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Abstract

Most clustering algorithms produce a single
clustering solution. This is inadequate for
many data sets that are multi-faceted and
can be grouped and interpreted in many dif-
ferent ways. Moreover, for high-dimensional
data, different features may be relevant or ir-
relevant to each clustering solution, suggest-
ing the need for feature selection in cluster-
ing. Features relevant to one clustering in-
terpretation may be different from the ones
relevant for an alternative interpretation or
view of the data. In this paper, we intro-
duce a probabilistic nonparametric Bayesian
model that can discover multiple clustering
solutions from data and the feature subsets
that are relevant for the clusters in each view.
In our model, the features in different views
may be shared and therefore the sets of rel-
evant features are allowed to overlap. We
model feature relevance to each view using an
Indian Buffet Process and the cluster mem-
bership in each view using a Chinese Restau-
rant Process. We provide an inference ap-
proach to learn the latent parameters corre-
sponding to this multiple partitioning prob-
lem. Our model not only learns the features
and clusters in each view but also automat-
ically learns the number of clusters, number
of views and number of features in each view.

1 Introduction

Clustering is the process of grouping objects based on
some notion of similarity. It is commonly applied for
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exploratory analysis, segmentation, preprocessing and
data summarization. Traditional clustering algorithms
[15] find one partitioning of the data. However, richly-
structured high-dimensional data can often be multi-
faceted. Instead of having a single way of partitioning
all the data, there may be multiple reasonable cluster-
ing interpretations. For example, human face images
can be grouped based on identity or their pose; news
webpages can be grouped by topic or by region. In
such cases, a single partitioning model (such as a mix-
ture model) is not sufficient.

Similarity is dependent on the features describing
data. The presence of noisy and irrelevant features
can degrade clustering performance, making feature
selection an important factor in cluster analysis [9].
However, most approaches to feature selection in clus-
tering only try to find one clustering solution and as
such only one subset of features relevant to that task.
But when data is multi-faceted, there may exist mul-
tiple clustering interpretations; and different feature
subsets may be relevant to each interpretation. Fea-
tures irrelevant to one clustering interpretation may
be relevant to another clustering solution. For exam-
ple, in news webpage clustering, some terms may be
relevant to the clustering view based on topic and oth-
ers may be appropriate for clustering based on region.
Moreover, there is no reason to require these feature
subsets to be disjoint.

In this paper, we call each clustering solution or inter-
pretation a view of the data. We introduce a nonpara-
metric Bayesian model for simultaneously discovering
multiple clustering views and the corresponding fea-
tures in each view. In this model, data instances that
belong to the same cluster in one view can belong to
different clusters in other views. Moreover, our model
allows overlap of features among the views; i.e., two or
more views may share common features. Because we
utilize a nonparametric model, our approach can also
automatically learn the number of clustering views,
the number of clusters in each view, and the number
of features in each view.
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2 Related Work

There is a growing recent interest in methods for find-
ing more than one clustering interpretation. These
methods can be categorized as either sequential (iter-
ative) or simultaneous approaches. Sequential or itera-
tive methods find alternative clustering solutions given
one or more existing solution. Gondek and Hofmann
[11] finds an alternative non-redundant clustering by a
conditional information bottleneck approach. Bae and
Bailey [1] utilize cannot-link constraints and agglomer-
ative clustering. Qi et al. [21] minimize the Kullback-
Leibler divergence between the distribution of the orig-
inal space and the projection subject to the constraint
that sum squared error between samples in the pro-
jected space with the means of the clusters they be-
long to is smaller than a pre-specified threshold. Dang
and Bailey in [7] maximizes the mutual information
between the new clusters and data at the same time
minimizing the alternative from a reference clustering;
while in [6], they apply maximum likelihood and mu-
tual information to find quality and alternative clus-
terings. Cui et al. [5] finds multiple alternative views
by clustering in the subspace orthogonal to the clus-
tering solutions found in previous iterations.

Simultaneous approaches discovers multiple clustering
solutions simultaneously. Meta clustering [4] generates
a diverse set of clustering solutions by either random
initialization or random feature weighting then hier-
archically clusters these solutions. Jain et al. in [16]
learns two disparate clusterings by minimizing two k-
means type sum-squared error objective while at the
same time minimizing the correlation between these
two clusterings. Poon et al. [20] build a latent pouch
tree model for selecting features in each clustering so-
lution. Dasgupta and Ng [8] utilizes each eigenvector
in spectral clustering to generate multiple clusterings.
Niu et al. [18] simultaneously learns multiple subspaces
that provide multiple views and clusterings in each
view by augmenting a spectral clustering objective
function to incorporate dimensionality reduction and
penalize dependency among views based on a kernel
independence criterion. The approach we introduce in
this paper is also a simultaneous method. However,
unlike all these methods, we provide a probabilistic
generative nonparametric model which can learn the
features and clustering solutions in each view simulta-
neously.

There are several nonparametric Bayesian models in-
troduced for unsupervised learning [19, 3, 12, 23, 14].
The Chinese Restaurant Process (CRP) [19] and the
stick-breaking Dirichlet Process Model [3] only assume
one underlying partitioning of the data samples. The
Indian Buffet Process (IBP) assumes that each sample

is generated from an underlying latent set of features
sampled from an infinite menu of features. There are
also nonparametric Bayesian models for co-clustering
[23]. None of these model multiple clustering solutions.
There are, however, a few recent papers that provide
a nonparametric Bayesian model for finding multiple
partitionings: one called cross-categorization [17] uti-
lizes a CRP-CRP construction and Gibbs sampling for
inference, and another one [13] utilizes a multiple clus-
tering stick-breaking construction and provide a vari-
ational inference approach to learn the model param-
eters and latent variables. Both [13, 17] assume that
the features in each view are disjoint. However, in
many applications, some features maybe shared among
views. For example, in face images, an intensity fea-
ture can be useful for grouping images based on iden-
tity; it can also be useful for distinguishing pose. We,
thus, would like a model that allows feature overlap
among views. Recognizing the need for feature shar-
ing in natural language processing [22], the authors in
[22] first applied latent dirichlet allocation to assign
features to views, then applied CRP on each view, as
two separate processing steps. In contrast, this paper
provides a single monparametric Bayesian generative
model that can discover multiple clustering views where
the views are allowed to share features.

3 Nonparametric Multiple Clustering
Model with Overlapping Feature
Views

Given data X € RNM*P where N is the number
of samples and D is the number of features. X =
[X1,X2,...,xn]T = [f1,f2,...,fp], where x,, € R? are
the samples. Our goal is to build a model that can
learn multiple possible interesting alternative cluster-
ing solutions and at the same time learn the features
describing the partitioning in each view, v. Each view
is generated from a subset of the original features,
where the features among views are allowed to overlap.

Figure 1 illustrates the type of latent partitioning
structure that we would like to learn from our data.
The n axis indexes the data samples, d the features
and v the views respectively. The cube face with fea-
tures and views axes in Figure 1 shows which feature
belongs to which view. Let us call this the latent view
structure. If a feature belongs to view v, the corre-
sponding tile is shown in black. It is white otherwise.
We allow features to overlap (i.e., features that belong
to one view can also belong to another view). The cube
face with instances and views axes in Figure 1 shows
the partitioning of the samples in each view. Let us
call this the latent cluster structure in each view. Sam-
ples that belong to the same cluster are coded with the
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Features

Instances

Figure 1: Instances, features and views form a cube.
The instances and features face is the data. The fea-
tures and views face indicate the membership of fea-
tures in views. The instances and views face indicate
multiple cluster labelings.

same shade of gray in each view. Note that samples
that belong together in one view may belong to differ-
ent clusters in other views. We would like to design a
nonparametric Bayesian model that can generate such
a latent structure (i.e., learn the features in each view
allowing feature overlap and the partitioning of the
samples in each view).

3.1 Latent View Structure Model

Let Y € RPXV be a matrix of binary latent indicator
variables, such that its elements 4, = 1, if the feature
d belongs to view v and 0 otherwise. V here is the total
number of views. In [13, 17], they assume that the fea-
tures in each view are disjoint and accordingly model
this as a partitioning problem with the constraint that
the >, y4. =1 (i.e., a feature can only belong to one
view). However in our case, we would like to allow
sharing/overlap of features in different views. To al-
low the feature subsets belonging to different views to
overlap, we need to remove this constraint and allow
multiple ones in each row of Y. Instead of assigning
each feature to only V views, we now allow 2V possi-
ble assignments; each y4, can be either one or zero.
We model this as coming from a Bernoulli distribution
and the parameters of the Bernoulli as coming from a
Beta distribution, its conjugate prior. Rather than fix-
ing the number of views, we allow the number of views
to go to infinity and apply the Beta-Bernoulli model
underlying the Indian Buffet Process (IBP) [12], en-
abling us to automatically learn the number of views.
Heller and Ghahramani [14] also utilizes IBP to model
overlap; however, this work only find one clustering in-
terpretation/view and the overlap they consider is in

the clusters (i.e., on the instances); whereas, we allow
overlap on the features among views.

The Indian Buffet Process (IBP) [12] defines a dis-
tribution on infinite binary matrices. It uses a culi-
nary metaphor in explaining the stochastic process.
Many Indian buffets seem to offer an infinite number
of dishes. Customers enter a restaurant and each cus-
tomer sequentially samples dishes from infinitely many
dishes arranged in a line. In our case, the features are
the D customers and the views are the dishes. We
assume that each feature d belongs to view v with
probability m,, and that the features are generated
independently. The probability of a matrix Y given

T =T, T2,...,Ty 18
vV D v
P(Y|r) = T[T Pwalm) = [ 7= (1 = m)P 7
v=1d=1 v=1

where n, = Zd Yd,» is the number of yq, =1 in each
view v. We use the conjugate prior for the binomial
which is a beta distribution Beta(r, s) to generate .
Here we assume r = & and s = 1. The probability

o
model is then
«
v ~ Bet =, 1
| e a(v )
Ydu|my ~ Bernoulli(m,)

Integrating over all values for 7, we get the marginal
probability

Ve 9P(ny + &)0(D —ny + 1)
PY)=][* F(DV+1+%)

By taking V' — oo, we can get the distribution of Y
with infinite V. The distribution is exchangeable. D
customers enter a restaurant one after another. Each
customer encounters a buffet consisting of infinitely
many dishes arranged in a line. The first customer
starts at the left of the buffet and takes a serving from
each dish stopping after a Poisson(«) number of dishes.
The dth customer moves along the buffet, sampling
dishes in proportion to their popularity with probabil-
ity %“, where n, is the number of previous customers
who have sampled the dish. Having reached the end
of all the previously sampled dishes, the dth customer
then tries a Poisson(§) number of new dishes.

In IBP, the expected number of views per feature and
the total number of views are determined by «. How-
ever, this original Indian Buffet Process does not have
any control over view stickiness. In [10], the authors
present a two-parameter generalization of the IBP
which lets us tune independently the average number
of views each feature possesses and the overall number
of views used in a set of D features. In the origi-
nal IBP, a controls both the number of latent views
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per feature, and the amount of overlap between these
latent views. Keeping the average number of views
per feature at « as before, the two-parameter IBP de-
fines a model in which the overall number of views can
range from « (extreme stickiness/ herding, where all
views are shared among all features) to Da (extreme
repulsion/individuality). The generalization is as fol-
lows: in the beta distribution, the parameter r takes
(aB)/V and s takes (B (setting 8 = 1 leads to the one-
parameter IBP). The joint distribution of the latent
feature indicators becomes

B(ny +%2,D —n, + B)
I
L T(n, + ST(D —n, + 8) T(22 + )
1;[ LD+ +8)  T(FN(B)
B is introduced to preserve the average number of

views per feature. This time, the dth customer sam-
ples a dish with probability ﬁ and a new dish

with probability ﬁf"iﬂd. The expected overall number
of views is V, = « 2521 %7 and that the distribu-
tion of this number is Poisson. We can see from this
that the total number of views used increases as 3 in-
creases, so we can interpret 3 as the view repulsion, or
1/ as the view stickiness. For finite 3, the asymptotic
of V for large D is V; ~ afB1InD. In our probabilis-
tic multiple clustering setting, this two-parameter IBP
is used to model the prior probability for indicating
which feature belongs to which view: « controls the
expected number of views a feature belongs; 5 con-
trols the view stickiness or sharing of features among
different views.

3.2 Latent Cluster Structure Model

Given the features in each view, we partition the in-
stances into clusters based only on the features in view
v by modeling these instances as coming from a mix-
ture model. One may opt to use the standard finite
mixture model; but in this paper, we utilize the Chi-
nese Restaurant Process (CRP) [19] which allows us to
also automatically learn the number of clusters in each
view. Let Z € RNXEXV be a matrix of latent clus-
ter indicator variables representing the partitioning of
samples in all views, where each element, z,, j , = 1 if
sample x,, belongs to cluster k in view v and 2, ., = 0
otherwise. K is the number of clusters in the view with
the maximum number of clusters, and K, is the num-
ber of unique and nonempty clusters in view v.

The Chinese Restaurant Process [19] defines a distri-
bution on partitions in a Dirichlet process mixture
whose name is inspired by the seemingly infinite tables
in San Francisco’s Chinatown restaurants [19]. The

infinite set of tables are analogous to our clusters and
the customers, our data samples. The first customer
always bitb at the ﬁl“bt table. T he nth customer sits at

the number of customers (bamples) already seated at
table k, or will sit at a new table with probability nln,
proportional to the scalar concentration hyperparam-
eter 7. The CRP is an exchangeable distribution on
partitions; meaning that, the distribution is invariant
to the order in which customers (samples) are assigned
to tables (clusters). By serving each table a separate
dish, CRP provides a representation for a Dirichlet
process mixture [19].

3.3 Cluster Component Model

For each cluster in each view, we assume a component
density model with parameter v and hyperparameter
A depending on the data. In our experiments, we apply
a Gaussian component model for data with real-valued
features and multinomial on data based on text. We
describe these two common cluster component models
in the inference Section 4. In general, one may apply
other component models as appropriate.

3.4 Overall Model

Figure 2 shows a graphical model of our nonparametric
multiple clustering model.

(@)

Ak
¥ e
oo clusters
Y
Kz,
D features s 0 views

Figure 2: Graphical model for nonparametric multiple
clustering model.
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The joint distribution for all variables p(X,Y, Z,~) is

B)p(Z|ew )p(vIX)
V. N
H H p(xn,vh’vv Y, 7)

v=1n=1

vV N VvV K,

v=1n=1 v=1 k=1
where X, = (Tn,4 : Ya,» = 1) is a vector representing
sample n in view v comprised of only the correspond-
ing features selected in that view, « are the cluster
parameters with hyperparameter A, V' is the number
of views and K, is the number of clusters in view v, N
is the number of data points and c is the normalizing
constant which is needed to ensure that the density in-
tegrates to one. We express p(X|Y, Z,~) as a product
of the densities for each view. Note that because we
allow features to overlap in each view, the constant c
makes sure the probability normalizes to 1.

(XY, Z,v)p(Y e,

The overall generative process for generating the mul-
tiple views is as follows:

1. Latent view, Y: Generate Y indicating which fea-
ture belongs to which view from a two-parameter
Indian Buffet Process IBP(«, ).

2. Latent clusters, Z: For each view v = {1,2,...},
generate a partitioning for instances 2y i, from a
Chinese Restaurant Process CRP(n).

3. Observation data, X: Data are generated from a
multiplicative mixture of views, where each view
is a mixture of cluster components. For each
cluster in each view, we draw cluster parame-
ter 7., from the prior parameter distribution
with hyperparameter A: v ~ p(v|A). This gives
us the cluster component densities in each view,
p(xm,|'yz7l‘mv)7 where z, , is equal to the cluster &k
that sample n belongs to in view v. We now have
V' alternative CRP mixture distribution views.
We combine the V views by assuming a mul-
tiplicative mixture to generate our observation
X: %y~ p(xal7, Y. Z) = L T]omy P(0nly. Y. 2),
where c¢ is a normalization term.

Note that our model deals with cluster quality and
non-redundancy simultaneously. Our model handles
the cluster quality by estimating the joint distribu-
tion for each cluster in each view. The model handles
clustering redundancy in an implicit way. Redundant
clusterings increase the model complexity by adding
more overlapping features which is penalized by the
Indian Buffet Process prior and the multiplicative mix-
ture model.

p(X‘KZ7’Y)P(Zn,v -

4 Inference by Gibbs Sampling

In this section, we describe a Gibbs sampling algo-
rithm for estimating our posterior distribution. The
sampling process has three steps. Step one is the fea-
ture assignment step, sampling Y conditioned on Z,
X and ~. Step two involves instance assignment, sam-
pling Z conditioned on Y, X and <. And step three
involves updating the parameters . We iteratively
repeat these steps until convergence to a stable distri-
bution.

In step one, the hyperparameters o and § for Y
are assumed known. Due to the exchangeability of
IBP, we can derive the following Gibbs sampler as
follows. The dth object can be taken to be the
last customer to visit the buffet, then P(yq, =
1‘Y—(d,v)7Z7X77) X P(yd,v = 1|Y—(d,v))P(X|KZ Y
and P(yd,v = 0|Y—(d,v),Z7 va) X P(yd,v =
0lY_(a,0))P(X|Y, Z,7), where Y_4,) are the Y en-
tries other than yg., P(yaw = 1Y_(4) = ﬁﬁj’;il
and P(ydﬂj = 0|Y—(d,v)) =1- P(yd,v = 1|Y—(d,v))~
p(X|Y, Z,v) is the observation likelihood calculated
as:

p(XY,Z,5) =

\‘s\»—t

vV N
H Hp(xn,vh'vYaZ) (1)
v=1n=1

where ¢ is the normalizing constant. To form new
views, we use P(Ydvne = UY_(dvnen)r £, X,7)
P(yd vnew = VP(XY, Z,~), where P(yq,., = 1) =
5+D 7 from the two-parameter IBP and P(X|Y, Z,~)
is the likelihood Equation 1 where p(Xp v,,..,, |7, Y, Z) is
calculated from a CRP clustering process for the single
feature d.

In step two, we assign the data samples to clus-
ters in each view by sampling the cluster indicator
variables. We update the latent cluster indicator
variables as follows. P(zn, = k|z_pe, Y, X,7v) x

k|z_n ), where P(zp, =
and P(Zn,v = knew|zfn,v) = N?FTZ
The observation likelihood

k/’|zfn,’u) = ]\;Ljn

to form new cluster ke .

p(X|Y, Z,) is calculated as in Equation 1.

In step three, we update the cluster component models
based on the posterior distribution of . We know
the form of the posterior distribution of v because we
assumed that v was generated from its corresponding
conjugate prior. In particular, we provide the update
equations for two common cluster component models,
the Gaussian and the multinomial components.

Gaussian Component. For the Gaussian distribu-

tion, the parameter v, , = comprises the mean u,, ,

1

and precision matrix A, ., , (¥, ) in view v and
cluster z .

We use a Gaussian-Wishart distribution

P(Yy., ,IA) for 7 since it is conjugate to the Gaussian



A Nonparametric Bayesian Model for Multiple Clustering with Overlapping Feature Views

distribution. For each view, the hyper-parameter X is
a vector composed of mg ,,, Wy, Bov, and vg,. The
Gaussian likelihood distribution, p(X|Y, Z,~) is:

vV N 1
p(X[Y.Z,7) = H H (2m)D 2|5

|1/2
v=1n=1

V,Zn,v
1 _
exp <2(33n,v — Hv,z",ﬂ,)TEv;n,v(z"v“ - H’v,zn,u))

where the indices indicate the corresponding view v
and cluster component z,, and D, is the number of
features in view v. my ,, Wi, Bk, and vy, are the
parameters of the posterior Gaussian-Wishart distri-
bution for cluster k in view v. And the update equa-
tions are:

Brw = Bow+ Niw
1 _
mg, = 7(ﬁ0,vm0,v + Nk,vxk,v)
ﬁk,v
Wiy = Wou + NeoSiw
60,’UN’€.U _ _ T
—— 2 (Tg — M) (Thw — Mo,
Bo,v +Nk,v( ! o) @ 2
Vew = MYow + Nk,'u

where X, and S}, ,, are the sample mean and sample
covariance of x in cluster k of view v and Ny, ,, are the
number of samples in cluster k in view v.

Multinomial Component. Assuming
P(Xn,0|Yyp, 2, ,) comes from a multinomial distribution,
the parameter Y.z, , comprises of the probability of
occurrence for each feature in view v and cluster z, ..
We use a Dirichlet distribution, the conjugate prior to
a multinomial distribution as our prior p(vy, . |A),
with hyperparameters A = {010’17...,a0’DU}’. "The
multinomial likelihood distribution, p(X|Y, Z,~) is:

vV N \%4

L ,v,l
H H p(xn,v|7v,znm) = H Py 2 )l
v=1n=1

Here, we use the notation z,,; to be the value of
the lth feature in view v in sample n. oy, is the
parameter for the posterior Dirichlet distribution for
the lth feature in cluster k of view v. And the posterior
update equation is ay,v; = o, + Tk, Where x4
is the count of the [th feature in cluster k of view
v. We, then, repeat steps one (latent feature update),
two (cluster assignment) and three (parameter update)
until they converge to a stable distribution.

Initialization We initialize our Gibbs sampler us-
ing a multiple forward sequential search strategy. Our
method extends the forward sequential search for one
feature subset [9] that optimizes the likelihood of a
mixture model as criterion for selecting features to

multiple search. First, we perform a sequential forward
search to select one subset of features. This becomes
the initial set of features for view 1. Next, we select the
first feature to include for the next view from the rest
of the features. To allow sharing of features, we then
perform sequential forward search on the whole set of
features starting from this first feature. We continue
this process until all the features belong to at least
one view. Note that this process does not impose the
disjoint subspaces constraint.

5 Experiments

In this section, we perform experiments on three syn-
thetic data sets of varying feature overlap and on five
real data sets (a face image, a machine sound and three
text datasets) to investigate whether our algorithm
gives reasonable multiple clustering solutions. We
compare our method, nonparametric Bayesian multi-
ple clustering with overlapping feature views (NBMC-
OFV), against a nonparametric probabilistic multiple
clustering method based on (CRP-CRP) [17], a simul-
taneous multiple clustering approach (de-correlated
kmeans, D-kmeans) [16], a sequential approach (or-
thogonal projection, orthProj) method [5] and a base-
line nonparametric Dirichlet process mixture model
(DP-Gaussian or DP-Multinomial) [3]. The CRP-
CRP [17], uses a Chinese restaurant process to cluster
features into subspaces and Chinese restaurant pro-
cess again to cluster instances into clusters in each
subspace. In their model, features among views are
assumed disjoint. In [16], they use two kmeans objec-
tive penalized by a correlation term between the views
to find multiple clusterings. In [5], they apply orthogo-
nal projection to discover an alternative subspace and
clustering. We also compare with a nonparametric
Dirichlet process mixture [3] to serve as a baseline.
In all our experiments, we apply the Gaussian cluster
component for the synthetic, image and sound data
and the multinomial cluster component for text data.
In the IBP, « is the expected number of clustering
views each feature possesses, and 3 roughly controls
the total number of clustering views in the data. n is
set roughly according to the expected number of clus-
ters in each view. Clustering results are based on the
expected values from the Markov chain Monte-Carlo
samples after burn-in.

To show how well our method compares against com-
peting methods in discovering the “true” labeling, we
report the normalized mutual information (NMI) [24]
between the clusters found by these methods with the
“true” class labels. Let C' represent the clustering re-

sults and L the labels, NMI = M,
H(C)H(L)

MI(C, L) is the mutual information between random

where
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variables C and L and H(-) is the entropy. Note that in
all our experiments, labeled information are not used
for training; we only use them to measure the per-
formance of our clustering algorithms. Higher NM1T
values mean the more similar the clustering results are
with the labels; and it only reaches its maximum value
of one when both clustering and labels are perfectly
matched. Since we have multiple views and label in-
terpretation, for all methods, we report the best one-
to-one mapping between the clustering views to the
different label views based on NMI. For unlabeled
text data, we use perplexity to evaluate our model. We
would like to achieve high likelihood for the dataset
given our model. The perplexity is the inverse of the
geometric mean per-word likelihood. A lower perplex-
ity score indicates better performance. For a set X of
N documents, the perplezity is defined as

Sy log p(w,)
Yooy My

where w,, is the word vector in document n and M,, is
the total number of words in document n.

perplexity(X) = exp {—

5.1 Synthetic Data

To get a better understanding of our method and test
its applicability, we first perform our approach on three
synthetic data sets. Each synthetic data set has 1000
instances and 100 features. The first synthetic data is
generated from ten clustering views. Each clustering
view has 10 features without overlap. Three Gaus-
sian clusters are generated in each feature subspace.
Clustering views are independent to each other. The
second synthetic data is also generated from ten clus-
tering views. However, each clustering view has 11 fea-
tures with slight overlap: 10 features belong to more
than one view. Three Gaussian clusters are generated
in each feature subspace. The third synthetic data
is generated from heavily overlapped clustering views.
The binary matrix which indicates the feature mem-
bership on each view is generated from an IBP; then
three Gaussian clusters are generated in each view.

Table 1: Average NMI Results of the Ten Views on
Data 1, 2 and 3

DatAl | DATA2 | DATA3 | TIME(103S)
NBMC-OFV | 0.89 0.81 0.59 1.1
ORTHPROJ 0.78 0.65 0.56 0.53
D-KMEANS 0.64 0.41 0.48 0.65
CRP-CRP 0.87 0.66 0.34 0.87
DP-GAuss 0.24 0.27 0.23 0.016

Table 1 shows the average NMI results of the ten views

compared to the true labels in each synthetic data and
the average running time. Without feature overlap,
both our method (NBMC-OFV) and CRP-CRP per-
form well on Data 1. With slight and heavy feature
overlap, our method outperforms CRP-CRP and the
other methods since our method allows feature over-
lap. For all the synthetic data, DP-Gaussian does not
discover useful solutions since it can only output a sin-
gle clustering and the features from the other views
make it difficult for DP-Gaussian to discover any one
of the views.

5.2 Real Data

We now test our method on five real-world data sets to
see whether we can find meaningful clustering views.
In particular, we test our method on a face image, a
machine sound data and three text data. We select
data that have high-dimensionality and multiple pos-
sible partitionings. We compare our results to true
labeling. For text data without labeling, we evaluate
our method with perplezity.

Face, Machine Sound and WebKB Data. The
face dataset from UCI KDD repository [2] consists of
640 face images of 20 people taken at varying poses
(straight, left, right, up). The two dominant views of
this face data are: identity of the person and their
pose. These two views are non-redundant, meaning
that with the knowledge of identity, no prediction of
pose can be made. We test our method to see whether
we can find these two clustering views. Each person
has 32 images with four equally distributed poses. The
image resolution is 32 x 30 pixels, resulting in a data set
with 640 instances and 960 features. Machine sound
data is comprised of 280 sound instances collected from
acoustic accelerometer signals of different machines in-
side buildings. The goal is to classify these sounds into
three basic machine classes: pump, fan, motor. Each
sound instance can be from one machine, or mixture of
two or three machines. As such, this data has a mul-
tiple clustering view structure. In one view, data can
be grouped as pump or no pump; the other two views
are similarly defined. We represent each sound signal
by its FFT (Fast Fourier Transform) coefficients, pro-
viding us with 100, 000 coefficients. We select the 1000
highest values in the frequency domain as our features.
This data set ! contains html documents from four
universities: Cornell University, University of Texas,
Austin, University of Washington and University of
Wisconsin, Madison. We removed the miscellaneous
pages and sub-sampled a total of 1041 pages from four
web-page owner types: course, faculty, project and

student. We pre-processed the data by removing rare

"http:/ /www.cs.cmu.edu/afs/cs/project /theo-
20/www/data/
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Table 2: NMI Results on Face, Machine Sound, and WebKB Data

FAcCE WEBKB MACHINE SOUND
IDENTITY | POSE | UNIVERSITY | OWNER | PUMP | MOTOR | FAN
NBMC-OFV 0.89 0.57 0.85 0.70 0.89 0.86 | 0.87
ORTHPROJ [5] 0.83 0.48 0.78 0.75 0.73 0.68 |0.47
D-KMEANS [16] 0.70 0.40 0.48 0.57 0.64 0.58 |0.75
CRP-CRP [17] 0.86 0.53 0.63 0.68 0.81 0.78 ]0.83
DP-GAUSSIAN [3] 0.84 0.03 - - 0.25 0.32 |0.16
DP-MULTINOMIAL [3] - - 0.26 0.39 - - -

words, stop words, and words with low variances. The
two views we want the algorithm to discover are either
based on university or based on owner type.

Table 2 provides the NMI results of the different algo-
rithms compared to the labeled views for these data
sets. Results show that our method provided the best
results compared to competing methods. NBMC-OFV
is better than CRP-CRP because we allow feature
overlap. It is better than orthogonal projection be-
cause orthogonal projection is a sequential approach
and also because their feature views are strictly or-
thogonal; whereas, NBMC-OFV allow some overlap.
De-correlated kmeans is worse because it does not per-
form feature selection in each view; it utilizes all the
features in all views. Finally, DP-Gaussian for the real-
valued data and DP-multinomial for the text data are
limited because they can only discover one view.

NSF Abstract and NYTimes Data. The NSF
dataset [2] consists of 129, 000 abstracts from year 1990
to 2003. Each text instance is represented by the fre-
quency of occurrence of each word. This dataset is
richly structured. It covers a wide range of research.
In our method, we find two possible clusterings: one
based research topic and the other based on research
type (theoretical vséxperimental). We found 102 re-
search topics (clusters) in view 1. Example topics are
“inference” with top words (statistic, inference, an-
dersson, adg (acyclic directed graph), “optimization”
with top words (optimize, programming, sqp (sequen-
tial quadratic programming), nonconvexity), “wire-
less” with top words (antenna, wireless, basestation,
stap, mnp (mobile number portability)). We discov-
ered two clusters based on research type in view 2:
“theoretical” with top words (methods, mathematical,
develop, equation) and “experimental” with top words
(experiments, processes, technique, measurement).

The NYTimes dataset [2] consists of 300,000 news ar-
ticles from New York Times. We sample 10,000 in-
stances from the dataset. We represent each article by
the frequency of occurrence of each word. This dataset
is also very rich. Articles contain topics on politics,
economics, business, sports and so on. We use perplex-

ity to evaluate how well our model fits both the NSF
and NYTimes data compared to other probabilistic
models in Table 3. Results confirm that our NBMC-
OFV nonparametric overlapping feature model per-
formed the best compared to the other probabilistic
models, CRP-CRP and DP-multinomial.

Table 3: Perplexity Results on NSF and NYTimes

NSF | NYTIMES
NBMC-OFV 3541 8765
CRP-CRP 3821 9344
DP-MULTINOMIAL | 5042 12845

6 Conclusion

Standard clustering algorithms output a single clus-
tering solution. However, data can have multiple clus-
tering interpretations. Furthermore, only a subset of
features may be important to discover each clustering
interpretation or view. In this paper, we introduced
a probabilistic nonparametric Bayesian model for this
type of richly structured multi-faceted data that can
automatically learn the features and clusters in each
view for this model simultaneously. Unlike previous
nonparametric models which assumes that the features
in each view are disjoint, we provided a more flexi-
ble model that allows the features to overlap or be
shared among views. We model feature relevance to
each view using a two parameter Indian Buffet Pro-
cess and the cluster membership in each view using a
Chinese Restaurant Process. We provided an inference
approach to learn the latent parameters corresponding
to this multiple partitioning problem. Besides learning
the latent features and clusters per view, our Bayesian
formulation also allows us to automatically learn the
number of views and the number of clusters in each
view. Our results on synthetic and real-world data
show that our method can find high quality multiple
alternative clustering views, and outperform compet-
ing methods.
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