)

=
∑σ

∂ logP(G|σ,Θ)

∂Θ
P(G|σ,Θ)P(σ)

P(G|Θ)

= ∑
σ

∂ logP(G|σ,Θ)

∂Θ
P(σ|G,Θ). (5)

Note we are still summing over all N! permutations σ, so calculating Eq. 5 is computationally
intractable for graphs with more than a handful of nodes. However, the equation has a nice form
which allows for use of simulation techniques to avoid the summation over super-exponentially
many node correspondences. Thus, we simulate draws from the permutation distribution P(σ|G,Θ),
and then evaluate the quantities at the sampled permutations to obtain the expected values of log-
likelihood and gradient. Algorithm 2 gives the details.

Note that we can also permute the rows and columns of the parameter matrix Θ to obtain equiv-
alent estimates. Therefore Θ is not strictly identifiable exactly because of these permutations. Since
the space of permutations on N nodes is very large (grows as N!) the permutation sampling algo-
rithm will explore only a small fraction of the space of all permutations and may converge to one of
the global maxima (but may not explore all N1! of them) of the parameter space. As we empirically
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input : size of parameter matrix N1, graph G on N = Nk
1 nodes, and learning rate λ

output: MLE parameters Θ̂ (N1 ×N1 probability matrix)

initialize Θ̂11
while not converged do2

evaluate gradient: ∂
∂Θ̂t

l(Θ̂t)3

update parameter estimates: Θ̂t+1 = Θ̂t +λ ∂
∂Θ̂t

l(Θ̂t)4

end5

return Θ̂= Θ̂t6

Algorithm 1: KRONFIT algorithm.

input : Parameter matrix Θ, and graph G
output: Log-likelihood l(Θ), and gradient ∂

∂Θ l(Θ)

for t := 1 to T do1
σt := SamplePermutation (G,Θ)2

lt = logP(G|σ(t),Θ)3

gradt := ∂
∂Θ logP(G|σ(t),Θ)4

end5

return l(Θ) = 1
T ∑t lt , and ∂

∂Θ l(Θ) = 1
T ∑t gradt6

Algorithm 2: Calculating log-likelihood and gradient

show later our results are not sensitive to this and multiple restarts result in equivalent (but often
permuted) parameter estimates.

5.3.1 SAMPLING PERMUTATIONS

Next, we describe the Metropolis algorithm to simulate draws from the permutation distribution
P(σ|G,Θ), which is given by

P(σ|G,Θ) =
P(σ,G,Θ)

∑τP(τ,G,Θ)
=
P(σ,G,Θ)

Z

where Z is the normalizing constant that is hard to compute since it involves the sum over N!
elements. However, if we compute the likelihood ratio between permutations σ and σ′ (Equation 6)
the normalizing constants nicely cancel out:

P(σ′|G,Θ)

P(σ|G,Θ)
= ∏

(u,v)∈G

P [σ′u,σ
′
v]

P [σu,σv]
∏

(u,v)/∈G

(1−P [σ′u,σ
′
v])

(1−P [σu,σv])
(6)

= ∏
(u,v)∈G

(σu,σv)-=(σ′u,σ
′
v)

P [σ′u,σ
′
v]

P [σu,σv]
∏

(u,v)/∈G
(σu,σv)-=(σ′u,σ

′
v)

(1−P [σ′u,σ
′
v])

(1−P [σu,σv])
. (7)

This immediately suggests the use of a Metropolis sampling algorithm (Gamerman, 1997) to
simulate draws from the permutation distribution since Metropolis is solely based on such ratios
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input : Kronecker initiator matrix Θ and a graph G on N nodes
output: Permutation σ(i) ∼ P(σ|G,Θ)

σ(0) := (1, . . . ,N)1
i= 12
repeat3

Draw j and k uniformly from (1, . . . ,N)4

σ(i) := SwapNodes(σ(i−1), j, k)5
Draw u fromU(0,1)6

if u> P(σ(i)|G,Θ)
P(σ(i−1)|G,Θ)

then7

σ(i) := σ(i−1)8
end9
i = i + 110

until σ(i) ∼ P(σ|G,Θ)11

return σ(i)12

WhereU(0,1) is a uniform distribution on [0,1], and σ′ := SwapNodes(σ, j,k) is the13
permutation σ′ obtained from σ by swapping elements at positions j and k.

Algorithm 3: SamplePermutation(G,Θ): Metropolis sampling of the node permutation.

(where normalizing constants cancel out). In particular, suppose that in the Metropolis algorithm
(Algorithm 3) we consider a move from permutation σ to a new permutation σ′. Probability of
accepting the move to σ′ is given by Equation 6 (if P(σ′|G,Θ)

P(σ|G,Θ) ≤ 1) or 1 otherwise.
Now we have to devise a way to sample permutations σ from the proposal distribution. One

way to do this would be to simply generate a random permutation σ′ and then check the acceptance
condition. This would be very inefficient as we expect the distribution P(σ|G,Θ) to be heavily
skewed, that is, there will be a relatively small number of good permutations (node mappings). Even
more so as the degree distributions in real networks are skewed there will be many bad permutations
with low likelihood, and few good ones that do a good job in matching nodes of high degree.

To make the sampling process “smoother”, that is, sample permutations that are not that different
(and thus are not randomly jumping across the permutation space) we design a Markov chain. The
idea is to stay in high likelihood part of the permutation space longer. We do this by making
samples dependent, that is, given σ′ we want to generate next candidate permutation σ′′ to then
evaluate the likelihood ratio. When designing the Markov chain step one has to be careful so that
the proposal distribution satisfies the detailed balance condition: π(σ′)P(σ′|σ′′) = π(σ′′)P(σ′′|σ′),
where P(σ′|σ′′) is the transition probability of obtaining permutation σ′ from σ′′ and, π(σ′) is the
stationary distribution.

In Algorithm 3 we use a simple proposal where given permutation σ′ we generate σ′′ by swap-
ping elements at two uniformly at random chosen positions of σ′. We refer to this proposal as
SwapNodes. While this is simple and clearly satisfies the detailed balance condition it is also inef-
ficient in a way that most of the times low degree nodes will get swapped (a direct consequence of
heavy tailed degree distributions). This has two consequences, (a) we will slowly converge to good
permutations (accurate mappings of high degree nodes), and (b) once we reach a good permutation,
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very few permutations will get accepted as most proposed permutations σ′ will swap low degree
nodes (as they form the majority of nodes).

A possibly more efficient way would be to swap elements of σ biased based on corresponding
node degree, so that high degree nodes would get swapped more often. However, doing this directly
does not satisfy the detailed balance condition. A way of sampling labels biased by node degrees
that at the same time satisfies the detailed balance condition is the following: we pick an edge in G
uniformly at random and swap the labels of the nodes at the edge endpoints. Notice this is biased
towards swapping labels of nodes with high degrees simply as they have more edges. The detailed
balance condition holds as edges are sampled uniformly at random. We refer to this proposal as
SwapEdgeEndpoints.

However, the issue with this proposal is that if the graph G is disconnected, we will only be
swapping labels of nodes that belong to the same connected component. This means that some parts
of the permutation space will never get visited. To overcome this problem we execute SwapNodes
with some probability ω and SwapEdgeEndpoints with probability 1−ω.

To summarize we consider the following two permutation proposal distributions:

• σ′′ = SwapNodes(σ′): we obtain σ′′ by taking σ′, uniformly at random selecting a pair of
elements and swapping their positions.

• σ′′ = SwapEdgeEndpoints(σ′): we obtain σ′′ from σ′ by first sampling an edge ( j,k) from
G uniformly at random, then we take σ′ and swap the labels at positions j and k.

5.3.2 SPEEDING UP THE LIKELIHOOD RATIO CALCULATION

We further speed up the algorithm by using the following observation. As written the Equation 6
takes O(N2) to evaluate since we have to consider N2 possible edges. However, notice that per-
mutations σ and σ′ differ only at two positions, that is, elements at position j and k are swapped,
that is, σ and σ′ map all nodes except the two to the same locations. This means those elements of
Equation 6 cancel out. Thus to update the likelihood we only need to traverse two rows and columns
of matrix P , namely rows and columns j and k, since everywhere else the mapping of the nodes to
the adjacency matrix is the same for both permutations. This gives Equation 7 where the products
now range only over the two rows/columns of P where σ and σ′ differ.

Graphs we are working with here are too large to allow us to explicitly create and store the
stochastic adjacency matrix P by Kronecker powering the initiator matrixΘ. Every time probability
P [i, j] of edge (i, j) is needed the Equation 1 is evaluated, which takes O(k). So a single iteration of
Algorithm 3 takes O(kN).

Observation 3 Sampling a permutation σ from P(σ|G,Θ) takes O(kN).

This is gives us an improvement over the O(N!) complexity of summing over all the permuta-
tions. So far we have shown how to obtain a permutation but we still need to evaluate the likelihood
and find the gradients that will guide us in finding good initiator matrix. The problem here is that
naively evaluating the network likelihood (gradient) as written in Equation 5 takes timeO(N2). This
is exactly what we investigate next and how to calculate the likelihood in linear time.
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5.4 Efficiently Approximating Likelihood and Gradient

We just showed how to efficiently sample node permutations. Now, given a permutation we show
how to efficiently evaluate the likelihood and it’s gradient. Similarly as evaluating the likelihood
ratio, naively calculating the log-likelihood l(Θ) or its gradient ∂

∂Θ l(Θ) takes time quadratic in the
number of nodes. Next, we show how to compute this in linear time O(E).

We begin with the observation that real graphs are sparse, which means that the number of edges
is not quadratic but rather almost linear in the number of nodes, E / N2. This means that majority
of entries of graph adjacency matrix are zero, that is, most of the edges are not present. We exploit
this fact. The idea is to first calculate the likelihood (gradient) of an empty graph, that is, a graph
with zero edges, and then correct for the edges that actually appear in G.

To naively calculate the likelihood for an empty graph one needs to evaluate every cell of graph
adjacency matrix. We consider Taylor approximation to the likelihood, and exploit the structure of
matrix P to devise a constant time algorithm.

First, consider the second order Taylor approximation to log-likelihood of an edge that succeeds
with probability x but does not appear in the graph:

log(1− x) ≈−x−
1
2
x2.

Calculating le(Θ), the log-likelihood of an empty graph, becomes:

le(Θ) =
N

∑
i=1

N

∑
j=1

log(1− pi j) ≈−
( N1

∑
i=1

N1

∑
j=1

θi j

)k
−

1
2

( N1

∑
i=1

N1

∑
j=1

θi j2
)k

. (8)

Notice that while the first pair of sums ranges over N elements, the last pair only ranges over N1
elements (N1 = logk N). Equation 8 holds due to the recursive structure of matrix P generated by the
Kronecker product. We substitute the log(1− pi j) with its Taylor approximation, which gives a sum
over elements of P and their squares. Next, we notice the sum of elements of P forms a multinomial
series, and thus ∑i, j pi j = (∑i, j θi j)

k, where θi j denotes an element of Θ, and pi j element of Θ[k].
Calculating log-likelihood of G now takes O(E): First, we approximate the likelihood of an

empty graph in constant time, and then account for the edges that are actually present in G, that is,
we subtract “no-edge” likelihood and add the “edge” likelihoods:

l(Θ) = le(Θ)+ ∑
(u,v)∈G

− log(1−P [σu,σv])+ log(P [σu,σv]).

We note that by using the second order Taylor approximation to the log-likelihood of an empty
graph, the error term of the approximation is 1

3(∑i θi j
3)k, which can diverge for large k. For typical

values of initiator matrix P1 (that we present in Section 6.5) we note that one needs about fourth
or fifth order Taylor approximation for the error of the approximation actually go to zero as k
approaches infinity, that is, ∑i j θi j

n+1 < 1, where n is the order of Taylor approximation employed.

5.5 Calculating the Gradient

Calculation of the gradient of the log-likelihood follows exactly the same pattern as described above.
First by using the Taylor approximation we calculate the gradient as if graphGwould have no edges.
Then we correct the gradient for the edges that are present in G. As in previous section we speed
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up the calculations of the gradient by exploiting the fact that two consecutive permutations σ and
σ′ differ only at two positions, and thus given the gradient from previous step one only needs to
account for the swap of the two rows and columns of the gradient matrix ∂P/∂Θ to update to the
gradients of individual parameters.

5.6 Determining the Size of Initiator Matrix

The question we answer next is how to determine the right number of parameters, that is, what is
the right size of matrix Θ? This is a classical question of model selection where there is a tradeoff
between the complexity of the model, and the quality of the fit. Bigger model with more parameters
usually fits better, however it is also more likely to overfit the data.

For model selection to find the appropriate value of N1, the size of matrixΘ, and choose the right
tradeoff between the complexity of the model and the quality of the fit, we propose to use the Bayes
Information Criterion (BIC) (Schwarz, 1978). Stochastic Kronecker graph model the presence of
edges with independent Bernoulli random variables, where the canonical number of parameters is
N2k

1 , which is a function of a lower-dimensional parameter Θ. This is then a curved exponential
family (Efron, 1975), and BIC naturally applies:

BIC(N1) = −l(Θ̂N1)+
1
2
N2

1 log(N2)

where Θ̂N1 are the maximum likelihood parameters of the model with N1 ×N1 parameter matrix,
and N is the number of nodes in G. Note that one could also additional term to the above formula
to account for multiple global maxima of the likelihood space but as N1 is small the additional term
would make no real difference.

As an alternative to BIC one could also consider the Minimum Description Length (MDL) (Ris-
sanen, 1978) principle where the model is scored by the quality of the fit plus the size of the de-
scription that encodes the model and the parameters.

6. Experiments on Real and Synthetic Data

Next we described our experiments on a range of real and synthetic networks. We divide the ex-
periments into several subsections. First we examine the convergence and mixing of the Markov
chain of our permutation sampling scheme. Then we consider estimating the parameters of syn-
thetic Kronecker graphs to see whether KRONFIT is able to recover the parameters used to generate
the network. Last, we consider fitting Stochastic Kronecker graphs to large real world networks.

KRONFIT code for efficient Kronecker graph parameter estimation can be downloaded from
http://snap.stanford.edu.

6.1 Permutation Sampling

In our experiments we considered both synthetic and real graphs. Unless mentioned otherwise all
synthetic Kronecker graphs were generated using P ∗

1 = [0.8,0.6;0.5,0.3], and k= 14 which gives us
a graph G on N =16,384 nodes and E =115,741 edges. We chose this particular P ∗

1 as it resembles
the typical initiator for real networks analyzed later in this section.
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Figure 12: Convergence of the log-likelihood and components of the gradient towards their true
values for Metropolis permutation sampling (Algorithm 3) with the number of samples.

6.1.1 CONVERGENCE OF THE LOG-LIKELIHOOD AND THE GRADIENT

First, we examine the convergence of Metropolis permutation sampling, where permutations are
sampled sequentially. A new permutation is obtained by modifying the previous one which creates
a Markov chain. We want to assess the convergence and mixing of the chain. We aim to determine
how many permutations one needs to draw to reliably estimate the likelihood and the gradient,
and also how long does it take until the samples converge to the stationary distribution. For the
experiment we generated a synthetic Stochastic Kronecker graphs using P ∗

1 as defined above. Then,
starting with a random permutation we run Algorithm 3, and measure how the likelihood and the
gradients converge to their true values.

In this particular case, we first generated a Stochastic Kronecker graphs G as described above,
but then calculated the likelihood and the parameter gradients for Θ′ = [0.8,0.75;0.45,0.3]. We
average the likelihoods and gradients over buckets of 1,000 consecutive samples, and plot how the
log-likelihood calculated over the sampled permutations approaches the true log-likelihood (that we
can compute since G is a Stochastic Kronecker graphs).

First, we present experiments that aim to answer how many samples (i.e., permutations) does
one need to draw to obtain a reliable estimate of the gradient (see Equation 5). Figure 12(a)
shows how the estimated log-likelihood approaches the true likelihood. Notice that estimated values
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quickly converge to their true values, that is, Metropolis sampling quickly moves towards “good”
permutations. Similarly, Figure 12(b) plots the convergence of the gradients. Notice that θ11 and θ22
of Θ′ and P ∗

1 match, so gradients of these two parameters should converge to zero and indeed they
do. On the other hand, θ12 and θ21 differ between Θ′ and P ∗

1 . Notice, the gradient for one is positive
as the parameter θ12 of Θ′ should be decreased, and similarly for θ21 the gradient is negative as the
parameter value should be increased to match the Θ′. In summary, this shows that log-likelihood
and gradients rather quickly converge to their true values.

In Figures 12(c) and (d) we also investigate the properties of the Markov Chain Monte Carlo
sampling procedure, and assess convergence and mixing criteria. First, we plot the fraction of
accepted proposals. It stabilizes at around 15%, which is quite close to the rule-of-a-thumb of
25%. Second, Figure 12(d) plots the autocorrelation of the log-likelihood as a function of the lag.
Autocorrelation rk of a signal X is a function of the lag k where rk is defined as the correlation
of signal X at time t with X at t + k, that is, correlation of the signal with itself at lag k. High
autocorrelations within chains indicate slow mixing and, usually, slow convergence. On the other
hand fast decay of autocorrelation implies better the mixing and thus one needs less samples to
accurately estimate the gradient or the likelihood. Notice the rather fast autocorrelation decay.

All in all, these experiments show that one needs to sample on the order of tens of thousands
of permutations for the estimates to converge. We also verified that the variance of the estimates is
sufficiently small. In our experiments we start with a random permutation and use long burn-in time.
Then when performing optimization we use the permutation from the previous step to initialize the
permutation at the current step of the gradient descent. Intuitively, small changes in parameter space
Θ also mean small changes in P(σ|G,Θ) .

6.1.2 DIFFERENT PROPOSAL DISTRIBUTIONS

In Section 5.3.1 we defined two permutation sampling strategies: SwapNodes where we pick two
nodes uniformly at random and swap their labels (node ids), and SwapEdgeEndpoints where we
pick a random edge in a graph and then swap the labels of the edge endpoints. We also discussed
that one can interpolate between the two strategies by executing SwapNodes with probability ω, and
SwapEdgeEndpoints with probability 1−ω.

So, given a Stochastic Kronecker graphs G on N =16,384 and E =115,741 generated from
P ∗

1 = [0.8,0.7;0.5,0.3] we evaluate the likelihood of Θ′ = [0.8,0.75;0.45,0.3]. As we sample per-
mutations we observe how the estimated likelihood converges to the true likelihood. Moreover we
also vary parameter ω which interpolates between the two permutation proposal distributions. The
quicker the convergence towards the true log-likelihood the better the proposal distribution.

Figure 13 plots the convergence of the log-likelihood with the number of sampled permutations.
We plot the average over non-overlapping buckets of 1,000 consecutive permutations. Faster con-
vergence implies better permutation proposal distribution. When we use only SwapNodes (ω= 1) or
SwapEdgeEndpoints (ω= 0) convergence is rather slow. We obtain best convergence for ω around
0.6.

Similarly, Figure 14(a) plots the autocorrelation as a function of the lag k for different choices
of ω. Faster autocorrelation decay means better mixing of the Markov chain. Again, notice that we
get best mixing for ω≈ 0.6. (Notice logarithmic y-axis.)

Last, we diagnose how long the sampling procedure must be run before the generated samples
can be considered to be drawn (approximately) from the stationary distribution. We call this the
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Figure 13: Convergence of the log-likelihood and gradients for Metropolis permutation sampling
(Algorithm 3) for different choices of ω that interpolates between the SwapNodes (ω=
1) and SwapEdgeEndpoints (ω= 0) permutation proposal distributions. Notice fastest
convergence of log-likelihood for ω= 0.6.

burn-in time of the chain. There are various procedures for assessing convergence. Here we adopt
the approach of Gelman et al. (2003), that is based on running multiple Markov chains each from a
different starting point, and then comparing the variance within the chain and between the chains.
The sooner the within- and between-chain variances become equal the shorter the burn-in time, that
is, the sooner the samples are drawn from the stationary distribution.

Let l be the parameter that is being simulated with J different chains, and then let l(k)j denote the
kth sample of the jth chain, where j = 1, . . . ,J and k = 1, . . . ,K. More specifically, in our case we
run separate permutation sampling chains. So, we first sample permutation σ(k)

j and then calculate
the corresponding log-likelihood l(k)j .

First, we compute between and within chain variances σ̂2
B and σ̂2

W , where between-chain vari-
ance is obtained by

σ̂2
B =

K
J−1

J

∑
j=1

(l̄· j− l̄··)2

where l̄· j = 1
K ∑

K
k=1 l

(k)
j and l̄·· = 1

J ∑
J
j=1 l̄· j.

Similarly the within-chain variance is defined by

σ̂2
W =

1
J(K−1)

J

∑
j=1

K

∑
k=1

(l(k)j − l̄· j)2.

Then, the marginal posterior variance of l̂ is calculated using

σ̂2 =
K−1
K

σ̂2
W +

1
K
σ̂2
B.
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Figure 14: (a) Autocorrelation plot of the log-likelihood for the different choices of parameter ω.
Notice we get best mixing with ω ≈ 0.6. (b) The potential scale reduction that com-
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And, finally, we estimate the potential scale reduction (Gelman et al., 2003) of l by

√

R̂=

√

σ̂2

σ̂2
W

.

1020



KRONECKER GRAPHS: AN APPROACH TO MODELING NETWORKS

-4.1
-4.0
-3.9
-3.8
-3.7
-3.6
-3.5
-3.4
-3.3
-3.2

 0  200  400  600  800  1000

Lo
g-

lik
el

ih
oo

d

Rank

⋅105

⋅106 -2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

 0  200  400  600  800  1000

Lo
g-

lik
el

ih
oo

d

Rank

⋅105

⋅106 -2.3
-2.2
-2.1
-2.0
-1.9
-1.8
-1.7
-1.6
-1.5
-1.4
-1.3
-1.2

 5  10  15  20  25  30  35  40  45  50

Lo
g-

lik
el

ih
oo

d,
 l(
Θ

t)

Gradient descent iteration, t

⋅105

(a) l(Θ|σi) where (b) l(Θ|σi) where (c) l(Θt) for 10 random
σi ∼ P(σ) σi ∼ P(σ|Θ,G) gradient descent runs

Figure 15: (a) Distribution of log-likelihood of permutations sampled uniformly at random, and (b)
when sampled from P(σ|Θ,G). Notice the space of good permutations is rather small
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likelihood for 10 runs of gradient descent, each from a different random starting point.

Note that as the length of the chainK→∞,
√
R̂ converges to 1 from above. The recommendation

for convergence assessment from Gelman et al. (2003) is that the potential scale reduction is below
1.2.

Figure 14(b) gives the Gelman-Rubin-Brooks plot, where we plot the potential scale reduction√
R̂ over the increasing chain length K for different choices of parameter ω. Notice that the potential

scale reduction quickly decays towards 1. Similarly as in Figure 14 the extreme values of ω give
slow decay, while we obtain the fastest potential scale reduction when ω≈ 0.6.

6.1.3 PROPERTIES OF THE PERMUTATION SPACE

Next we explore the properties of the permutation space. We would like to quantify what fraction
of permutations are “good” (have high likelihood), and how quickly are they discovered. For the
experiment we took a real network G (AS-ROUTEVIEWS network) and the MLE parameters Θ̂ for
it that we estimated before hand (l(Θ̂) ≈−150,000). The network G has 6,474 nodes which means
the space of all permutations has ≈ 1022,000 elements.

First, we sampled 1 billion (109) permutations σi uniformly at random, that is, P(σi)= 1/(6,474!)
and for each evaluated its log-likelihood l(σi|Θ) = logP(Θ|G,σi). We ordered the permutations in
deceasing log-likelihood and plotted l(σi|Θ) vs. rank. Figure 15(a) gives the plot. Notice that very
few random permutations are very bad (i.e., they give low likelihood), similarly few permutations
are very good, while most of them are somewhere in between. Notice that best “random” permuta-
tion has log-likelihood of ≈ −320,000, which is far below true likelihood l(Θ̂) ≈ −150,000. This
suggests that only a very small fraction of all permutations gives good node labelings.

On the other hand, we also repeated the same experiment but now using permutations sampled
from the permutation distribution σi∼P(σ|Θ,G) via our Metropolis sampling scheme. Figure 15(b)
gives the plot. Notice the radical difference. Now the l(σ|Θi) very quickly converges to the true
likelihood of ≈ −150,000. This suggests that while the number of “good” permutations (accurate
node mappings) is rather small, our sampling procedure quickly converges to the “good” part of the
permutation space where node mappings are accurate, and spends the most time there.
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6.2 Properties of the Optimization Space

In maximizing the likelihood we use a stochastic approximation to the gradient. This adds variance
to the gradient and makes efficient optimization techniques, like conjugate gradient, highly unstable.
Thus we use gradient descent, which is slower but easier to control. First, we make the following
observation:

Observation 4 Given a real graph G then finding the maximum likelihood Stochastic Kronecker
initiator matrix Θ̂

Θ̂= argmax
Θ

P(G|Θ)

is a non-convex optimization problem.

Proof By definition permutations of the Kronecker graphs initiator matrix Θ all have the same
log-likelihood. This means that we have several global minima that correspond to permutations of
parameter matrix Θ, and then between them the log-likelihood drops. This means that the optimiza-
tion problem is non-convex.

The above observation does not seem promising for estimating Θ̂ using gradient descent as it is
prone to finding local minima. To test for this behavir we run the following experiment: we gener-
ated 100 synthetic Kronecker graphs on 16,384 (214) nodes and 1.4 million edges on the average,
each with a randomly chosen 2×2 parameter matrix Θ∗. For each of the 100 graphs we run a single
trial of gradient descent starting from a random parameter matrix Θ′, and try to recover Θ∗. In
98% of the cases the gradient descent converged to the true parameters. Many times the algorithm
converged to a different global minima, that is, Θ̂ is a permuted version of original parameter matrix
Θ∗. Moreover, the median number of gradient descent iterations was only 52.

This suggests surprisingly nice structure of our optimization space: it seems to behave like a
convex optimization problem with many equivalent global minima. Moreover, this experiment is
also a good sanity check as it shows that given a Kronecker graph we can recover and identify the
parameters that were used to generate it.

Moreover, Figure 15(c) plots the log-likelihood l(Θt) of the current parameter estimate Θt over
the iterations t of the stochastic gradient descent. We plot the log-likelihood for 10 different runs
of gradient descent, each time starting from a different random set of parameters Θ0. Notice that in
all runs gradient descent always converges towards the optimum, and none of the runs gets stuck in
some local maxima.

6.3 Convergence of the Graph Properties

We approached the problem of estimating Stochastic Kronecker initiator matrix Θ by defining the
likelihood over the individual entries of the graph adjacency matrix. However, what we would really
like is to be given a real graph G and then generate a synthetic graph K that has similar properties
as the real G. By properties we mean network statistics that can be computed from the graph, for
example, diameter, degree distribution, clustering coefficient, etc. A priori it is not clear that our
approach which tries to match individual entries of graph adjacency matrix will also be able to
reproduce these global network statistics. However, as show next this is not the case.

To get some understanding of the convergence of the gradient descent in terms of the network
properties we performed the following experiment. After every step t of stochastic gradient descent,
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Figure 16: Convergence of graph properties with the number of iterations of gradient descent using
the synthetic data set. We start with a random choice of parameters and with steps of
gradient descent the Kronecker graph better and better matches network properties of
the target graph.

we compare the true graph G with the synthetic Kronecker graph Kt generated using the current
parameter estimates Θ̂t . Figure 16(a) gives the convergence of log-likelihood, and (b) gives absolute
error in parameter values (∑ |θ̂i j−θ∗i j|, where θ̂i j ∈ Θ̂t , and θ∗i j ∈ Θ∗). Similarly, Figure 16(c) plots
the effective diameter, and (d) gives the largest singular value of graph adjacency matrix K as it
converges to largest singular value of G.

Note how with progressing iterations of gradient descent properties of graphKt quickly converge
to those of G even though we are not directly optimizing the similarity in network properties: log-
likelihood increases, absolute error of parameters decreases, diameter and largest singular value of
Kt both converge to G. This is a nice result as it shows that through maximizing the likelihood the
resulting graphs become more and more similar also in their structural properties (even though we
are not directly optimizing over them).

6.4 Fitting to Real-world Networks

Next, we present experiments of fitting Kronecker graph model to real-world networks. Given a real
network G we aim to discover the most likely parameters Θ̂ that ideally would generate a synthetic
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Figure 17: Autonomous Systems (AS-ROUTEVIEWS): Overlayed patterns of real graph and the
fitted Kronecker graph. Notice that the fitted Kronecker graph matches patterns of the
real graph while using only four parameters (2×2 initiator matrix).

graph K having similar properties as real G. This assumes that Kronecker graphs are a good model
of the network structure, and that KRONFIT is able to find good parameters. In previous section
we showed that KRONFIT can efficiently recover the parameters. Now we examine how well can
Kronecker graph model the structure of real networks.

We consider several different networks, like a graph of connectivity among Internet Autonomous
systems (AS-ROUTEVIEWS) with N =6,474 and E =26,467 a who-trusts-whom type social net-
work from Epinions (Richardson et al., 2003) (EPINIONS) with N =75,879 and E =508,960 and
many others. The largest network we consider for fitting is FLICKR photo-sharing online social
network with 584,207 nodes and 3,555,115 edges.

For the purpose of this section we take a real network G, find parameters Θ̂ using KRONFIT,
generate a synthetic graph K using Θ̂, and then compare G and K by comparing their properties that
we introduced in Section 2. In all experiments we started from a random point (random initiator
matrix) and run gradient descent for 100 steps. At each step we estimate the likelihood and the
gradient based on 510,000 sampled permutations where we discard first 10,000 samples to allow
the chain to burn-in.
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6.4.1 FITTING TO AUTONOMOUS SYSTEMS NETWORK

First, we focus on the Autonomous Systems network obtained from the University of Oregon Route
Views project (RouteViews, 1997). Given the AS network G we run KRONFIT to obtain param-
eter estimates Θ̂. Using the Θ̂ we then generate a synthetic Kronecker graph K, and compare the
properties of G and K.

Figure 17 shows properties of AS-ROUTEVIEWS, and compares them with the properties of a
synthetic Kronecker graph generated using the fitted parameters Θ̂ of size 2×2. Notice that proper-
ties of both graphs match really well. The estimated parameters are Θ̂= [0.987,0.571;0.571,0.049].

Figure 17(a) compares the degree distributions of the AS-ROUTEVIEWS network and its syn-
thetic Kronecker estimate. In this and all other plots we use the exponential binning which is a
standard procedure to de-noise the data when plotting on log-log scales. Notice a very close match
in degree distribution between the real graph and its synthetic counterpart.

Figure 17(b) plots the cumulative number of pairs of nodes g(h) that can be reached in ≤ h
hops. The hop plot gives a sense about the distribution of the shortest path lengths in the network
and about the network diameter. Last, Figures 17(c) and (d) plot the spectral properties of the graph
adjacency matrix. Figure 17(c) plots largest singular values vs. rank, and (d) plots the components
of left singular vector (the network value) vs. the rank. Again notice the good agreement with the
real graph while using only four parameters.

Moreover, on all plots the error bars of two standard deviations show the variance of the graph
properties for different realizations R(Θ̂[k]). To obtain the error bars we took the same Θ̂, and
generated 50 realizations of a Kronecker graph. As for the most of the plots the error bars are so
small to be practically invisible, this shows that the variance of network properties when generating
a Stochastic Kronecker graph is indeed very small.

Also notice that the AS-ROUTEVIEWS is an undirected graph, and that the fitted parameter
matrix Θ̂ is in fact symmetric. This means that without a priori biasing the fitting towards undi-
rected graphs, the recovered parameters obey this aspect of the network. Fitting AS-ROUTEVIEWS
graph from a random set of parameters, performing gradient descent for 100 iterations and at each
iteration sampling half a million permutations, took less than 10 minutes on a standard desktop
PC. This is a significant speedup over Bezáková et al. (2006), where by using a similar permuta-
tion sampling approach for calculating the likelihood of a preferential attachment model on similar
AS-ROUTEVIEWS graph took about two days on a cluster of 50 machines.

6.4.2 CHOICE OF THE INITIATOR MATRIX SIZE N1

As mentioned earlier for finding the optimal number of parameters, that is, selecting the size of
initiator matrix, BIC criterion naturally applies to the case of Kronecker graphs. Figure 23(b)
shows BIC scores for the following experiment: We generated Kronecker graph with N =2,187
and E =8,736 using N1 = 3 (9 parameters) and k = 7. For 1 ≤ N1 ≤ 9 we find the MLE parameters
using gradient descent, and calculate the BIC scores. The model with the lowest score is chosen.
As Figure 23(b) shows we recovered the true model, that is, BIC score is the lowest for the model
with the true number of parameters, N1 = 3.

Intuitively we expect a more complex model with more parameters to fit the data better. Thus
we expect larger N1 to generally give better likelihood. On the other hand the fit will also depend on
the size of the graph G. Kronecker graphs can only generate graphs on Nk

1 nodes, while real graphs
do not necessarily have Nk

1 nodes (for some, preferably small, integers N1 and k). To solve this
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N1 l(Θ̂) Nk
1 Ek1 |{deg(u) > 0}| BIC score

2 −152,499 8,192 25,023 5,675 152,506
3 −127,066 6,561 28,790 5,683 127,083
4 −153,260 16,384 24,925 8,222 153,290
5 −149,949 15,625 29,111 9,822 149,996
6 −128,241 7,776 26,557 6,623 128,309

AS-ROUTEVIEWS 26,467 6,474

Table 2: Log-likelihood at MLE for different choices of the size of the initiator matrix N1 for the
AS-ROUTEVIEWS graph. Notice the log-likelihood l(θ̂) generally increases with the
model complexity N1. Also notice the effect of zero-padding, that is, for N1 = 4 and
N1 = 5 the constraint of the number of nodes being an integer power of N1 decreases the
log-likelihood. However, the column |{deg(u) > 0}| gives the number of non-isolated
nodes in the network which is much less than Nk

1 and is in fact very close to the true num-
ber of nodes in the AS-ROUTEVIEWS. Using the BIC scores we see that N1 = 3 or N1 = 6
are best choices for the size of the initiator matrix.

problem we choose k so that Nk−1
1 < N(G) ≤ Nk

1 , and then augment G by adding Nk
1 −N isolated

nodes. Or equivalently, we pad the adjacency matrix of G with zeros until it is of the appropriate
size, Nk

1 ×Nk
1 . While this solves the problem of requiring the integer power of the number of nodes

it also makes the fitting problem harder as when N / Nk
1 we are basically fitting G plus a large

number of isolated nodes.
Table 2 shows the results of fitting Kronecker graphs to AS-ROUTEVIEWS while varying the

size of the initiator matrix N1. First, notice that in general larger N1 results in higher log-likelihood
l(Θ̂) at MLE. Similarly, notice (column Nk

1) that while AS-ROUTEVIEWS has 6,474 nodes, Kro-
necker estimates have up to 16,384 nodes (16,384= 47, which is the first integer power of 4 greater
than 6,474). However, we also show the number of non-zero degree (non-isolated) nodes in the
Kronecker graph (column |{deg(u) > 0}|). Notice that the number of non-isolated nodes well cor-
responds to the number of nodes in AS-ROUTEVIEWS network. This shows that KRONFIT is
actually fitting the graph well and it successfully fits the structure of the graph plus a number of
isolated nodes. Last, column Ek1 gives the number of edges in the corresponding Kronecker graph
which is close to the true number of edges of the AS-ROUTEVIEWS graph.

Last, comparing the log-likelihood at the MLE and the BIC score in Table 2 we notice that the
log-likelihood heavily dominates the BIC score. This means that the size of the initiator matrix
(number of parameters) is so small that overfitting is not a concern. Thus we can just choose the
initiator matrix that maximizes the likelihood. A simple calculation shows that one would need
to take initiator matrices with thousands of entries before the model complexity part of BIC score
would start to play a significant role.

We further examine the sensitivity of the choice of the initiator size by the following experiment.
We generate a Stochastic Kronecker graphs K on 9 parameters (N1 = 3), and then fit a Kronecker
graph K′ with a smaller number of parameters (4 instead of 9, N′

1 = 2). And also a Kronecker graph
K′′ of the same complexity as K (N′′

1 = 3).
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Figure 18: 3 by 3 Stochastic Kronecker graphs: Given a Stochastic Kronecker graphs G generated
from N1 = 3 (red curve), we fit a Kronecker graph K′ with N′

1 = 2 (green) and K′′ with
N′′

1 = 3 (blue). Not surprisingly K′′ fits the properties of K perfectly as the model is the
of same complexity. On the other hand K′ has only 4 parameters (instead of 9 as in K
and K′′) and still fits well.

Figure 18 plots the properties of all three graphs. Not surprisingly K′′ (blue) fits the properties
of K (red) perfectly as the initiator is of the same size. On the other hand K′ (green) is a simpler
model with only 4 parameters (instead of 9 as in K and K′′) and still generally fits well: hop plot
and degree distribution match well, while spectral properties of graph adjacency matrix, especially
scree plot, are not matched that well. This shows that nothing drastic happens and that even a bit
too simple model still fits the data well. In general we observe empirically that by increasing the
size of the initiator matrix one does not gain radically better fits for degree distribution and hop plot.
On the other hand there is usually an improvement in the scree plot and the plot of network values
when one increases the initiator size.

6.4.3 NETWORK PARAMETERS OVER TIME

Next we briefly examine the evolution of the Kronecker initiator for a temporally evolving graph.
The idea is that given parameter estimates of a real-graph Gt at time t, we can forecast the future
structure of the graph Gt+x at time t+x, that is, using parameters obtained from Gt we can generate
a larger synthetic graph K that will be similar to Gt+x.
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Snapshot at time N E l(Θ̂) Estimates at MLE, Θ̂
T1 2,048 8,794 −40,535 [0.981,0.633;0.633,0.048]
T2 4,088 15,711 −82,675 [0.934,0.623;0.622,0.044]
T3 6,474 26,467 −152,499 [0.987,0.571;0.571,0.049]

Table 3: Parameter estimates of the three temporal snapshots of the AS-ROUTEVIEWS network.
Notice that estimates stay remarkably stable over time.
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Figure 19: Autonomous systems network over time (AS-ROUTEVIEWS): Overlayed patterns of real
AS-ROUTEVIEWS network at time T3 and the Kronecker graphs with parameters esti-
mated from AS-ROUTEVIEWS at time T1 and T2. Notice good fits which means that
parameters estimated on historic snapshots can be used to estimate the graph in the fu-
ture.

As we have the information about the evolution of the AS-ROUTEVIEWS network, we estimated
parameters for three snapshots of the network when it had about 2k nodes. Table 3 gives the results of
the fitting for the three temporal snapshots of the AS-ROUTEVIEWS network. Notice the parameter
estimates Θ̂ remain remarkably stable over time. This means that Kronecker graphs can be used to
estimate the structure of the networks in the future, that is, parameters estimated from the historic
data can extrapolate the graph structure in the future.
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Network N E Estimated MLE parameters Θ̂ l(Θ̂) Time
AS-ROUTEVIEWS 6,474 26,467 [0.987,0.571;0.571,0.049] −152,499 8m15s
ATP-GR-QC 19,177 26,169 [0.902,0.253;0.221,0.582] −242,493 7m40s
BIO-PROTEINS 4,626 29,602 [0.847,0.641;0.641,0.072] −185,130 43m41s
EMAIL-INSIDE 986 32,128 [0.999,0.772;0.772,0.257] −107,283 1h07m
CA-GR-QC 5,242 28,980 [0.999,0.245;0.245,0.691] −160,902 14m02s
AS-NEWMAN 22,963 96,872 [0.954,0.594;0.594,0.019] −593,747 28m48s
BLOG-NAT05-6M 31,600 271,377 [0.999,0.569;0.502,0.221] −1,994,943 47m20s
BLOG-NAT06ALL 32,443 318,815 [0.999,0.578;0.517,0.221] −2,289,009 52m31s
CA-HEP-PH 12,008 237,010 [0.999,0.437;0.437,0.484] −1,272,629 1h22m
CA-HEP-TH 9,877 51,971 [0.999,0.271;0.271,0.587] −343,614 21m17s
CIT-HEP-PH 30,567 348,721 [0.994,0.439;0.355,0.526] −2,607,159 51m26s
CIT-HEP-TH 27,770 352,807 [0.990,0.440;0.347,0.538] −2,507,167 15m23s
EPINIONS 75,879 508,837 [0.999,0.532;0.480,0.129] −3,817,121 45m39s
GNUTELLA-25 22,687 54,705 [0.746,0.496;0.654,0.183] −530,199 16m22s
GNUTELLA-30 36,682 88,328 [0.753,0.489;0.632,0.178] −919,235 14m20s
DELICIOUS 205,282 436,735 [0.999,0.327;0.348,0.391] −4,579,001 27m51s
ANSWERS 598,314 1,834,200 [0.994,0.384;0.414,0.249] −20,508,982 2h35m
CA-DBLP 425,957 2,696,489 [0.999,0.307;0.307,0.574] −26,813,878 3h01m
FLICKR 584,207 3,555,115 [0.999,0.474;0.485,0.144] −32,043,787 4h26m
WEB-NOTREDAME 325,729 1,497,134 [0.999,0.414;0.453,0.229] −14,588,217 2h59m

Table 4: Results of parameter estimation for 20 different networks. Table 5 gives the description
and basic properties of the above network data sets. Networks and KRONFIT code are
available for download at http://snap.stanford.edu.

Figure 19 further explores this. It overlays the graph properties of the real AS-ROUTEVIEWS
network at time T3 and the synthetic graphs for which we used the parameters obtained on historic
snapshots of AS-ROUTEVIEWS at times T1 and T2. The agreements are good which demonstrates
that Kronecker graphs can forecast the structure of the network in the future.

Moreover, this experiments also shows that parameter estimates do not suffer much from the
zero padding of graph adjacency matrix (i.e., adding isolated nodes to make G have Nk

1 nodes).
Snapshots of AS-ROUTEVIEWS at T1 and T2 have close to 2k nodes, while we had to add 26%
(1,718) isolated nodes to the network at T3 to make the number of nodes be 2k. Regardless of this we
see the parameter estimates Θ̂ remain basically constant over time, which seems to be independent
of the number of isolated nodes added. This means that the estimated parameters are not biased too
much from zero padding the adjacency matrix of G.

6.5 Fitting to Other Large Real-world Networks

Last, we present results of fitting Stochastic Kronecker graphs to 20 large real-world networks:
large online social networks, like EPINIONS, FLICKR and DELICIOUS, web and blog graphs (WEB-
NOTREDAME, BLOG-NAT05-6M, BLOG-NAT06ALL), internet and peer-to-peer networks
(AS-NEWMAN, GNUTELLA-25, GNUTELLA-30), collaboration networks of co-authorships from
DBLP (CA-DBLP) and various areas of physics (CA-HEP-TH, CA-HEP-PH, CA-GR-QC), physics
citation networks (CIT-HEP-PH, CIT-HEP-TH), an email network (EMAIL-INSIDE), a protein inter-
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Figure 20: Blog network (BLOG-NAT06ALL): Overlayed patterns of real network and the estimated
Kronecker graph using 4 parameters (2×2 initiator matrix). Notice that the Kronecker
graph matches all properties of the real network.

action network BIO-PROTEINS, and a bipartite affiliation network (authors-to-papers, ATP-GR-QC).
Refer to Table 5 in the appendix for the description and basic properties of these networks. They
are available for download at http://snap.stanford.edu.

For each data set we started gradient descent from a random point (random initiator matrix) and
ran it for 100 steps. At each step we estimate the likelihood and the gradient based on 510,000
sampled permutations where we discard first 10,000 samples to allow the chain to burn-in.

Table 4 gives the estimated parameters, the corresponding log-likelihoods and the wall clock
times. All experiments were carried out on standard desktop computer. Notice that the estimated
initiator matrices Θ̂ seem to have almost universal structure with a large value in the top left entry,
a very small value at the bottom right corner and intermediate values in the other two corners. We
further discuss the implications of such structure of Kronecker initiator matrix on the global network
structure in next section.

Last, Figures 20 and 21 show overlays of various network properties of real and the estimated
synthetic networks. In addition to the network properties we plotted in Figure 18, we also sepa-
rately plot in- and out-degree distributions (as both networks are directed) and plot the node triangle
participation in panel (c), where we plot the number of triangles a node participates in versus the
number of such nodes. (Again the error bars show the variance of network properties over different
realizations R(Θ̂[k]) of a Stochastic Kronecker graph.)

Notice that for both networks and in all cases the properties of the real network and the synthetic
Kronecker coincide really well. Using Stochastic Kronecker graphs with just 4 parameters we match
the scree plot, degree distributions, triangle participation, hop plot and network values.

Given the previous experiments from the Autonomous systems graph we only present the results
for the simplest model with initiator size N1 = 2. Empirically we also observe that N1 = 2 gives
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Figure 21: EPINIONS who-trusts-whom social network: Overlayed patterns of real network and
the fitted Kronecker graph using only 4 parameters (2× 2 initiator matrix). Again, the
synthetic Kronecker graph matches all the properties of the real network.

surprisingly good fits and the estimation procedure is the most robust and converges the fastest.
Using larger initiator matrices N1 > 2 generally helps improve the likelihood but not dramatically.
In terms of matching the network properties we also gent a slight improvement by making the
model more complex. Figure 22 gives the percent improvement in log-likelihood as we make the
model more complex. We use the log-likelihood of a 2× 2 model as a baseline and estimate the
log-likelihood at the MLE for larger initiator matrices. Again, models with more parameters tend to
fit better. However, sometimes due to zero-padding of a graph adjacency matrix they actually have
lower log-likelihood (as for example seen in Table 2).

6.6 Scalability

Last we also empirically evaluate the scalability of the KRONFIT. The experiment confirms that
KRONFIT runtime scales linearly with the number of edges E in a graph G. More precisely, we
performed the following experiment.

We generated a sequence of increasingly larger synthetic graphs on N nodes and 8N edges, and
measured the time of one iteration of gradient descent, that is, sample 1 million permutations and
evaluate the gradients. We started with a graph on 1,000 nodes, and finished with a graph on 8
million nodes, and 64 million edges. Figure 23(a) shows KRONFIT scales linearly with the size of
the network. We plot wall-clock time vs. size of the graph. The dashed line gives a linear fit to the
data points.

7. Discussion

Here we discuss several of the desirable properties of the proposed Kronecker graphs.
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Figure 22: Percent improvement in log-likelihood over the 2× 2 model as we increase the model
complexity (size of initiator matrix). In general larger initiator matrices that have more
degrees of freedom help improving the fit of the model.
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Figure 23: (a) Processor time to sample 1 million gradients as the graph grows. Notice the algo-
rithm scales linearly with the graph size. (b) BIC score for model selection.

Generality: Stochastic Kronecker graphs include several other generators as special cases: For
θi j = c, we obtain the classical Erdős-Rényi random graph model. For θi, j ∈ {0,1}, we obtain
a deterministic Kronecker graph. Setting the K1 matrix to a 2× 2 matrix, we obtain the R-MAT
generator (Chakrabarti et al., 2004). In contrast to Kronecker graphs, the RMAT cannot extrapolate
into the future, since it needs to know the number of edges to insert. Thus, it is incapable of obeying
the densification power law.
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(a) 2×2 initiator matrix (b) Two recursive communities (c) Core-periphery

Figure 24: 2× 2 Kronecker initiator matrix (a) can be thought of as two communities where there
are a and d edges inside each of the communities and b and c edges crossing the two
communities as illustrated in (b). Each community can then be recursively divided using
the same pattern. (c) The onion like core-periphery structure where the network gets
denser and denser as we move towards the center of the network.

Phase transition phenomena: The Erdős-Rényi graphs exhibit phase transitions (Erdős and
Rényi, 1960). Several researchers argue that real systems are “at the edge of chaos” or phase
transition (Bak, 1996; Sole and Goodwin, 2000). Stochastic Kronecker graphs also exhibit phase
transitions (Mahdian and Xu, 2007) for the emergence of the giant component and another phase
transition for connectivity.

Implications to the structure of the large-real networks: Empirically we found that 2×2 initiator
(N1 = 2) fits well the properties of real-world networks. Moreover, given a 2×2 initiator matrix, one
can look at it as a recursive expansion of two groups into sub-groups. We introduced this recursive
view of Kronecker graphs back in Section 3. So, one can then interpret the diagonal values of Θ as
the proportion of edges inside each of the groups, and the off-diagonal values give the fraction of
edges connecting the groups. Figure 24 illustrates the setting for two groups.

For example, as shown in Figure 24, large a,d and small b,c would imply that the network is
composed of hierarchically nested communities, where there are many edges inside each community
and few edges crossing them (Leskovec, 2009). One could think of this structure as some kind
of organizational or university hierarchy, where one expects the most friendships between people
within same lab, a bit less between people in the same department, less across different departments,
and the least friendships to be formed across people from different schools of the university.

However, parameter estimates for a wide range of networks presented in Table 4 suggests a very
different picture of the network structure. Notice that for most networks a2 b> c2 d. Moreover,
a≈ 1, b≈ c≈ 0.6 and d ≈ 0.2. We empirically observed that the same structure of initiator matrix
Θ̂ also holds when fitting 3×3 or 4×4 models. Always the top left element is the largest and then
the values on the diagonal decay faster than off the diagonal (Leskovec, 2009).

This suggests a network structure which is also known as core-periphery (Borgatti and Everett,
2000; Holme, 2005), the jellyfish (Tauro et al., 2001; Siganos et al., 2006), or the octopus (Chung
and Lu, 2006) structure of the network as illustrated in Figure 24(c).

All of the above basically say that the network is composed of a densely linked network core
and the periphery. In our case this would imply the following structure of the initiator matrix. The
core is modeled by parameter a and the periphery by d. Most edges are inside the core (large a), and
very few between the nodes of periphery (small d). Then there are many more edges between the
core and the periphery than inside the periphery (b,c > d) (Leskovec, 2009). This is exactly what
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we see as well. And in spirit of Kronecker graphs the structure repeats recursively—the core again
has the dense core and the periphery, and so on. And similarly the periphery itself has the core and
the periphery.

This suggest an “onion” like nested core-periphery (Leskovec et al., 2008a,b) network structure
as illustrated in Figure 24(c), where the network is composed of denser and denser layers as one
moves towards the center of the network. We also observe similar structure of the Kronecker ini-
tiator when fitting 3×3 or 4×4 initiator matrix. The diagonal elements have large but decreasing
values with off diagonal elements following same decreasing pattern.

One of the implications of this is that networks do not break nicely into hierarchically orga-
nized sets of communities that lend themselves to graph partitioning and community detection al-
gorithms. On contrary, this suggests that large networks can be decomposed into a densely linked
core with many small periphery pieces hanging off the core. This is in accordance with our recent
results (Leskovec et al., 2008a,b), that make similar observation (but based on a completely differ-
ent methodology based on graph partitioning) about the clustering and community structure of large
real-world networks.

8. Conclusion

In conclusion, the main contribution of this work is a family of models of network structure that
uses a non-traditional matrix operation, the Kronecker product. The resulting graphs (a) have all
the static properties (heavy-tailed degree distribution, small diameter, etc.), (b) all the temporal
properties (densification, shrinking diameter) that are found in real networks. And in addition, (c)
we can formally prove all of these properties.

Several of the proofs are extremely simple, thanks to the rich theory of Kronecker multiplication.
We also provide proofs about the diameter and effective diameter, and we show that Stochastic
Kronecker graphs can mimic real graphs well.

Moreover, we also presented KRONFIT, a fast, scalable algorithm to estimate Stochastic Kro-
necker initiator, which can be then used to create a synthetic graph that mimics the properties of a
given real network.

In contrast to earlier work, our work has the following novelties: (a) it is among the few that
estimates the parameters of the chosen generator in a principled way, (b) it is among the few that
has a concrete measure of goodness of the fit (namely, the likelihood), (c) it avoids the quadratic
complexity of computing the likelihood by exploiting the properties of the Kronecker graphs, and
(d) it avoids the factorial explosion of the node correspondence problem, by using the Metropolis
sampling.

The resulting algorithm matches well all the known properties of real graphs, as we show with
the Epinions graph and the AS graph, it scales linearly on the number of edges, and it is orders of
magnitudes faster than earlier graph-fitting attempts: 20 minutes on a commodity PC, versus 2 days
on a cluster of 50 workstations (Bezáková et al., 2006).

The benefits of fitting a Kronecker graph model into a real graph are several:

• Extrapolation: Once we have the Kronecker generator Θ for a given real matrix G (such that
G is mimicked by Θ[k]), a larger version of G can be generated by Θ[k+1].

• Null-model: When analyzing a real network G one often needs to asses the significance of the
observation. Θ[k] that mimics G can be used as an accurate model of G.
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• Network structure: Estimated parameters give insight into the global network and community
structure of the network.

• Forecasting: As we demonstrated one can obtain Θ from a graph Gt at time t such that G is
mimicked by Θ[k]. Then Θ can be used to model the structure of Gt+x in the future.

• Sampling: Similarly, if we want a realistic sample of the real graph, we could use a smaller
exponent in the Kronecker exponentiation, like Θ[k−1].

• Anonymization: Since Θ[k] mimics G, we can publish Θ[k], without revealing information
about the nodes of the real graph G.

Future work could include extensions of Kronecker graphs to evolving networks. We envision
formulating a dynamic Bayesian network with first order Markov dependencies, where parameter
matrix at time t depends on the graph Gt at current time t and the parameter matrix at time t− 1.
Given a series of network snapshots one would then aim to estimate initiator matrices at individual
time steps and the parameters of the model governing the evolution of the initiator matrix. We
expect that based on the evolution of initiator matrix one would gain greater insight in the evolution
of large networks.

Second direction for future work is to explore connections between Kronecker graphs and Ran-
dom Dot Product graphs (Young and Scheinerman, 2007; Nickel, 2008). This also nicely connects
with the “attribute view” of Kronecker graphs as described in Section 3.5. It would be interesting
to design methods to estimate the individual node attribute values as well as the attribute-attribute
similarity matrix (i.e., the initiator matrix). As for some networks node attributes are already given
one could then try to infer “hidden” or missing node attribute values and this way gain insight into
individual nodes as well as individual edge formations. Moreover, this would be interesting as one
could further evaluate how realistic is the “attribute view” of Kronecker graphs.

Last, we also mention possible extensions of Kronecker graphs for modeling weighted and
labeled networks. Currently Stochastic Kronecker graphs use a Bernoulli edge generation model,
that is, an entry of big matrix P encodes the parameter of a Bernoulli coin. In similar spirit one could
consider entries of P to encode parameters of different edge generative processes. For example, to
generate networks with weights on edges an entry of P could encode the parameter of an exponential
distribution, or in case of labeled networks one could use several initiator matrices in parallel and
this way encode parameters of a multinomial distribution over different node attribute values.

Acknowledgments

Research supported by generous gifts form Microsoft, Yahoo! and IBM.

Appendix A. Table of Networks

Table 5 lists all the network data sets that were used in this paper. We also computed some of the
structural network properties. Most of the networks can be obtained at
http://snap.stanford.edu.
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