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Abstract

The paper presents a new copula based
method for measuring dependence between
random variables. Our approach extends the
Maximum Mean Discrepancy to the copula
of the joint distribution. We prove that this
approach has several advantageous proper-
ties. Similarly to Shannon mutual informa-
tion, the proposed dependence measure is in-
variant to any strictly increasing transforma-
tion of the marginal variables. This is im-
portant in many applications, for example in
feature selection. The estimator is consis-
tent, robust to outliers, and uses rank statis-
tics only. We derive upper bounds on the
convergence rate and propose independence
tests too. We illustrate the theoretical con-
tributions through a series of experiments in
feature selection and low-dimensional embed-
ding of distributions.

1. Introduction

Measuring dependence between random variables is an
important problem in statistics, information theory,
and machine learning with a wide range of applications
in science and engineering. The most well-known de-
pendence measure is the Shannon mutual information,
which has found numerous applications recently. Al-
though this is the most popular dependence measure,
it is only one of the many other existing ones. In par-
ticular, it is a special case of the Rényi-a (Rényi, 1961)
and Tsallissaw mutual information (Tsallis, 1988).

Appearing in Proceedings of the 29" International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

Other interesting dependence measures include the
maximal correlation coefficient (Rényi, 1959), kernel
mutual information (Gretton et al., 2003), the general-
ized variance and kernel canonical correlation analysis
(Bach, 2002), the Hilbert-Schmidt independence crite-
rion (Gretton et al., 2005), the Schweizer-Wolff mea-
sure (Schweizer & Wolff, 1981), and the distance based
correlation (Székely et al., 2007).

There is a tremendous list of dependence applications.
They have been used, for example, in causality detec-
tion, feature selection, active learning, structure learn-
ing, boosting, image registration, independent compo-
nent and subspace analysis. For more applications and
references, please see the supplementary material.

One reason why so many dependence measures have
been defined in the literature is that the problem is
challenging and researchers and practitioners are not
satisfied with the available measures and estimators
(Fernandes & Gloor, 2010). As Schweizer & Wolff
(1981) formalized in their dependence axioms, a good
dependence measure I has to have several properties.
The most important ones are as follows. (i) Depen-
dence I(X) is defined for X = (Xi,...,X4) € R4
d-dimensional random variables. (i) I(X1,...,X4)
is invariant to permutation. (iii) 0 < I(X), and
I(X) = 0 iff (X4,...,Xy) are independent variables.
(iv) I(X1,...,Xq) is invariant to strictly increasing
transformation of X; variables. For more discussion
on these axioms, see the Appendix. Among the above
mentioned dependence measures, only the Rényi, Tsal-
lis information, and the Schweizer-Wolff measure is in-
variant to strictly increasing transformations.

In addition to these constraints on the dependence
measure, we also want an efficient estimator that is
consistent, robust to outliers, has fast convergence
rate, and can be used in high-dimensions too. De-
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Estimating the distance

Empirical copula
= to joint uniform distribution

el transformation

Figure 1. Illustration of the proposed dependence measure.
Using empirical copula transformation, first we transform
the data to have uniform marginals, then measure the dis-
tance to the joint uniform distribution with reproducing
kernel based divergence estimators.

pendence estimation is very challenging, especially in
nonparametric situations when we cannot assume that
the observations have an underlying density function
belonging to some parametric family. Many of the
above mentioned dependence measures can be defined
as some functionals of the density, thus an obvious way
for their estimation would be to estimate the densities
first. The density function, however, is a nuisance pa-
rameter in our case, and its estimation—especially in
higher dimensions—is known to be very difficult.

Due to these difficulties, all the existing dependence
estimators have their own shortcomings. For exam-
ple, the bound on the convergence rate of the Rényi
and Tsallis information estimator (P&l et al., 2010)
suffers from the curse of dimensionality. The avail-
able reproducing kernel based dependence measures
are not invariant to strictly increasing transformation
of the X; marginal random variables. The estimator
of Székely et al. (2007) is not robust; one single large
enough outlier can arbitrarily ruin the estimator.

The main contributions of the paper are as follows. (i)
We introduce a new dependency measure I that satis-
fies the above listed axioms. (ii) We prove that I can
be efficiently estimated, and the calculation of the es-
timator is simple. The estimator is consistent, robust
to outliers, and uses rank statistics only. (iii) We also
provide an upper bound on the rate of convergence
and derive a test of independence. This bound shows
that the estimator can be efficiently used in large di-
mensions too.

Our main idea is to combine empirical copula trans-
formations with reproducing kernel based divergence
estimators. We will show that the empirical copula
transformation only slightly affects the convergence
rate, but the resulting dependence estimator possesses
all the above mentioned required properties. The pro-
posed method is illustrated in Figure 1.

One might wonder why it is important for a depen-
dence measure to be invariant to strictly increasing
transformations of the marginal variables. One reason
for this is that in many scenarios we need to com-
pare the estimated dependencies. This is the case for
example in feature selection and low-dimensional em-

bedding of random variables. In these problems we
can think of dependence as a “distance” between ran-
dom variables in the sense that when the dependence
is large, then the random variables are “close” to each
other, and when the dependence is small, then the
variables are far. However, if certain variables are
measured on different scales, then this distance can
be much different from the distance using other scales.
As a result, it might happen that different features
would be selected by the feature selection algorithm
if we measured a quantity e.g. in grams, kilograms,
pounds, or if we used log-scale. This is an odd situa-
tion that can be avoided with dependence measures
that are invariant to strictly increasing transforma-
tions of the marginal variables. As an application,
we will show how the proposed dependence measure
can be used for feature selection and low-dimensional
embedding of distributions.

The proofs can be found in the supplementary mate-
rial. There we also discuss the robustness properties
of the estimators and show how to use them in inde-
pendence tests.

Notation: In the rest of the paper X ~ P will de-
note that the random variable X has distribution P.
E(X) and o(X) stand for the expectation and stan-
dard deviation of X, respectively. For a random vari-
able X € R, Z[X] denotes the standardized variable,
that is, Z[X]| = (X —E[X])/o(X), which has zero mean
and unit variance. Ula,b] stands for the uniform dis-
tribution in the interval [a,b]. Xi., is shorthand no-
tation for the set of random variables {Xy,..., X, }.
The cardinality of a set S is denoted by |S].

2. Maximum Mean Discrepancy

In this section we review some important properties
of the Maximum Mean Discrepancy (MMD), which is
a quantity used to measure the distance between dis-
tributions (Borgwardt et al., 2006; Fortet & Mourier,
1953). An appealing property of this quantity is that
it can be efficiently estimated from independent and
identically distributed (i.i.d.) samples.

Definition 1. Let F be a class of functions, P, Q be
probability distributions. The MMD between P and Q
on the function class F is defined as follows,

M[F,P,Q] = sup (Ex~p[f(X)] = Ex~q[f(Y)]).

Let H = {f : X = R} be a reproducing kernel Hilbert
Space (RKHS) with feature map ¢(x) € H (x € X),
and kernel k(z,y) = (¢(z),d(y))n. It is well known
that ¢(z) = k(,z), and f(z) = (f,$(x))s, which is
called the reproducing property of the RKHS. Later
we will also need the definition of universal kernels.
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Definition 2 (Universal kernel). A kernel k : X x
X — R is universal whenever the associated RKHS
H is dense in C(X), the space of bounded continuous
functions over X, with respect to the Lo, morm.

Steinwart (2001) has shown that the Gaussian
and Laplace kernels are universal. Let u[P] =
Ex.p[¢(X)] = Ex~p[k(-,X)]. A sufficient condition
for this quantity to exist is Expx/~pk(X,X') < 00,
where X and X’ are independent variables having dis-
tribution P.

For general F function sets, M[F, P, Q)] can be difficult
to calculate and is not even symmetric in P and Q.
Nonetheless, when F is a unit ball of RKHS H, then for
all f € F we also have that —f € F, which implies that
MI[F, P,Q] = M[F,Q, P]. Furthermore, in this case
M?[F,P,Q] has a simple form that makes efficient
estimations possible. This is stated formally in the
following lemma (Borgwardt et al., 2006).

Lemma 3. When F is a unit ball of RKHS H and
ulP] < o0, 1Q] < oo, then

M2[F, P,Q] = ||u[P] — p[QIl3, = Ex x/~p[k(X,X)]
— 2Ex~py~k(X,Y)] + Ey vy q[k(Y,Y")],

where X and X' have distribution P, Y and Y' have
distribution @), and these random variables are all in-
dependent from each other.

In the remainder of the paper we will always assume
that F is a unit ball of RKHS H. Let X;.,, =
(X4,...,X;n) be an independent and identically dis-
tributed (i.i.d.) sample drawn from distribution P,
and similarly let Yq.,, = (Y1,...,Y,) be an i.i.d. sam-
ple with distribution Q.

A biased (but asymptotically unbiased) estimator for
M[F, P,Q)] can be easily given using the law of large

numbers:
m

My[F, Xiim, Yim]| = L; Z k(Xi, X;) (1)

1,j=1

1 n 2 m,n 1/2
+— > k(YY) - = > k(Xi,Yj)] .

ij=1 ij=1

An unbiased estimator for M?[F, P, Q] gwhen m=n)
has also been derived in Borgwardt et ‘al. (2006):

Mi[]:a Xl:mlezm] = mzh(A%AJL (2)

which is a one sample U-statistic with h(A;, Aj) =
k(X“ Xj) + k(YZ7 Y]) - ]{(X“ Y]) - k(Xj, Yz), where
A = (X,Y;), and Ay, = (Ag, ..., Ap) are idd.
random variables. From the r.h.s. of Lemma 3, one can
see that E[h(A;, A;)] = M?[F, P,Q], which proves the
unbiasedness of the estimator M2[F, X 1., Y1)

3. The Copula of Distributions

Below we review a few important properties of the
copula of multivariate distributions that we will use in
our work (Nelsen, 1998).

The copula plays an important role when we study the
dependence among random variables. The marginal
variables X!, ..., X% are independent from each other,
if and only if the copula distribution is the multivari-
ate uniform distribution. In turn, we can measure
the dependence of the X*',..., X% random variables
by measuring how far the copula distribution is from
the uniform distribution. The copula contains all the
information that we need to measure dependence, and
it is invariant to any nonlinear strictly increasing trans-
formations of the marginal variables.

The copula can be defined by the Sklar’s theorem
(Sklar, 1959) as follows. Let X = (X1,..., X?) € R?
be a random variable. Denote the marginal cdf’s
of X9 by F; : R — [0,1]. Sklar’s theorem states
that a multivariate cumulative distribution function
H(xy,...,zq) = Pr(X' < z1,...,X% < z4) can
be written as H(x1,...,zq) = C (Fi(x1),..., Fa(zq)),
where C is a unique distribution function on the
range of the F; cdf functions. This distribution
function is called the copula of the joint distribu-
tion H. The distribution of the copula C is the
same as the joint distribution of Z = (Z!,...,2%) =
F(X) = (Fi(X1),...Fy(X%) € R? random vari-
ables. When the F; cumulative distribution func-
tions are invertible, then F(X) have uniformly dis-
tributed marginal distributions on [0, 1], and the cop-
ula distribution can be calculated as C (y1,...,yq) =
H(F7 (1), F; "' (ya)), where 0 < y; < 1. The
relation of the joint distribution H, marginal distribu-
tions Fj, and copula C is illustrated in Figure 2.

(Xt

Figure 2. lllustration of the copula. On the left: ran-
dom samples from a 2-dimensional distribution H. On
the right: the copula transformed sample points. They
are distributed according to the copula C. Every distri-
bution function H can be rewritten with its copula distri-
bution C' and marginal distributions Fi, F» as H(X1 <
21, X% < 12) = C(F1(X' < 1), F2(X? < 22)). The cop-
ula C captures all the dependence between X' and X2
The marginal variables, X! and X?, are independent iff
the copula distribution C is the uniform distrbution.
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4. Dependence Estimation

Let U = (U',...,U% € [0,1]¢ be a random vari-
able with uniform distribution on the d-dimensional
unit cube, U ~ UJ[0,1]%. We define the dependence
among continuous random variables X', ..., X as the
MMD distance between the joint copula and the d-
dimensional uniform distribution:
I(XY ..., X% = M(F, Pz, Py).

Definition 4. Let x1,x9 € R. A function g : R — R
is strictly increasing, if g(x1) < g(x2) for all z1 < x4.

It is easy to see that I(X',...,X?) > 0, and
I(XY ..., XY = I(gi(XY),...,94(X?)) for any
g; strictly increasing functions. In other words,
I(X', ..., X9 is invariant to strictly increasing trans-
formations of the marginal variables.

The following lemma states that I(X*',..., X%) is in-
deed a well-defined dependence measure when kernel
k is universal.

Lemma 5. Let the kernel k be universal on [0,1]¢
[0,1].  Then I(X',...,X%) = 0, if and only if
X1 ..., X% are independent of each other.

In what follows we will provide a consistent estimator
for I(X) = I(X%,...,X9). Let k: R x RY — R be
a kernel function of RKHS #, and let Z = F(X) be
a random variable drawn from the copula. Introduce
the following terms:

([ Pz) = Ezp, [k((Z",
ulPu] = Eunpy k(U

© Zd)a )]7
LU, )

Thanks to Lemma 3, it is easy to see that

I’(X) = M?(F,Pg,Pu) = |ulPz] — plPulllf, =
Bzznp,[K(Z,Z))] —  2Ez~p,u~p[k(Z, )} +
Eu,u~py [k(U, U")].

Our goal is to estimate I(X) using the X, i.i.d. sam-
ple. This expression is the expected value of the kernel
k evaluated in random variables drawn from the uni-
form and the copula distributions. Assume that we
already have a Z.,, i.i.d. sample from the copula dis-
tribution. For simple kernel functions, the expectation
w.r.t. the uniform distribution has a simple form. For
example, when we use the Gaussian kernel, we have
the following unbiased estimator for I%(X):

Zk (Z:,Z;)

—%i]‘[/ exp< )2>du

=1 j=1
_ . \2 d
%)dudu’),
g

(e

M2[F,Z1.m, Py] =

which can be expressed by the erf Gauss error function.
For more complicated kernels, however, these integrals
can not be calculated analytically, therefore we need
to approximate them by sampling. In what follows we
will investigate this case.

Let Uy.,, = Uyq,...,U, be an i.i.d. sample drawn from
the U[0,1]¢ distribution, and let X, X;,...,X,, be
i.i.d. samples having distribution Px. The Fi, ...,
F; distribution functions are unknown, but we can es-
timate them efficiently using the empirical distribution
functions. For z,2/ € R and 1 < j < d, let

~ ~ . 1 .

Fj(z) = Fj(a; X{,,) = —[{i: 1<i <m,2x < X}

: m
F(z',... 2% = (Fi(2Y),..., Fi(z%) e R%

We call the maps F, F the copula transformation,
and the empirical copula tmnsformatzon , respectively.
The sample (Zl, A Zm) (F(Xy),. F(X )) € R?
is called the empirical copula (Dedecker et al., 2007).
Note that the j-th coordinate of Z; (1 < ¢ < m) equals

o o ,
7} = —rank(X] {X{,X3,..., X.}) ,

where rank(x, A) is the number of elements of A less
than or equal to z. Also, observe that the random vari-
ables Z1,...,Z,, are not even independent. Nonethe-
less, as we will see from Lemma 7, the empirical cop-
ula (Zi,...,Z,,) is a good approximation of an i.i.d.
sample (Z1,...,2Z,) = (F(X1),...,F(X,,)) from the

copula distribution of Px. Using (2), we have that

1) 2 22

i#j

Mi[-/—:a Zl:m; Ulmz] ==

+k(U;,U;) — k(Z;,U;) — k(U;, Zj)}

From (1), we can also see that

1 m

Mb[fazlzmyUl:n} = |:’fn2 -Zl k(zlazj)
i,j=

1/2

Z k(U3 Uj) — — Z (Zi, U, ] :

1,j= 2] 1

In these expressions Z;.,, is not available to us. We es-

timate them using the empirical copula, Zj = f‘(Xj),
j=1,...,

m. An estimator for ?(X) can be given by
I2(Xy.), where

72 -
m(m — 1)1 (X1.m) = m(m

17

- 1)M3[]_—7 /Z\lzmaUlzm] =

To calculate this quantity, we only need the ranks
of the marginal variables in the sample. Note that
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E(Xl:m) is not an unbiased estimator of I(X), but
we keep the notation fg to denote that it is derived
from the estimator M2,

Using the definition of My, we can also propose an-
other estimator for I(X):

~ ) ~ 1 & ~ ~
Ib(Xl:m) = Mb[fazlmel:n] = |:T7’L2 Z k(zlaZ])

ij=1
1 n 9 m,n 1/2
b Y KULU) - 2 Y kT
ij=1 Q=1

Both estimators are extremely simple to implement
requiring only kernel evaluations on the transformed
data and the uniform variables. One can also see that
the estimators are robust assuming k is bounded in
[0,1]¢ x [0,1]* (but can be unbounded outside of this
region, e.g. polynomial kernel). Thanks to the empiri-
cal copula transformation, we only need rank statistics
(Z1.1,) in the estimation, but the actual values of X;.,,
sample points are not used. The contribution of one
single sample point is diminishing in the estimator as
we increase the sample size. Therefore, one arbitrar-
ily large outlier sample point cannot ruin the statistics
arbitrarily badly. For more discussion on this, see the
Appendix.

In what follows we will analyze the theoretical proper-
ties of these estimators. Assume that the kernel func-
tion k(-,z) is uniformly Lipschitz continuous on [0, 1]¢,
i.e. there exists L > 0 such that for all z,z;, 2, € [0, 1]¢
we have that |k(z1,2z) — k(z2,2)| < L||z1 — z2||. A typ-
ical example is the Gaussian kernel, for which it holds
that there exists L > 0 such that for all z,z,zs €
0,1]¢

|21 — 2|?
202

|2 — =|”

) —exp(— 1222

exp(— )| < Lljz1 — 2.

Lemma 6. For all z; € [0,1]¢, 1 < i < 4, we have
that

|k(z1,22) — k(z3,24)| < Ll|z1 — 23| + L|z2 — 24].

The effect of the empirical copula transformation
can be studied by a version of the classical Kiefer-
Dvoretzky-Wolfowitz theorem due to Massart; see
e.g. Devroye & Lugosi (2001). As a simple implication
of this theorem, one can show that F is a consistent
estimator of F, and the convergence is uniform:

Lemma 7 (Convergence of the empirical copula). Let
X1,..., X, be an i.i.d. sample from a probability dis-
tribution over R with marginal cdf’s Fy, s Fa. Let
F(X) be the copula defined above, and let F(Xi.,,,) be

the empirical copula transformation. Then, for any

€>0,

-~ 2me?
Pr {sup |F(x) — F(x)|2 > €| <2dexp(— e ).
x€R? d

Let 0 < E(x,y) < K be a bounded kernel function.
The following theorems state the almost sure consis-
tency of the dependence estimators, and provide upper
bounds on the rate of convergence.

Theorem 8 (Almost sure consistency). Almost surely
we have that

T (Xiim) = I2(X))|
=0 <max{\/dn€2 log(4dm?), \/%2 log(4m2)}> .

From the below theorem it follows that when n grows
fast enough, then I is almost surely consistent as well.

Theorem 9 (Almost sure consistency). Let n = g(m)
for some function g such that lim,, ., g(m) = co. Al-
most surely it holds that

2

1Ty(X o) — [(X)| = (’)(max { (Sif 10g(4dm2)> v

(Wlog(zlmQ))l/z} + (Z)lﬁ (5)1/2).

As these bounds show, the proposed dependence esti-
mators can be used in high-dimensions as well; they
do not suffer from the curse of dimensionality. Based
on these estimators, one can derive independence tests
too. For details, see the Appendix.

5. Feature Selection

The above defined I(X) dependence measure is in-
variant to strictly increasing transformations of the
marginal variables. In this section we discuss the ben-
efits of this property in the feature selection problem.

Let us have d real valued features { X', ... ,Xd}, and
a target value Y. Numerous feature selection meth-
ods use dependence estimation for selecting the most
relevant features to predict the target value Y. If we
want to select h features, then one obvious approach
would be to select those h features that together have
the highest dependence with Y. This subset selection
problem, unfortunately, is very difficult. Therefore,
several approximations and heuristics have been pro-
posed. For example, according to the so-called max-
relevance criterion (Peng & Ding, 2005), our goal is to
select a feature set S C {X! ... X9} which max-
imizes the average dependence between the features
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and the target:

~ 1 i
S = argmgxﬁ Z I(X"Y). (3)
Xies
This approach might select highly redundant features,
i.e. the dependence among these features could be

large. This redundancy can be measured by the ex-
pression Y- v yvjeq I(X% X7)/]S]2.

When two features highly depend on each other, then
probably we do not lose too much if we remove one
of them. Therefore, our goal is to maximize relevance
while minimizing the redundancy among the features

. % % J
XieS ‘ | Xt XieS | |

All we need is a good estimator for I(X? X7) and
I(X*)Y) dependencies. Equation (3) and (4) objec-
tives are popular tools for feature selection. Here we
will not discuss the advantages and disadvantages of
them. We, however, would like to point out that when
someone uses objectives that involves dependence es-
timation, then we want these dependencies to be in-
variant to strictly increasing transformations of the
marginal variables.

6. Numerical Illustrations

We illustrate the theoretical contributions of this pa-
per through a series of numerical experiments demon-
strating properties of the copula-based kernel depen-
dency measure.

The M(F, Px, ]_[?:1 Pxi) measure could also be used
directly, without copula transformation, to estimate
dependence. In order to use this approach, we need to
generate m sample points from the product distribu-
tions of the marginals. Let 7;(1: m), (1 <i < d) de-

note independent random permutations of {1,...,m}.
Then H[le] = (Xv%l(l:m)’ X72'2(1:m)’ co ’ng(l:m))T

can be considered as samples from the Hle Pxi
distribution. In other words, if Xj.,, is stored in
a d X m dimensional sample matrix and we inde-
pendently permute the elements of each row, then
the distributions of the rows (the marginal distribu-
tions of X) remain the same, but they become in-
dependent from each other. For brevity, we will call
the M(F, Px, H?:l Pxi) quantity MMD dependence

measure.

6.1. Feature Selection

In this experiment we show that I(X) can achieve bet-
ter performance in feature selection than MMD with-
out copula transformation (M(F, Px, ngl Pxi)).

We constructed the following random variables: X! ~
U[0,1], X2 ~ U[0,500], Y = 500sin(47X*'). The task
in this experiment was to choose the feature between
X' and X? that contains the most information about
Y. This feature is of course X! since Y is a deter-
ministic function of it, and X? is independent of Y; it
does not contain any information about Y. 300 sam-
ple points from the joint distrbutions of (X!Y) and
(X2)Y) are shown in Figure 3(a) and Figure 3(b), re-
spectively. The empirical copula transformed points
of (Y,X!) and (Y, X?) are displayed in Figure 3(c)
and Figure 3(d). When we simply use MMD without
copula transformation (M(F, Py xi, Py X Pxi)), then
interestingly we got that the estimated dependence be-
tween Y and X1 (My(F, (Y, X ) 1m, O[(Y, X 1) 1.00]),
column (A) of Figure 3(e)) was smaller than the
estimated dependence between between Y and X2
(M (F, (Y, X?)12m, T[(Y, X?)1:00]), column (B) of Fig-
ure 3(e)). As we can see in this problem, the MMD
without copula transformation could not select the
right feature. However, when we used copula trans-
formation, then the estimated dependence was larger
between Y and X! than between Y and X?2. The val-
ues of ﬁ’((Y, XY1.m) and ﬁ’((Y, X?2)1.m) are shown in
the (C) and (D) columns of Figure 3(e). In this exper-
iment we used Gaussian kernel with o = 1.

6.2. Feature Standardization

A frequently used feature preprocessing step is to stan-
dardize the features, that is, linearly transform them
to have zero mean and unit variance (2[X]). One
might wonder if this simple transformation can solve
the problem of Section 6.1. Below we show an example,
where that we have only two zero mean unit variance
features, and the MMD feature selection method that
is not invariant to the strictly increasing transforma-
tions of the features selects a feature that is actually
independent from the target value.

Let U ~ U[0,1], X' = Z[1/U%, V ~ U[0,1]
X? = Z[V] independent random variables, and let

= E[sin(47X1)]. The variables are standardized so
they have zero mean and standard variation 1. We
sampled 4,000 i.i.d. observations from our observed
features X' and X2. The task again was to select
the feature that contains the most information about
Y. The solution to this problem is X' again. The
meanings of the columns in Figure 4 are the same
as in Figure 3(e). When we simply use MMD with-
out copula transformation, then the estimated depen-
dence between between Y and X' was smaller than
between Y and X2 (Mp(F, (Y, X 1)1, [V, X 1) 1.0m])
and My (F, (Y, X?)1.m, I[(Y, X?)1.,]) in column (A)
and (B), respectively). The MMD without copula
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Copula transformation Copula transformation 0.1
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Figure 3. (a) Features Y and X'. (b) Features Y and X?>.

(Y, X?). Notations of the bar plot in (e): (A) MMD dependence between Y and X' (M, (F
(Y, X3 1, T[(Y, X 1.m]). (C) copula based dependence between Y
)). (D) copula based dependence between Y and X2 (fb((Y, X 1m)).

(B) MMD dependence between Y and X2 (M, (F
and X' (I°((Y, X )1:m

transformation could not select the right feature. How-
ever, when we use copula transformation first, then we
can see that the estimated dependence between Y and
X! is larger than between Y and X2, as expected.
(C) and (D) show (Y, X')1m) and (Y, X2)1.m),
respectively.

0.12

0.1

0.06

0.04

0.02

A B Cc D

Figure 4. (A-B) Dependence estimation without cop-
ula transformation: (A) MMD between Y and X',
My(F, (Y, X1, TT(Y, XY 1:m]), (B) MMD between YV
and X2, My(F, (Y, X®)1m, O[(Y, X?)1.m]).  (C-D) De-
pendence estimation with copula transformation: (C)
(Y, X 1am), (D) T((Y, X)1:m)-

6.3. Housing Dataset

In the following experiment we study our estima-
tors on the Housing dataset from the UCI repository
(Frank & Asuncion, 2010). The dataset contains 506
instances of 14 real valued attributes. The attributes
contain various features including per capita crime rate
by town, full-value property-tax rate per $10000, av-
erage number of rooms per dwelling, percentage of
lower status of the population, median value of owner-
occupied homes in $1000’s, etc. Our goal is to predict
some of these attributes and select the most important
features for this prediction. Since the dataset contains
very different features, it is highly nontrivial how to
scale them for feature selection when the applied de-
pendence measure is not invariant to strictly increas-
ing transformations of the marginals. This, however,
is not an issue for our proposed dependence measure.
In this experiment our goal was to predict the “median

(c) Copula distribution of (Y, X*'). (d) Copula distribution of

7(Yle)limvn[(val)lim])'

value of owner-occupied homes in $1000’ " (feature 14)
using one single feature. We used m = n = 300 in-
stances for training, and the rest of the data for testing.
We applied Gaussian kernel (62 = 1/12) in the estima-
tors. The MMD without copula transformation chose
the “average number of rooms per dwelling” (feature
6) as the closest feature. When instead of MMD we
used the proposed fb estimator, it selected the “lower
status of the population” (feature 13). To study the
prediction errors of the selected features, we trained
linear regressors for each feature using them as ex-
planatory variables. The prediction errors on the test
data are shown in Figure 5. In this experiment the
smallest error was achieved by the feature that I, se-
lected (feature 13). MMD without the copula transfor-
mation selected the feature that gave only the second
smallest error (feature 6).

Low-dimensional embedding can help us visualize the
pairwise dependence structure of random variables.
For each feature X¢, X7, we estimated the d(i,j) =
exp(—1(X? X7)) quantities. This d(i, j) is large when
X?, X7 is independent, and small when the depen-
dence between them is large. We considered them
as “distances” (although the triangle inequality does
not hold between them), and then applied multi-
dimensional scaling to embed them into a 2d space.
The Housing dataset was used in this experiment too
using the same set-up as in the previous study. To es-
timate the dependence between the features, we tested
again I, (Figure 6(a)) and MMD without copula trans-
formation (Figure 6(b)). We can observe that the lo-
cations of these embedded points are very different.
If we applied any strictly increasing transformations
to the marginal variables, it would not affect the em-
bedding with copula transformation, but we would get
very different results when we use MMD without cop-
ula transformation. For more numerical experiments,
see the supplementary material.
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Figure 5. Prediction errors of the features.
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Figure 6. Low-dimensional embedding of the features using
dependence as a proximity measure.

7. Discussion and Conclusion

We introduced a new RKHS-based dependence mea-
sure that operates on the copula of continuous distri-
butions. We have shown that the dependence measure
is invariant to strictly increasing transformations of
the marginal variables, and this property is important
in feature selection and low-dimensional embedding of
distributions. We also proposed estimators that are al-
most surely consistent, robust, use rank statistics only,
and do not suffer from the curse of dimensionality. We
derived upper bounds on the rates of convergence and
illustrated the theory through a series of numerical ex-
periments.
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Appendix—Supplementary Material
A. Dependence Applications

Mutual information and other dependence estimators
have been used, for example, in causality detection
(Hlavéckova-Schindler et al., 2007), feature selection
(Peng & Ding, 2005), clustering (Aghagolzadeh et al.,
2007), optimal experimental design (Lewi et al., 2007),
structure learning (Chow & Liu, 1968), prediction of
protein structures (Adami, 2004), fMRI data process-
ing (Chai et al., 2009), boosting and facial expression
recognition (Shan et al., 2005). They have also been
used for image registration (Kybic, 2006; Hero et al.,
2002b;a), independent component and subspace analy-
sis (Learned-Miller & Fisher, 2003; P6czos & Lérincz,
2005; Hulle, 2008; Szabé et al., 2007). The so-called
maximal information coefficient has been used re-
cently for global health, gene expression, major-league
baseball, and the human gut microbiota datasets to
identify known and novel relationships (Reshef et al.,
2011).

B. Dependence Axioms

Originally Rényi (1959) formalized the dependence ax-
iom (iv) differently than did Schweizer & Wolff (1981):
Rényi required I(X7y, ..., X4) to be invariant to one-to-
one transformation of X; random variables. It turned
out, however, that this axiom is especially difficult to
satisfy. Rényi himself showed that that among sev-
eral other well-known dependence measures the only
one which satisfies all his axioms is the maximal cor-
relation coefficient. Nonetheless, Hall (1969) pointed
out that this measure has a few serious drawbacks,
for example it equals 1 too often, it is too strong for
nonparametric measures, and generally is very diffi-
cult to estimate. Therefore, Schweizer & Wolff (1981)
modified this axiom to require invariance to strictly
increasing transformations only.

C. Invariance to Strictly Increasing
Transformations

As a sanity check, we demonstrate that I(X) is indeed
invariant to strictly increasing transformations of the
marginal variables, but MMD is not invariant.

We generated features using the following model: We
let U ~ U[-1,1]? be a column vector, and then we
set X = (X1, X?)T = QU, where Q € R**? was a
randomly chosen invertible matrix such that for the
variances we had o(X!) = 1, o(X?) = 1. There-
fore (X!, X?) had a joint distribution on a rotated
2-dimensional parallelogram. Figure 7(a) shows 400

i.i.d. samples from the features X! and X?2. They have
zero mean and unit variance. We also constructed
another feature set, which consisted of the following
nonlinear strictly increasing transformations of X &
Xt =1+ (X113, X% = 2 + tanh(X?). 400 sample
points from the joint distribution of (X*, X?2) is shown
in Figure 7(b). The empirical copula of (X!, X?) and
(X', X2) are shown in Figure 7(c) and Figure 7(d),
respectively. These distributions are the same as ex-
pected.

Now we show that when we use M(F, Px,[]Px:)
without copula transformation, then the estimated de-
pendence values can have very different values. For
a real valued random variable X, let Z[X] denote
the standardized variable, that is, E[X] = (X —
E[X])/o(X), which has zero mean and unit variance.
We will use the = operator to standardize the Xj.,,
sample too, and in this case E[X], o(X) is estimated
from the empirical mean and empirical standard vari-
ation.

Using m = n = 4000 sample size and Gaussian ker-
nel' with o = 1, we calculated the MMD dependence
between the marginal variables of the original data
(that is, Mp(F, X1.m, [X1.m])). We also calculated
this dependence between the transformed features
(Mp(F,X1:m, I[X1.m])), and the transformed then
standardized features (My(F, Z[X 1], T[E[X1:m]])-
These quantities are shown in columns (A), (B1), (B2)
of Figure 7(e), respectively. As we can see, these val-
ues are very different. Although both X and Z[X]
have zero mean and unit variance, and the marginal
variables in both cases contain the same information
about each other, still their MMD based dependencies
without copula transformation are very different. In
the next section we show that this can lead to serious
problems in feature selection and low-dimensional em-
bedding. However, when we used copula transforma-
tion on the original and transformed features, then the
estimated dependencies were the same (I;(X1.,,,) and
Z,()Nilzm) in the (C) and (D) column of Figure 7(e)).
This illustrates that I(X*1, X?) = I(f(X?1), g(X?)), for
f, g strictly increasing functions.

D. Low-dimensional Embedding of
Features

In Figure 8 we show the same results as those of in
Figure 6, but here we set the scale to [-1,1] on both
axis.

T
Lk(x,y) = exp(—2¥I)
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Figure 7. (a) Original features (X', X?). (b) Features transformed by strictly increasing functions (X', X?). (c) The
copula transformed points of the original features (X*, X?). (d) The copula transformed points of (X', X?). Notations

of the bar plot in (e): (A) MMD dependence of the original features (My(F, X1:m, [X1:m])).

(B1) MMD dependence

of the transformed features (Mp(F, X1.m, II[X1.m])). (B2) MMD dependence of the transformed and then standardized
features (My(F, E[X1:m], [I[Z[X1:m]])) (C) copula based dependence of the original features (I (Xi:m)). (D) copula based

dependence of the transformed features (Ip(X1:m)).
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Figure 8. Low-dimensional embedding of the features using dependence as a proximity measure.

E. Almost Sure Consistency

First we derive an upper bound on the error we make
due to the application of the empirical copula instead
of the true copula in the I, and fj estimators.

Lemma 10.

PI’(|M{,[.F, 21:m;-U’1:n} - Mb[f; Zl:m7U1:n” > 6)
4

me

Note that the right hand side in this inequality does
not depend on n.

Lemma 11.
PI‘(|MZ[]:, 21:m,Ij1:m} - Mz[]:7zlzm7U1:m]| > 6)

2
me

Proof of Lemma 10 and Lemma 11.

Proof. As we increase the sample size, the empirical
copula converges to the true copula and hence HZ; —
Z;|| error terms decrease. Nonetheless, the number
of these error terms in Lemma 10 and in Lemma 11
increases with the sample size m, and thus it is not
immediately obvious if we can get a good enough upper
bound on this error. In particular, there might exist
consistent divergence estimators that will not lead to
consistent dependence estimation when applied on the
empirical copula. Below we show that for the MMD
estimators this is not the case.

Since |a'/? —b'/2| < |a — b|'/? and using the Lipschitz
continuity, we have that

|Mb[~F721:m7U1:TL] - Mb[]_-yzl:m7U1:n]|



Copula-based Kernel Dependency Measures

( Z|k2 Z,)

m,n

9 N
+ — Z |k(Z;,Uy) —
,]

— k(Zi,Zy)|
1/2
k(z,»,Uj>|)

I < 15 -
< (2 2 0l - 2l + 112 - 2|

@]
9 m,n
+ ooy ZLHZi - Zz’“)

=2L'? sup ||Z; — Z||">.
1<i<m

1/2 N
< sup (4L||Z; — Z;|)'/?
1<i<m

Therefore,

Pr(|My[F, Zin, Urin] — My[F, Ziin, Urn]| > €)
< Pr(2L'? sup ||Z; — Zi||"? > )

1<i<m
=Pr( sup |Zi —Zi| > i) < 2dexp(— 2
- 1gi£m ‘ ‘ 4L~ *P 16dL2""

4

Similarly, for M2 we have that

M2 F, il.m,Um] — M2[F, Z1on, UL,

(S

i#]

— k(Zi,Z;)|

IMZU,) — K200, + k(UL Z,) — k(U zm)

< sup AL|Z; - Zi|.

1<i<m

Therefore,

Pr(|M121,[]:a 21:'m7-[J1:n] - MZ[]:7Z1:777,7U1:71]| > 6)

2me?

< y/ P aea——— .
< Pr( suwp ||Z: )

€
—7Z;|| > —) < 2dexp(—
S > 37) p(

O

Let 0 < k(z,y) < K be a bounded kernel function. It
was shown by Gretton et al. (2008) that the following
bound holds for the convergence rate of M2, when the
true copula is known.

Pr(|Mi[}-aZ1:m»U1:m} _MQ[]:a Pz, Pyl| > ¢)

€2|m/2]

< 26XP(*w)- (5)

Similarly, for the rate of M} when the true copula is
known we have that

Pr <Mb[fvzl:m7U1:n] - M[fa PZaPU” > €

K 1/2 K 1/2 emn
21 — 21 — <2 —_).
2(n) +2(5) ) =2eetgrgy)

Putting the pieces together, we arrive at the following
consistency theorems and convergence rates.

Theorem 12. j?t(th) is a consistent estimator of
I*(X), and

Pr(|12(Xpum) — I3(X)| > 2¢)
< 2dexp(— ;;;HQQ (e ngr;/zﬂ)-
Proof.
Pr(|12(X1.m) — I2(X)| > 2¢)

= Pr(|Mi[f721:m7Ul:m} - IQ(X)‘ > 26)
S Pr(|Mi[]:7 21:7717-U-1:m} - Mz[F, Zl:'val:mH > 6)
+ Pr(|M’3[’F7 Z12m7U1:m] - MQ(]:, Pz, PU)‘ > 6)

2me? m/2
16dL2) +2exp(= ELSKé J )-

< 2dexp(—

Similarly,

Theorem 13. IAb(Xlzm) s a consistent estimator of
I1(X), and

Pr (lfb(xlzm) —I(X)| > 242 (g)lﬁ 2 (f) 1/2)

! 2
)-

eemn
sazz) 2o

< 2dexp(- IR (m+n)

Proof.

Py <|fb<x1:m> —I(X)| > 2¢+2 (i)lﬁ? <5>/>

=Pr (|Mb[]-', Z1n, Urn] — I(X)] > 2¢

1/2 1/2
() () )
m n
Pr (|Mb[]:7 21:771; Ul:n] - Mb[]:; Zl:'rn)Ul:nH
+ |Mb[]:a Zl:maUl:n} - I(X)‘ > 2e
K 1/2 K 1/2
() () )
m n
< PI'(|Mb[./—", 21:m7 Ul:n] - Mb[]:, Zl:ma Ul:n” > 6)

+ Pr <Mb[fazlz7n7U1:n] - M(.F, PZ,PU)| > €



Copula-based Kernel Dependency Measures

() 2 (5))

et emn
)+ 2exp(— ).

2m
< 2d - -
< 2dexp(— 5o 2K (m + n)

Proof of Theorem 8

As an application of the Borel-Cantelli lemma, we can
also show the almost sure consistency of the estima-

tors.
From Theorem (12), we have that
Pr(|T5(X1.m) — I*(X)| > 2€)
me? €2|m/2]
< 2dexp(—8dL2) + 2exp(—87)
me> €2|m/2]

< 2max (2dexp(—8dL2),2exp(—8K2)>

= 7(m).
Let

2 2
m) = max ( L log(4dm?), [§2J log(4m2)>

such that 7(m) < 1/m?

This implies that

o0 o0 1

T2
> P (Xuom) = 0] > 26(m) < 3 15 <
By the application of the Borel-Cantelli lemma, we
can see that the probability that infinitely many of
the events {|I2(X1m) — I2(X)| > 2¢(m)} oceur is 0.

Therefore,

T2 (Xuim) = I° (X)\

—O<m x{

Proof of Theorem 9

log (4dm?), /2J log(4m?) >

The proof of this theorem is similar to proof of The-
orem 8, and we omit the details. After some calcula-
tions, we have that

2

%1,,) - 100)] = O 2 { (%4 toxtaam)) "

wlog(zxm?) v +2 K U—iz
( ) j2 ()

mn

()

F. Independence Test

In this section we provide methods for testing hypoth-
esis Hyp: I(X) = 0, i.e. Xj,...,X4 are independent
from each other. The alternative hypothesis is Hi:
I(X) > 0, which implies that the random variables
are dependent.

Lemma 14. Let m = n, that is, we have the same

number of samples from Px and U[0,1]¢. Under Hy
we have
R of\ /2
Pr (Ib(xlm,,) > 2+ <>
m
2me? e2m
<2 — -
< 2dexp(—gg,7m5) + exp(= 7).
Proof. We already know from (Gretton et al., 2008)
that
oK\ V/? e2m
Pr(Mp[F, U, U] > €+ (m) ) < exp(—ﬁ).

Since under Hj the copula distribution Pz is the uni-

form distribution (i.e. Puy,,, = Pz, ), it is easy to
see that

R oK\ 12
Pr <[b(X1:m) > 2¢ + (m>

- 2K 1/2
=Pr (Mb[F7Z1:Tn7U1:m] > 2€ + (m) >

Pr <Mb[f7 21:1’nvIJ1:m,] - Mb[-/.'.a Zl:mv Ul:m,”

K 1/2
+Mb[‘F7Z1:maU1:m] > 26+ (m> )

S Pr(|Mb[]:721:maU1:m] - Mb[]:7Z1:m7U1:mH > 6)

9 f\ 1/2
+ Pr(Mb[]:7U1:m7U1:m} > e+ <m) )

2m m

< 2dexp(——= 1K

O

Similar independence test can be derived based on the
estimator IE(XL,,L).

Lemma 15. Let m = n. Under Hy we have that

€?|lm/2
Pr (E(le) > 26) < exp(—%)
2
me
2 exp(~ g r8)
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Proof. From (5), it is immediate that

€ |m/2]

PI‘(MZ[]‘—, Ul:myUl:m] > 26) S eXp(i 8K2

)

Now,

Pr (fi(xl:m) > 26)
= Pr (MZ[f721:m>U1¢m] = 26)

Pr (lMi[fv 21:7n7 Ul:m] - Mi[f7 Zl:ma Ul:m]‘

+ Mi[]:7 Zl:m;Ulzm] > 26)

< PI‘(|M72L[.F, Zl:my Ul:m]
+ PI‘(MQQL[]:7U1:m7U1:m} > 6)

€2|m/2] B 2me?

< expl=—gpg )+ 2dexp(= e

).

G. Robustness

Inspired by Tukey’s finite-sample influence curve, we
can show that the asymptotic effect of one sample
point in the proposed dependence estimators is negligi-
ble. For each € there is a threshold number M = M (e)
such that when then sample size m is large enough
(m > M), then the contribution of one sample point
in the estimator is less then e. In that sense the es-
timator is robust: an arbitrarily large outlier cannot
ruin the statistics if we have enough sample points.
For example, the empirical average (as the estimator
of the mean) does not have this property; it is not a ro-
bust estlmator Thanks to the copula transformation,
Ib and I estimators are robust when k is bounded in
0,119 [0, 11

When using copula methods the contribution of one
sample point x in the worst case is

k(u,u’)
max
u,u’€[0,1]4 m

max I} (Xiim, %) = 12 (Xiim) = O( )-

Without copula transformation, this is

!/
O( max Fu, o)

u,u’ R4 m )7
which can be much larger. In particular, when k is not
bounded, then this term is infinite. Similarly can be
proved that I, is a robust estimator w.r.t the finite-
sample influence curve.

— Mz[F7Z1:m7U1:7H]| > 6)

H. Other Proofs
H.1. Proof of Lemma 5.

Proof. Clearly, Pz = Py if and only if X', ... X¢
are independent from each other. The domain of k,
[0,1]¢x [0, 1]¢, is a compact metric space, and thus it is
known that M(F, Pz, Py) = 0 if and only if Pz = Py.
(Gretton et al., 2008). O

H.2. Proof of Lemma 6.

Proof. Using the triangle inequality and the symmetry
of the kernel k, |k(z1,22) — k(23,24)] < |k(z1,22) —
k(zs3,22)|+|k(22,23) — k(24,23)| < L|z1 —23||+ L|z2 —
Z4||. O

H.3. Proof of Lemma 7.

Proof. The Massart version of Kiefer-Dvoretzky-
Wolfowitz theorem (Devroye & Lugosi, 2001) is as fol-
lows.

Theorem 16. Let Xi,...,X,, be an i.i.d. sample
from a probability distribution over R with c.d.f. F :
R — [0,1], and let the empirical c.d.f. be defined as
above F(x) = LI{i : 1<i<m, X; <a}| forzeR.
Then, for any € > 0,

Pr [sup |F(z) — F(z)| > 6:| < 2exp(—2me?) .
z€R

Using |- |l < v/4d| - ||o in R? and the union-bound we
have

Pr [sup IF(x) — ﬁ(x)”z > e}
xER4
<Pr [sup Vd||F(x) —
xERA

B0l >

= Pr [Sup max |Fj(z) - Fi(z)] > e/\/&}

zeR 1<7<

<;Pr Eup|F( ) —

Fya)| > /il

m€2

< 2dexp(—

).
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