EVALUATION OF GAUSSIAN PROCESSES AND
OTHER METHODS FOR NON-LINEAR REGRESSION

Carl Edward Rasmussen

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy,
Graduate Department of Computer Science,
in the University of Toronto

(© Copyright 1996 by Carl Edward Rasmussen

Evaluation of Gaussian Processes and
other Methods for Non-Linear Regression

Carl Edward Rasmussen

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy,
Graduate Department of Computer Science,
in the University of Toronto
Convocation of March 1997

Abstract

This thesis develops two Bayesian learning methods relying on Gaussian processes and a
rigorous statistical approach for evaluating such methods. In these experimental designs
the sources of uncertainty in the estimated generalisation performances due to both vari-
ation in training and test sets are accounted for. The framework allows for estimation of
generalisation performance as well as statistical tests of significance for pairwise compar-
isons. Two experimental designs are recommended and supported by the DELVE software

environment.

Two new non-parametric Bayesian learning methods relying on Gaussian process priors
over functions are developed. These priors are controlled by hyperparameters which set
the characteristic length scale for each input dimension. In the simplest method, these
parameters are fit from the data using optimization. In the second, fully Bayesian method,
a Markov chain Monte Carlo technique is used to integrate over the hyperparameters. One
advantage of these Gaussian process methods is that the priors and hyperparameters of the

trained models are easy to interpret.

The Gaussian process methods are benchmarked against several other methods, on regres-
sion tasks using both real data and data generated from realistic simulations. The ex-
periments show that small datasets are unsuitable for benchmarking purposes because the
uncertainties in performance measurements are large. A second set of experiments provide
strong evidence that the bagging procedure is advantageous for the Multivariate Adaptive
Regression Splines (MARS) method.

The simulated datasets have controlled characteristics which make them useful for under-
standing the relationship between properties of the dataset and the performance of different
methods. The dependency of the performance on available computation time is also inves-
tigated. It is shown that a Bayesian approach to learning in multi-layer perceptron neural
networks achieves better performance than the commonly used early stopping procedure,
even for reasonably short amounts of computation time. The Gaussian process methods

are shown to consistently outperform the more conventional methods.

ii

Acknowledgments

Many thanks to Radford Neal and Geoffrey Hinton for sharing their insights and enthusiasm
throughout my Ph.D. work. I hope that one day I will similarly be able to inspire people

around me.

I also wish to thank past and present members and visitors to the neuron and DELVE
groups as well as my committee, in particular Drew van Camp, Peter Dayan, Brendan Frey,
Zoubin Ghahramani, David MacKay, Mike Revow, Rob Tibshirani and Chris Williams.

Thanks to the Freys and the Hardings for providing me with excellent meals at times when
my domestic life was at an ebb. Lastly, I wish to thank Agnes Heydtmann for her continued

encouragement and confidence.

During my studies in Toronto, I was supported by the Danish Research Academy, by the
University of Toronto Open Fellowship and through grants to Geoffrey Hinton from the Na-
tional Sciences and Engineering Research Council of Canada and the Institute for Robotics

and Intelligent Systems.

iii

Contents

1 Introduction

2 Evaluation and Comparison
2.1 Generalisation o oL
2.2 Previous approaches to experimental design
2.3 General experimental design considerations
2.4 Hierarchical ANOVA design
2.5 The 2-way ANOVA design

2.6 Discussion e

3 Learning Methods
3.1 Algorithms, heuristics and methods
3.2 The choice of methods
3.3 The linear model: 1in-1
3.4 Nearest neighbor models: knn-cv-1
3.5 MARS with and without Bagging
3.6 Neural networks trained with early stopping: mlp-ese-1

3.7 Bayesian neural network using Monte Carlo: mlp-mc-1

4 Regression with Gaussian Processes
4.1 Neighbors, large neural nets and covariance functions .
4.2 Predicting with a Gaussian Process

4.3 Parameterising the covariance function

v

10
11
14
20
25

29
29
31
33
36
39
39
43

Contents

v
4.4 Adapting the covariance function oo 58
4.5 Maximum aposteriori estimates Lo L., 60
4.6 Hybrid Monte Carlo 61
4.7 Future directions 64

5 Experimental Results 69
5.1 The datasets in DELVE 70
5.2 Applying bagging to MARS 73
5.3 Experiments on the boston/price prototask 75
5.4 Results on the kin and pumadyn datasets 79

6 Conclusions 97

A TImplementations 101
A.1 The linear model 1in-1 101
A.2 k nearest neighbors for regression knn-cv-1 104
A.3 Neural networks trained with early stopping mlp-ese-1 107
A4 Bayesian neural networks mlp-mc-1 111
A5 Gaussian Processes 112

B Conjugate gradients 121
B.1 Conjugate Gradients 121
B.2 Linesearch 122

B.3 Discussion e e

vi

Contents

Chapter 1

Introduction

The ability to learn relationships from examples is compelling and has attracted interest in
many parts of science. Biologists and psychologists study learning in the context of animals
interacting with their environment; mathematicians, statisticians and computer scientists
often take a more theoretical approach, studying learning in more artificial contexts; people
in artificial intelligence and engineering are often driven by the requirements of technolog-
ical applications. The aim of this thesis is to contribute to the principles of measuring
performance of learning methods and to demonstrate the effectiveness of a particular class
of methods.

Traditionally, methods that learn from examples have been studied in the statistics commu-
nity under the names of model fitting and parameter estimation. Recently there has been
a huge interest in neural networks. The approaches taken in these two communities have
differed substantially, as have the models that are studied. Statisticians are usually con-
cerned primarily with interpretability of the models. This emphasis has led to a diminished
interest in very complicated models. On the other hand, workers in the neural network field
have embraced ever more complicated models and it is not unusual to find applications with
very computation intensive models containing hundreds or thousands of parameters. These

complex models are often designed entirely with predictive performance in mind.

Recently, these two approaches to learning have begun to converge. Workers in neural
networks have “rediscovered” statistical principles and interest in non-parametric modeling
has risen in the statistics community. This intensified focus on statistical aspects of non-

parametric modeling has brought an explosive growth of available algorithms. Many of

2 Introduction

these new flexible models are not designed with particular learning tasks in mind, which
introduces the problem of how to choose the best method for a particular task. All of these
general purpose methods rely on various assumptions and approximations, and in many
cases it is hard to know how well these are met in particular applications and how severe
the consequences of breaking them are. There is an urgent need to provide an evaluation
of these methods, both from a practical applicational point of view and in order to guide

further research.

An interesting example of this kind of question is the long-standing debate as to whether
Bayesian or frequentist methods are most desirable. Frequentists are often unhappy about
the setting of priors, which is sometimes claimed to be “arbitrary”. Even if the Bayesian
theory is accepted, it may be considered computationally impractical for real learning prob-
lems. On the other hand, Bayesians claim that their models may be superior and may avoid
the computational burden involved in the use of cross-validation to set model complexity.

It seems doubtful that these disputes will be settled by continued theoretical debate.

Empirical assessment of learning methods seems to be the most appealing way of choosing
between them. If one method has been shown to outperform another on a series of learning
problems that are judged to be representative, in some sense, of the applications that we
are interested in, then this should be sufficient to settle the matter. However, measuring
predictive performance in a realistic context is not a trivial task. Surprisingly, this is a
tremendously neglected field. Only very seldom are conclusions from experimental work

backed up by statistically compelling evidence from performance measurements.

This thesis is concerned with measuring and comparing the predictive performance of learn-
ing methods, and contains three main contributions: a theoretical discussion of how to
perform statistically meaningful comparisons of learning methods in a practical way, the
introduction of two novel methods relying on Gaussian processes, and a demonstration of
the assessment framework through empirical comparison of the performance of Gaussian
process methods with other methods. An elaboration of each of these topics will follow

here.

I give a detailed theoretical discussion of issues involved in practical measurement of pre-
dictive performance. For example, many statisticians have been uneasy about the fact that
many neural network methods involve random initializations, such that the result of learn-
ing is not a unique set of parameter values. However, once these issues are faced it is not
difficult to give them a proper treatment. The discussion involves assessing the statistical

significance of comparisons, developing a practical framework for doing comparisons and

measures ensuring that results are reproducible. The focus of Chapter 2 is to make the goal
of comparisons precise and to understand the uncertainties involved in empirical evalua-
tions. The objective is to obtain a good tradeoff between the conflicting aims of statistical
reliability and practical applicability of the framework to computationally intensive learning

algorithms. These considerations lead to some guidelines for how to measure performance.

A software environment which implements these guidelines called DELVE — Data for Eval-
uating Learning in Valid Experiments — has been written by our research group headed
by Geoffrey Hinton. DELVE is freely available on the world wide web!. DELVE contains
the software necessary to perform statistical tests, datasets for evaluations, results of ap-
plying methods to these datasets, and precise descriptions of methods. Using DELVE one
can make statistically well founded simulation experiments comparing the performance of
learning methods. Chapter 2 contains a discussion of the design of DELVE, but implemen-

tational details are provided elsewhere [Rasmussen et al. 1996].

DELVE provides an environment within which methods can be compared. DELVE in-
cludes a number of standardisations that allow for easier comparisons with earlier work
and attempts to provide a realistic setting for the methods. Most other attempts at mak-
ing benchmark collections provide the data in an already preprocessed format in order to
heighten reproducibility. However, this approach seems misguided, if one is attempting to
measure the performance that could be achieved in a realistic setting, where the prepro-
cessing could be tailored to the particular method. To allow for this, definitions of methods
in DELVE must include descriptions of preprocessing. DELVE provides facilities for some
common types of preprocessing, and also a “default” attribute encoding to be used by

researchers who are not primarily interested in such issues.

In Chapter 3 detailed descriptions of several learning methods that emphasize reproducibil-
ity are given. The implementations of many of the more complicated methods involve
choices that may not be easily justifiable from a theoretical point of view. For example,
many neural networks are trained using iterative methods, which raises the question of how
many iterations one should apply. Sometimes convergence cannot be reached within rea-
sonable amount of computational effort, for example, and sometimes it may be preferable
to stop training before convergence. Often these issues are not discussed very thoroughly
in the articles describing new methods. Furthermore authors may have used preliminary
simulations to set such parameters, thereby inadvertently opening up the possibility of bias

in simulation results.

!The DELVE web address is: http://www.cs.utoronto.ca/~delve

4 Introduction

In order to avoid these problems, the learning methods must be specified precisely. Methods
that contain many parameters that are difficult to set should be recognized as having this
handicap, and heuristic rules for setting their parameters must be developed. If these rules
don’t work well in practice, this may show up in the comparative studies, indicating that
this learning method would not be expected to do well in an actual application. Naturally,
some parameters may be set by some initial trials on the training data, in which case this
would be considered a part of the training procedure. This precise level of specification is
most easily met for “automatic” algorithms, which do not require human intervention in

their application. In this thesis only such automatic methods will be considered.

The methods described in Chapter 3 include methods originating in the statistics com-
munity as well as neural network methods. Ideally, I had hoped to find descriptions and
implementations of these methods in the literature, so that I could concentrate on testing
and comparing them. Unfortunately, the descriptions found in the literature were rarely
detailed enough to allow direct application. Most frequently details of the implementations
are not mentioned, and in the rare cases where they are given they are often of an un-
satisfactory nature. As an example, it may be mentioned that networks were trained for
100 epochs, but this hardly seems like a principle that should be applied universally. On
the other hand it has proven extremely difficult to design heuristic rules that incorporate a
researcher’s “common sense”. The methods described in Chapter 3 have been selected par-
tially from considerations of how difficult it may be to invent such rules. The descriptions

contain precise specifications as well as a commentary.

In Chapter 4 I develop a novel Bayesian method for learning relying on Gaussian processes.
This model is especially suitable for learning on small data sets, since the computational
requirements grow rapidly with the amount of available training data. The Gaussian process
model is inspired by Neal’s work [1996] on priors for infinite neural networks and provides
a unifying framework for many models. The actual model is quite like a weighted nearest

neighbor model with an adaptive distance metric.

A large body of experimental results has been generated using DELVE. Several neural net-
work techniques and some statistical methods are evaluated and compared using several
sources of data. In particular, it is shown that it is difficult to get statistically significant
comparisons on datasets containing only a few hundred cases. This finding suggests that
many previously published comparisons may not be statistically well-founded. Unfortu-
nately, it seems hard to find suitable real datasets containing several thousand cases that

could be used for assessments.

In an attempt to overcome this difficulty in DELVE we have generated large datasets from
simulators of realistic phenomena. The large size of these simulated datasets provides a high
degree of statistical significance. We hope that they are realistic enough that researchers will
find performance on these data interesting. The simulators allow for generation of datasets
with controlled attributes such as degree of non-linearity, input dimensionality and noise-
level, which may help in determining which aspects of the datasets are important to various
algorithms. In Chapter 5 I perform extensive simulations on large simulated datasets in
DELVE. These simulations show that the Gaussian process methods consistently outperform
the other methods.

Introduction

Chapter 2

Evaluation and Comparison

In this chapter I discuss the design of experiments that test the predictive performance of
learning methods. A large number of such learning methods have been proposed in the
literature, but in practice the choice of method is often governed by tradition, familiarity
and personal preference rather than comparative studies of performance. Naturally, pre-
dictive performance is only one aspect of a learning method; other characteristics such as
interpretability and ease of use are also of concern. However, for predictive performance a
well developed set of directly applicable statistical techniques exist that enable comparisons.
Despite this, it is very rare to find any compelling empirical performance comparisons in
the literature on learning methods [Prechelt 1996]. I will begin this chapter by defining
generalisation, which is the measure of predictive performance, then discuss possible exper-
imental designs, and finally give details of the two most promising designs for comparing

learning methods, both of which have been implemented in the DELVE environment.

2.1 Generalisation

Usually, learning methods are trained with one of two goals: either to identify an inter-
pretation of the data, or to make predictions about some unmeasured events. The present
study is concerned only with accuracy of this latter use. In statistical terminology, this is
sometimes called the expected out-of-sample predictive loss; in the neural network literature
it is referred to as generalisation error. Informally, we can define this as the expected loss

for a particular method trained on data from some particular distribution on a novel (test)

8 Evaluation and Comparison

case from that same distribution.

In the formalism alluded to above and used throughout this thesis the objective of learning
will be to minimize this expected loss. Some commonly used loss functions are squared
error loss for regression problems and 0/1-loss for classification; others will be considered
as well. It should be noted that this formalism is not fully general, since it requires that
losses can be evaluated on a case by case basis. We will also disallow methods that use the
inputs of multiple test cases to make predictions. This confinement to fixed training sets
and single test cases rules out scenarios which involve active data selection, incremental
learning where the distribution of data drifts, and situations where more than one test case
is needed to evaluate losses. However, a very broad class of learning problems can naturally

be cast in the present framework.

In order to give a formal definition of generalisation we need to consider the sources of
variation in the basic experimental unit, which consists of training a method on a particular

set of training cases and measuring the loss on a test case. These sources of variation are

1. Random selection of test case.
2. Random selection of training set.

3. Random initialisation of learning method; e.g. random initial weights in neural net-

works.

4. Stochastic elements in the training algorithm used in the method; e.g. stochastic hill-

climbing.

5. Stochastic elements in the predictions from a trained method; e.g. Monte Carlo esti-

mates from the posterior predictive distribution.

Some of these sources are inherent to the experiments while others are specific to certain
methods such as neural networks. Our definition of generalisation error involves the expec-

tation over all these effects
Gr(n) = /L[Fri,rt,rp(Dn,x)at]p(xat)p(Dn)p(Ti)p(rt)p(Tp) dzx dt dDy, dridrydry. (2.1)

This is the generalisation error for a method that implements the function F', when trained
on training sets of size n. The loss function L measures the loss of making the prediction

Frirerp (D,,, x) using training set D,, of size n and test input = when the true target is t. The

2.1 Generalisation 9

loss is averaged over the distribution of training sets p(D,,), test points p(z,t) and random

effects of initialisation p(r;), training p(r;) and prediction p(t,).

Here it has been assumed that the training examples and the test examples are drawn
independently from the same (unknown) distribution. This is a simplifying assumption
that holds well for many prediction tasks; one important exception is time series prediction,
where the training cases are usually not drawn independently. Without this assumption,

empirical evaluation of generalisation error becomes problematic.

The definition of generalisation error given here involves averaging over training sets of a
particular size. It may be argued that this is unnecessary in applications where we have
a particular training set at our disposal. However, in the current study, we do empirical
evaluations in order to get an idea of how well methods will perform on other data sets with
similar characteristics. It seems unreasonable to assume that these new tasks will contain
the same peculiarities as particular training sets from the empirical study. Therefore, it
seems essential to take the effects of this variation into account, especially when estimating

confidence intervals for G.

Evaluation of G is difficult for several reasons. The function to be integrated is typically
too complicated to allow analytical treatment, even if the data distribution were known.
For real applications the distribution of the data is unknown and we only have a sample
from the distribution available. Sometimes this sample is large compared to the n for which
we wish to estimate G(n), but for real datasets we often find ourselves in the more difficult
situation of trying to estimate G(n) for values of n not too far from the available sample

size.

The goal of the discussion in the following sections is the design of experiments which allow
the generalisation error to be estimated together with the uncertainties of this estimate,
and which allow the performance of methods to be compared. The ability to estimate un-
certainties is crucial in a comparative study, since it allows quantification of the probability
that the observed differences in performance can be attributed to chance, and may thus not

reflect any real difference in performance.

In addition to estimating the overall uncertainty associated with the estimated generalisa-
tion error it may sometimes be of interest to know the sizes of the individual effects giving
rise to this uncertainty. As an example, it may be of interest to know how much variability
there is in performance due to random initialisation of weights in a neural network method.

However, there are potentially a large number of effects which could be estimated — and

10 Evaluation and Comparison

to estimate them all would be rather a lot of work. In the present study I will focus on one
or two types of effects that are directly related to the sensitivity of the experiments. These
effects will in general be combinations of the basic effects from eq. (2.1). The same general
principles can be used in slightly modified experimental designs if one attempts to isolate

other effects.

2.2 Previous approaches to experimental design

This section briefly describes some previous approaches to empirical evaluation in the neural
network community. These have severe shortcomings, which the methodologies discussed

in the remainder of this chapter will attempt to address.

Perhaps the most common approach is to use a single training set D,,, where n is chosen
to be some fraction of the total number of cases available. The remaining fraction of the
cases are devoted to a test set. In some cases an additional validation set is also provided;
this set is also used for fitting model parameters (such as weight-decay constants) and is
therefore in the present discussion considered to be part of the training set. The empirical
mean loss on the test set is reported, which is an unbiased and consistent estimate of the
generalisation loss. It is possible (but not common practice) to estimate the uncertainty
introduced by the finite test set. In particular, the standard error due to this uncertainty
on the generalisation estimate falls with the number of test cases as nt_e;t/ 2, Unfortunately
the uncertainty associated with variability in the training set cannot be estimated — a fact

which is usually silently ignored.

The above simple approach is often extended using n-way cross-testing. Here the data is
divided into n equally sized subsets, and the method is trained on n—1 of these and tested on
the cases in the last subset. The procedure is repeated n times with each subset left out for
testing. This procedure is frequently employed with n = 10 [Quinlan 1993]. The advantage
that is won at the expense of having to train 10 methods is primarily that the number of
test cases is now increased to be the size of the entire data set. We may also suspect that
since we have now trained on 10 (slightly) differing training sets, we may be able to estimate
the uncertainty in the estimated Gr(n). However, this kind of analysis is complicated by
the fact that the training sets are dependent (since several training sets include the same
training examples). In particular, one would need to model how the overlapping training

sets introduce correlations in the performance estimates, which seems very difficult.

2.3 General experimental design considerations 11

Recently, a book on the StatLog project appeared [Michie et al. 1994]. This is a large
study using many sources of data and evaluating 20 methods for classification. In this
study, either single training and test sets or n-way cross-testing was used. The authors also
discuss the possible use of bootstrapping for estimating performance. However, they do not
attempt to evaluate uncertainties in their performance estimates, and ignore the statistical

difficulties which their proposals entail.

In the ELENA project [Guérin-Dugué et al. 1995] simple (non-paired) analysis of categor-
ical losses is considered. Although a scheme resembling 5-way cross-testing was used, the
subsequent analysis failed to take the dependence between the training sets into account.

In the conclusions it is remarked: “

...[W]e evaluated this robustness by using a Holdout
method on five trials and we considered the minimum and maximum error by comput-
ing confidence intervals on these extrema. We obtained large confidence intervals and this

measure hasn’t been so helpful for the comparisons.”

In conclusion, these approaches do not seem applicable to addressing fundamental questions
such as whether one method generalises better that another on data from a particular task,
since they do not provide ways of estimating the relevant uncertainties. Occasionally, a
t-test for significance of difference has been used [Larsen and Hansen 1995; Prechelt 1995],
again using a particular training set and using pairing of losses of different methods on test

examples.

2.3 General experimental design considerations

The essence of a good experimental design is finding a suitable tradeoff between practicality
and statistical power. By practicality of the approach I am referring to the number of
experiments required and the complexity of these in terms of both computation time and
memory. By statistical power, I mean the ability of the tests to (correctly) identify trends
of small magnitude in the experiments. It should be obvious that these two effects can be
traded off against each other, since in general we may gain more confidence in conclusions

with more repetitions, but this becomes progressively less practical.

The practicality of an approach can be subdivided into three issues: computational time
complexity of the experiments, memory and data requirements, and computational require-
ments for the statistical test. Many learning algorithms require a large amount of compu-

tation time for training. In many cases there is a fairly strong (super-linear) dependency

12 Evaluation and Comparison

between the available number of training cases and the required amount of computation
time. However, we are not free to determine the number of training cases in the experi-
mental design, since this is regarded as being externally fixed according to our particular
interests. Thus, the main objective is to keep the number of training sessions as low as
possible. The time needed for making predictions from the method for test cases may occa-
sionally be of concern, however this requirement will scale linearly with the number of test

cases.

The data and memory considerations have different causes but give rise to similar restric-
tions in the tests. The data requirement is the total number of cases available for construct-
ing training and test sets. For real datasets this will always be a limited number, and in
many cases this limitation is of major concern. In cases where artificial data is generated
from a simulator, one may be able to generate as many test cases as desired, but for very
large sets it may become impractical to store all the individual losses from these tests (which

will be necessary when performing paired tests, discussed later in this chapter).

Finally we may wish to limit ourselves to tests whose results are easily computed from the
outcomes of the learning experiments. The analysis of some otherwise interesting experi-
mental designs cannot be treated analytically, and approximate or stochastic computation
may be needed in order to draw the desired conclusions. Such situations are probably
undesirable for the present applications, since it is often difficult to ensure accuracy or
convergence with such methods. In such cases people may find the required computational

mechanics suspect, and the conclusions will not in general be convincing.

The statistical power of the tests depends on the details of the experimental design. In
general, the more training sets and test cases, the smaller the effects that can be detected
reliably. But also the distributional assumptions about the losses are of importance. These
issues are most easily clarified through some examples. From a purely statistical point of
view, the situation is simplest when one can assume independence between experimental
observations. As an extreme case, we may consider an experimental design where a method
is trained several times using disjoint training sets, and single independently drawn test
cases. The analysis of the losses in this case is simple because the observed losses are
independent and the Central Limit theorem guarantees that the empirical mean will follow
an unbiased Gaussian distribution with a standard deviation scaling as n~'/2. However, for
most learning methods that we may wish to consider this approach will be computationally
prohibitively expensive, and for real problems where the total amount of data is limited,
such an approach is much too wasteful of data: the amount of information extracted from

each case is far too small.

2.3 General experimental design considerations 13

In order to attempt to overcome the impracticality of this previous design example, we may
use the same training set for multiple test cases, thereby bringing down the total number of
required training sessions. This corresponds to using (disjoint) test sets instead of individual
test cases. Computationally, this is a lot more attractive, since many fewer training sessions
are required. We extract more information per training run about the performance of the
method by using several test cases. However, the losses are no longer independent, since
the common training sets introduce dependencies, which must be accounted for in the
analysis of the design. A persistent concern with this design is that it requires several
disjoint training and test sets, which may be a problem when dealing with real data sets
of limited size. For artificially generated (and very large real) datasets, this design may be
the most attractive and its properties are discussed in the following section under the name
“hierarchical ANOVA design”.

To further increase the effectiveness of the use of data for real learning tasks, we can test
all the trained methods on all the available testing data, instead of carving up the test data
into several disjoint sets. By doing more testing, we are able to extract more information
about the performance of the method. Again, this comes at an expense of having to deal
with a more complicated analysis. Now the losses are not only dependent through common
training sets but also through common test cases. This design will be discussed in a later
section under the title “2-way ANOVA design”. This will be the preferred design for real

data sets.

The different requirement for disk-storage for the hierarchical and 2-way designs may also be
of importance. When methods have been tested, we need to store all the individual losses in
order to perform paired comparisons (discussed in detail in the next section). Although disk
storage is cheap, this requirement does become a concern when testing numerous methods
on large test sets. In this respect the hierarchical design is superior, since losses for more

test cases can be stored with the same disk requirements.

Attempts can be made to further increase the effectiveness (in terms of data) of the tests.
Instead of using disjoint training sets, one may reuse cases in several training and test sets.
The widely used n-way cross-testing mentioned in the previous section is an example of
such a design. There are no longer any independencies in these designs, and it becomes
hard to find reasonable and justifiable assumptions about how the performance depends
on the composition of the training sets. In traditional n-way cross-testing the data is split
into n subsets, and one could attempt to model the effects of the subsets individually and
neglecting their interactions, but this may not be a good approximation, since one may

expect the training cases to interact quite strongly. These difficulties deterred us from

14 Evaluation and Comparison

Overall mean y

Means g; for I training sets

Individual losses y;;

Figure 2.1: Schematic diagram of the hierarchical design. In this case there are I = 4 disjoint
training sets and I = 4 disjoint test sets each containing J = 3 cases. Since both training and test
sets are disjoint, the average losses for each training set ; are independent estimates of the expected
loss p.

using these designs. It is possible that there is some way of overcoming the difficulties
and this would certainly be of importance if one hopes to be able to use small datasets
for benchmarking. It should be noted that when n-way cross-testing is usually used in the
literature, one does not attempt to estimate uncertainties associated with the performance

estimates. In such cases it is not easy to justify the conclusions of the experiments.

2.4 Hierarchical ANOVA design

The simplest loss model that we will consider is the analysis of variance (ANOVA) in the
hierarchical design. In this loss model, the learning algorithm is trained on I different
training sets. These training sets are disjoint, i.e., a specific training case appears only in a
single training set. Associated with each of the training sets there is a test set with J cases.

These test sets are also disjoint from one another and disjoint from the training sets.

We train the method on each of the [training sets and for each training set we evaluate the
loss on each case in the corresponding test set. A particular training set and the associated
test cases will be referred to as an instance of the task in the following. We assume that
the losses can be modeled by

Yij = 1+ a; + &5 (2.2)

Here y;; is the loss on test case j from test set ¢ when the method was trained on training

2.4 Hierarchical ANOVA design 15

set 7. The a; and ¢;; are assumed Normally and independently distributed with
a; NN(O,O‘%) €ij N./\/'(O,Ug). (2.3)

The p parameter models the mean loss which we are interested in estimating. The a; vari-
ables are called the effects due to training set, and can model the variability in the losses
that is caused by varying the training set. Note, that the training set effects include all
sources of variability between the different training sessions: the different training examples
and stochastic effects in training, e.g., random initialisations. The ¢;; variables model the
residuals; these include the effects of the test cases, interactions between training and test
cases and stochastic elements in the prediction procedure. For some loss functions, these
Normality assumptions may not seem appropriate; refer to section 2.6 for a further discus-
sion. In the following analysis, we will not attempt to evaluate the individual contributions

to the a; and ¢;; effects.

Using eq. (2.2) and (2.3) we can obtain the estimated expected loss and one standard
deviation error bars on this estimate

2 2
o o;

1/2
i =g SDA:(—“ —) 9.4
where a hat indicates an estimated value, and a bar indicates an average. This estimated
standard error is for fixed values of the ¢’s, which we can estimate from the losses. We

introduce the following means
= = (25)
J - 1J ral

and the “mean squared error” for a and ¢ and their expectations

J
MS, = === > (@i —9)° EMS,] = Jog + 02

1 (2.6)
MSe = ——— ZZ(%’]’ —i)° E[MS,] = o?.

I(J-1) el
In ANOVA models it is common to use the following minimum variance unbiased estimators

for the o2 values which follow directly from eq. (2.6)

MS, — MS,

~2 ~2
oz = MS, o, = 7

2.7)

Unfortunately the estimate 2 may sometimes be negative. This behaviour can be explained
by referring to fig. 2.1. There are two sources of variation in g;; firstly the variation due

to the differences in the training sets used and secondly the uncertainty due to the finitely

16 Evaluation and Comparison

many test cases evaluated for that training set. This second contribution may be much
greater than the former, and empirically eq. (2.7) may produce negative estimates if the
variation in g; values is less than expected from the variation over test cases. It is customary

to truncate negative estimates at zero (although this introduces bias).

In order to compare two learning algorithms the same model can be applied to the differences

between the losses from two learning methods k& and &’
Yij = Yijk — Yijkr = B+ a; + Eij, (2.8)

with similar Normal and independence assumptions as before, given in eq. (2.3). In this
case u is the expected difference in performance and a; is the training set effect on the
difference. Similarly, €;; are residuals for the difference loss model. It should be noted that
the tests derived from this model are known as paired tests, since the losses have been paired
according to training sets and test cases. Generally paired tests are more powerful than
non-paired tests, since random variation which is irrelevant to the difference in performance
is filtered out. Pairing requires that the same training and test sets are used for every

method. Pairing is readily achieved in DELVE, since losses for methods are kept on disk.

A central objective in a comparative loss study is to get a measure of how confident we
can be that the observed difference between the two methods reflects a real difference in
performance rather than a random fluctuation. Two different approaches will be outlined

to this problem: the standard t-test and a Bayesian analysis.

The idea underlying the t-test is to assume a null hypothesis, and compute how probable the
observed data or more extreme data is under the sampling distribution given the hypothesis.
In the current application, the null hypothesis is Hy: p = 0, that the two models have
identical average performances. It may seem odd to focus on this null hypothesis, when
it would seem more natural to draw our conclusions based on p(u < 0/{y;;}) and p(p >
0[{yij}). The reasoning underlying the frequentist test of Hy is the following: if we can
show that we are unlikely to get the observed losses given the null hypothesis, then we
can presumably have confidence in the sign of the difference. Technically, the treatment of
composite hypothesis, such as H{: ;<0 is much more complicated than a simple hypothesis.
Thus, since Hy can be treated as a simple hypothesis (through exact analytical treatment
of the unknown o2 and ¢2), this is often preferred although it may at first sight seem less

appropriate.

Under the null hypothesis, Hy: u = 0, the distribution of the differences in losses and their

2.4 Hierarchical ANOVA design 17

partial means can be obtained from eq. (2.8), giving
yij ~ N (0,00 +02), gi ~ N (0,00 +02/J) (29)

for which the variances are unknown in a practical application. The different partial means
7; are independent observations from the above Gaussian distribution. A standard result
(dating back to Student and Fisher) from the theory of sampling distributions states if y;
is independently and Normally distributed with unknown variance, then the t-statistic
1 —-1/2
t=(5 >~ 9)°) 2.10
J I(I—l);(yl 7) (2.10)

has a sampling distribution given by the t-distribution with /—1 degrees of freedom

2 N\ -I/2
=)

To perform a t-test, we compute the t-statistic, and measure how unlikely it would be

p(t) o <1 + (2.11)

(under the null hypothesis) to obtain the observed t-value or something more extreme.
More precisely, the p-value is
t
p=1- / p(t)dt', (2.12)
—t
for which there does not exist a closed form expression; numerically it is easily evaluated
via the incomplete beta distribution for which rapidly converging continued fractions are
known, [Abramowitz and Stegun 1964]. Notice, that the t-test is two-sided, i.e., that the
limits of the integral are +t¢, reflecting our prior uncertainty as to which method is actually
the better. If in contrast it was apriori inconceivable that the true value of u was negative
we could use a one-sided test, extending the integral to —oo and getting a p-value which

was only half as large.

Very low p-values thus indicate that we can have confidence that the observed difference is
not due to chance. Notice that failure to obtain small p-values does not necessarily imply
that the performance of the methods are equal, but merely that the observed data does not
rule out this possibility, or the possibility that the sign of the actual difference differs from
that of the observed difference.

Fig. 2.2 shows an example of the output from DELVE when comparing two methods. Here
the estimates of performances 7 and g, their estimated difference i and the standard
error on this estimate SD(ji) are given and below the two effects ¢, and d.. Finally, the

p-value for a t-test is given for the significance of the observed difference.

At this point it may be useful to note that the standard error for the difference estimate

SD(f1) is computed using fixed estimates for the standard deviations, given by eq. (2.7),

18 Evaluation and Comparison

Estimated expected loss for knn-cv-1: 357.909

Estimated expected loss for /lin-1: 397.82

Estimated expected difference: -39.9114

Standard error for difference estimate: 11.4546

SD from training sets and stochastic training: 15.3883

SD from test cases & stoch. pred. & interactions: 271.541

Significance of difference (T-test), p = 0.0399302

Based on 4 disjoint training sets, each containing 256 cases and
4 disjoint test sets, each containing 256 cases.

Figure 2.2: An example of applying this analysis to comparison of the two methods 1in-1 and
knn-cv-1 using the squared error loss function on the task demo/age/std.256 in DELVE.

where the distribution of 4 is Gaussian. However, there is also uncertainty associated
with the estimates for these standard deviations. This could potentially be used to obtain
better estimates of the standard error for the difference (interpreted as a 68% confidence
interval); computationally this may be cumbersome, since it requires evaluations of ¢ from p
in eq. (2.12) which is a little less convenient. For reasonably large values of I the differences
will be small, and our primary interest is not in these intervals but rather in the p-values

(which are computed correctly).

As an alternative to the frequentist hypothesis test, one can adopt a Bayesian viewpoint
and attempt to compute the posterior distribution of p from the observed data and a prior
distribution. In the Bayesian setting the unknown parameters are the mean difference p

and the two variances o2 and o2. Following Box and Tiao [1992] the likelihood is given by

p({yij}“‘a 0-2’ O-g) X

I3 —)? _ 2 Zj(yij - ﬂz‘)2>. (2.13)

WN—I(J—1)/2(-2 2\—1/2 .
(o2) L) oXp < 2(c2 + Jo2) 202

15
We obtain the posterior distribution by multiplying the likelihood by a prior. It may not in
general be easy to specify suitable priors for the three parameters. In such circumstances
it is sometimes possible to dodge the need to specify subjective priors by using improper
non-informative priors. The simplest choices for improper priors are the standard non-

informative

p(p) o< 1 p(og) < oy p(o?) x o2, (2.14)

since the variances are positive scale parameters. In many cases the resulting posterior is
still proper, despite the use of these priors. However, in the present setting these priors do
not lead to proper posteriors, since there is a singularity at o2 = 0; the data can be explained

(i.e., acquire non-vanishing likelihood) by the o2 effect alone and the prior density for o2

2.4 Hierarchical ANOVA design 19

will approach infinity as o2 goes to zero. This inability to use a non-informative improper
prior reflects a real uncertainty in the analysis of the design. For small values of o2 the
likelihood is almost independent of this parameter and the amount of mass placed in this
region of the posterior is largely determined by the prior. In other words, the likelihood
does not provide much information about o2 in this region. An alternative prior is proposed
in Box and Tiao [1992], setting

p(p) 1 p(o7) x o p(o? + Jog) o< (oF + Jog) ™. (2.15)

This prior has the somewhat unsatisfactory property that the effective prior distribution
depends on J, the number of test cases per training set, which is an unrelated arbitrary
choice by the experimenter. On the positive side, the simple form of the posterior allows us

to express the marginal posterior for u in closed form

Pl i) = /0 /0 P11, 02, 02)p({yi s 02, 02) do? do?

o ay " betaig, /(a; +as) (P2, P1);

(2.16)

where betai is the incomplete beta distribution and

ap = %ZZ(%] —5)° ag= %Z(@i —p)? p= LJ; D p2 = g (2.17)
i

In fig. 2.3 the posterior distribution of x is shown for a comparison between two learning
methods. The p-value from the frequentist test in fig. 2.2 is p = 0.040 which is reasonably
close to the posterior probability that u has the opposite sign of the observed difference,
which was calculated by numerical integration to be 2.3%. These two styles of analysis
are making statements of a different nature, and there is no reason to suspect that they
should produce identical values. Whereas the frequentist test assumes that 4 = 0 and
makes a statement about the probability of the observed data or something more extreme,
the Bayesian analysis treats p as a random variable. However, it is reassuring that they do

not differ to a great extent.

There are several reasons that I have not pursued the Bayesian analysis further. The most
important reason is that my primary concern was to find a methodology which could be
adopted in DELVE, for which the Bayesian method does not seem appropriate. Firstly,
because the Bayesian viewpoint is often met with scepticism, and secondly because of
analytical problems when attempting to use priors other than eq. (2.15). Perhaps the most
promising approach would be to use proper priors and numerical integration to evaluate
eq. (2.16) and then investigate how sensitive the conclusions are to a widening of the priors.

Sampling approaches to the problem of estimating the posterior may be viable, and open

20 Evaluation and Comparison

0.02f 1

0.01f 1

Posterior density, p(u| {yw})

0.00 ‘ ‘
-100 -50 0 50

Performance difference, u

Figure 2.3: Posterior distribution of y when comparing the 1in-1 and knn-cv-1 methods on the
demo/age/std. 256 data for squared error loss, using eq. (2.16). By numerical integration it is found
that 2.3% of the mass lies at positive values for p (indicated by hatched area).

up interesting possibilities of being able to relax some of the distributional assumptions
underlying the frequentist t-test. However, extreme care must be taken when attempting
to use sampling methods (such as simple Gibbs sampling) where it may be hard to ensure

convergence, since this may leave the conclusions from experiments open to criticism.

2.5 The 2-way ANOVA design

The experimental setup for a 2-way design differs from the hierarchical design in that we
use all the test cases for every training session thereby gaining more information about the
performances, fig. 2.4. This is more efficient (in terms of data) which may be important
if the number of available cases is small. However, the analysis of this model is more

complicated. The loss model is:
Yij = 1+ a; + bj + €ij, (2.18)

with a; being the effects for the training sets, b; the effects for the test cases, and ¢;; their
interactions and noise. As was the case for the hierarchical design, these effects may have

several different components, but no attempt will be made to estimate these individually.

2.5 The 2-way ANOVA design 21

J = 4 test cases

IS
5
O
wn
b
O Z
v O
8)
> o0
5 g
q>.> =)
o =
@]
S)
& 1
< ~
—
g
&

average loss over training sets, ¥;

Figure 2.4: Schematic diagram of the 2-way design. There are I = 3 disjoint training sets and a
common test set containing J = 4 cases giving a total of 12 losses. The partial average performances
are not independent.

We make the same assumptions of independence and normality as previously
a; N./\/'(O,O'g) b; N./\/'(O,O'g) E€ij NN(O,O’?). (2.19)

In analogy with the hierarchical design, these assumptions give rise to the following expec-
tation and standard error
. o? > 1/2

2
A~ O-a
=7 SD(M):<—I+—;+—

7 (2.20)

We introduce the following partial mean losses
1 _ 1 _ 1
y:ﬁzzyzj yi:jzyzj yj:fzyij’ (2.21)

and the “mean squared error” for a, b and € and their expectations:

MS, :I—il - (7 — 9)* E[MS,] =Jo?2 + o2
MS, :% > -9 EMSy] =107 + o

J
MS. :Wl(af—l) Z EJ: (i —9)— @i —9) — (3 —9)° EMS.] =02 (2.22)

Now we can use the empirical values of MS,, MS, and MS; to estimate values for the o’s:

o MS,—MS. ., MS,—MS,

7.2 =MS. G = - Ca - (2.23)

22 Evaluation and Comparison

These estimators are uniform minimum variance unbiased estimators. As before, the esti-
mates for o2 and ag are not guaranteed to be positive, so we set them to zero if they are
negative. We can then substitute these variance estimates into eq. (2.20) to get an estimate

for the standard error for the estimated mean performance.

Note that the estimated standard error ¢ diverges if we only have a single training set (as is
common practice!). This effect is caused by the hopeless task of estimating an uncertainty
from a single observation. At least two training sets must be used and probably more if

accurate estimates of uncertainty are to be achieved.

Another important question is whether the observed difference between two learning pro-
cedures can be shown to be significantly different from each other. To settle this question
we again use the model from eq. (2.18), only this time we model the difference between the

losses of the two models, k and &'
Yijk — Yijk = K+ a; + bj + €5, (2.24)

under the same assumptions as above. The question now is whether the estimated overall
mean difference [is significantly different from zero. We can test this hypothesis using a

quasi-F test [Lindman 1992], which uses the F statistic with degrees of freedom:

Fyivy = (SSy +MS.)/(MS, +MSy), where SS,, =IJ3°
v = (SSm +MS.)?/(SS?, + MS2/((I —1)(J —1))) (2.25)
vy = (MSq+MS)?/(MS;/(I — 1)+ MS;/(J — 1)).

The result of the F-test is a p-value, which is the probability given the null-hypothesis
(w = 0) is true, that we would get the observed data or something more extreme. In
general, low p-values indicates a high confidence in the difference between the performance

of the learning procedures.

Unfortunately this quasi-F test is only approximate even if the assumptions of independence
and Normality are met. I have conducted a set of experiments to clarify how accurate the
test may be. For our purposes, the most serious mistake that can be made is what is nor-
mally termed a type I error: concluding that the performances of two methods are different
when in reality they are not. In our experiments, we would not normally anticipate that
the performance of two different methods would be exactly the same, but if we ensure that
the test only rarely strongly rejects the null hypothesis if it is really true, then presumably
it will be even rarer for it to declare the observed difference significant if its sign is opposite
to that of the true difference.

2.5 The 2-way ANOVA design 23

a=0.1; b=0.1 a=0.32; b=0.1 a=1; b=0.1 a=3.16; b=0.1
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 20
0 0 0 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
a=0.1; b=0.32 a=0.32; b=0.32 a=1; b=0.32 a=3.16; b=0.32
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 | 20 20
0 0 0 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
a=0.1; b=1 a=0.32; b=1 a=1; b=1 a=3.16; b=1
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 20
Uil | U iaiicbbuied |
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
a=0.1; b=3.16 a=0.32; b=3.16 a=1; b=3.16 a=3.16; b=3.16
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 20
0 MWMMN ikl | o
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 2.5: Experiments using 2 training instances, showing the empirical distribution of 1000
p-values in 100 bins obtained from fake observations from under the null hypothesis. Here a and b
give the standard deviations for the training set effect and test case effect respectively.

24 Evaluation and Comparison

a=0.1; b=0.1 a=0.32; b=0.1 a=1; b=0.1 a=3.16; b=0.1
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 “ 20
0 0 0 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
a=0.1; b=0.32 a=0.32; b=0.32 a=1; b=0.32 a=3.16; b=0.32
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 m 20 20 20
0 0 0 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
a=0.1; b=1 a=0.32; b=1 a=1; b=1 a=3.16; b=1
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 20
Lol | | bl | | b |
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
a=0.1; b=3.16 a=0.32; b=3.16 a=1; b=3.16 a=3.16; b=3.16
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 20
o | | bbbt | ,
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 2.6: Experiments using 4 training instances, showing the empirical distribution of p-values
obtained from fake observations from under the null hypothesis. Here a and b give the standard
deviations for the training set effect and test case effect respectively.

2.6 Discussion 25

I generated mock random losses under the null hypothesis, from eq. (2.18) and (2.19) with
u =0 and 0. = 1.0 for various values of o, and ;. The unit o, simply sets the overall scale
without loss of generality. I then computed the p-value for the F-test for repeated trials.
In fig. 2.5 and 2.6 are histograms of the resulting p-values. Ideally these histograms ought
to show a uniform distribution — the reason why these do not (apart from finite sample
effects) is due to the approximation in the F-test. The most prominent effects are the spikes
in the histograms around p = 0 and p = 1. The spikes at p = 1 are not of great concern
since the test here is strongly in favor of the (true) null hypothesis. This may lead to a
reduced power of the test, but not to type I errors. The spikes that occur around p = 0
are directly of concern. Here the test is strongly rejecting the null hypothesis, leading us to
infer that the methods have differing performance when in fact they do not. This effect is
only strong in the case where there are only 2 instances and where the training set effect is
large. With 4 instances (and 8, not shown) these problems have more or less vanished. To
avoid interpretative mistakes whenever there are fewer than 4 instances and the computed
p-value is less than 0.05, the result is reported by DELVE as p < 0.05.

2.6 Discussion

One may wonder what happens to the tests described in earlier sections when the assump-
tions upon which they rely are violated. The independence assumptions should be fairly
safe, since we are carefully designing the training and test sets with independence in mind.
The Normality assumptions however, may not be met very well. For example, it is well
known that when using squared error loss, one often sees a few outliers accounting for a
large fraction of the total loss over the test set. In such cases one may wonder whether
squared error loss is really the most interesting loss measure. Given that we insist on

pursuing this loss function, we need to consider violations of Normality.

The Normality assumptions of the experimental designs are obviously violated in the case
of loss estimation for squared error loss functions, which are guaranteed positive. This ob-
jection disappears for the comparative designs where only the loss differences are assumed
Normal. However, it is well known that extreme losses may occour — so Gaussian assump-
tions may be inappropriate. As a solution to this problem, Prechelt [1994] suggests using
the log of the losses in t-tests after removing up to 10% “outliers”. I do not advocate this
approach. The loss function should reflect the function that one is interested in minimising.
If one isn’t concerned by outliers then one should choose a loss function that reflects this.

Removing outlying losses does not appear defensible in a general application. Also, method

26 Evaluation and Comparison

A having a smaller expected log loss than method B does not imply anything about the

relation of their expected losses.

Generally, both the t-test and F-test are said to be fairly robust to small deviations from
Normality. Large deviations in the form of huge losses from occasional outliers turn out to
have interesting effects. For the comparative loss models described in the previous sections,
the central figure determining the significance of an observed difference is the ratio of the
mean difference to the uncertainty in this estimate 3/, as in eq. (2.10). If this ratio is
large, we can be confident that the observed difference in not due to chance. Now, imagine
a situation where /6 is fairly large; we select a loss difference ¢y’ at random and perturb it

by an amount £, and observe the behaviour of the ratio as we increase &

2yit& U when & — oo. (2.26)
S+ €4y - (Sy+e? Vrol

Q|

Thus, for large values of n the tests will tend to become less significant, as the magnitude of
the outliers increase. Here we seem to be lucky that outliers will not tend to produce results
that appear significant but merely reduce the power of the test. However, this tendency
may in some cases have worrying proportions. In fact, let’s say we are testing two methods
against each other, and one seems to be doing significantly better than the other. Then
the losing method can avoid losing face in terms of significance by increasing its loss on a
single test case drastically. Because the impact on the mean is smaller than the impact on
¢ for such behaviour, the end result for large £ is a slightly worse performance for the bad
method, but insignificant test results. This scenario is not contrived; I have seen its effects

on many occasions and we shall see it in Chapter 5.

This somewhat unsatisfactory behaviour arises from the symmetry assumptions in the loss
model. If the losses for one model can have occasional huge values, and the distribution
of loss differences is assumed symmetric, it could also happen (although it didn’t) that
the other model would have a huge loss, hence the insignificant result. Clearly, this is not
exactly what we had in mind. There may be cases where these assumptions are reasonable,
but there are situations where some methods may tend to make wild predictions while

others are more conservative.

It is possible that these deficiencies could be overcome in a Bayesian setting that allowed for
non-Gaussian and skew distributional assumptions. It seems obvious that great care must
be taken when designing such a scheme, both with respect to its theoretical properties as

well as provisions for a satisfactory implementation of the required computations.

2.6 Discussion 27

Another idea as to how this situation could be remedied is to allow the “winning” method
to perturb the losses of the “losing” method, subject to the constraint that losses of the
losing method may only be lowered. This may in many cases alleviate the problems of
insignificance in situations plagued by extreme losses in a competing method. Several
questions remain open in respect to this approach. What is the sampling distribution for
the obtained p-values under the null hypothesis? Is there a unique (and simple) way of
figuring out which losses to perturb and by how much? I have not pursued these ideas
further, but this may well be worthwhile. For the time being, it underlines that one should
always consider both the mean difference in performance as well as the p-value for the test.
This will also help reduce the importance of very small p-values when they are associated

with negligible reductions in loss.

The loss models considered in this chapter have mainly been developed with continuous loss
functions in mind. Continuous loss functions are used when the outputs are continuous,
and tasks of classification can similarly be handled if one has access to the output class
probabilities (which are continuous). However, it is also quite common to use the binary
0/1-loss function for classification. It is not quite obvious how well the present loss models
will work for binary losses. Clearly, the assumptions about Normality are not appropriate —
but they will probably not lead to ridiculous conclusions. It does not seem straightforward to
design more appropriate models for discrete losses that allow for the necessary components
of variability. An empirical study of tests of difference in performance of learning methods

for binary classification has appeared in [Dietterich 1996].

28

Evaluation and Comparison

Chapter 3

Learning Methods

3.1 Algorithms, heuristics and methods

A prerequisite of measuring the performance of a learning method is defining exactly what
the method is. This may seem like a trivial statement, but a detailed investigation reveals
that it is uncommon in the neural network literature to find a description of an algorithm
that is detailed enough to allow replication of the experiments — see [Quinlan 1993; Thod-
berg 1996] for examples of unusually detailed descriptions. For example, an article may
propose to use part of the training data for a neural network as a validation set to mon-
itor performance while training and to stop training when a minimum in validation error
is encountered (this is known as early stopping). I will refer to such a description as an
algorithm. This algorithm must be accompanied by details of the implementation, which
I will call heuristics in order to produce a method which is applicable to practical learn-
ing problems. In this example, the heuristics would include details such as the network
architecture, the minimization procedure, the size of the validation set, rules for how to

determine whether a minimum in validation error was reached, etc.

It is often appealing to think of performance comparisons in terms of algorithms and not
heuristics. For example, one may wish to make statements like: “Linear models are su-
perior to neural networks on data from this domain”. In this case we are clearly talking
about algorithms, but as I have argued above, the empirical assessments supporting such
statements necessarily involve the methods — including heuristics. We hope that in most

cases the exact details of the heuristics are not crucial to the performance of the method, so

29

30 Learning Methods

that it will be reasonable to generalise the results of the methods to the algorithm itself. It
should be stressed that the experimental results involving methods are the objective basis of
the more subjective (but more useful) generalisations about algorithms. A more principled
approach of investigating several sets of heuristics for each algorithm would be extremely
arduous and would still not address the central issue of attempting to project experimental

results to novel applications.

I focus my attention on automatic methods, i.e., methods that can be applied without
human intervention. The reason for this choice is primarily a concern about reproducibility.
It may be argued that for practical problems one should allow a human expert to design
special models that take the particular characteristics of the learning problem into account.
This does not rule out the usefulness of automatic procedures as aids to an expert. Also, it
may be possible to invent heuristics which embody some of the “common sense” of the expert
— however, it turns out that this can be an extremely difficult endeavor. My approach is
to try to develop methods with sufficiently elaborate heuristics that the method cannot be
improved upon by a simple (well documented) modification. I require the methods to be
automatic, but I monitor the progress of the algorithm and take note of the cases where
the heuristics seem to break down, in order to be able to identify the reasons for poor

performance.

The primary target of comparisons is the predictive performance of the methods. However,
it does not seem reasonable to completely ignore computational issues, such as cpu time and
memory requirements. For many algorithms one may expect there to be a tradeoff between
predictive accuracy and cpu time — for example when training an ensemble of networks,
we may expect the performance to improve as the ensemble gets larger. 1 wish to study
algorithms that have a reasonably large amount of cpu time at their disposal. For many
practical learning problems a few days of cpu time on a fast computer would typically not
seem excessive. However, for practical reasons I will limit the computational resources to a

few hours per task.

It turns out that it is convenient from a practical point of view to develop heuristics for a
particular amount of cpu time, so that the algorithm itself can make choices based on the
amount of time spent so far, etc. As an example, consider the case of training an ensemble
of 10 networks. In general, reasonable heuristics for this problem are difficult to devise
because it may be very hard to determine how long it is necessary to train the individual
nets for. If we have a fixed time to run the algorithm, we may circumvent this problem by
simply training all nets for an equal amount of time. Naturally, it may turn out that none

of the nets were trained well in this time; indeed, it may turn out to have been better to

3.2 The choice of methods 31

train a single net for the entire allowed period of time, instead of trying an ensemble of 10
nets. I have used this convenient notion of a cpu time constraint for many of the methods,
although this may not correspond well to realistic applications. In the experiments, the
algorithms will be tested for different amounts of allowed time, and from these performance
measures it is usually possible to judge whether the algorithm could perform better given

more time.

3.2 The choice of methods

In this thesis, experiments are carried out using eight different methods. Six of these
methods will be described in the remainder of this chapter and the two methods relying on

Gaussian processes will be developed in the following chapter.

Two of the methods, a linear method called 1in-1 and a nearest neighbor method using
cross-validation to choose the neighborhood size called knn-cv-1, rely on simple ideas that
are often used for data modeling. These methods are included as a “base-line” of per-
formance, to give a feel for how well simple methods can be expected to perform on the

tasks.

Two versions of the MARS (Multivariate Regression Splines) method have been included.
This method was developed by Friedman [1991], who has also supplied the software. This
method is not described in detail in this thesis, since it has been published by Friedman.
The primary goal of including these methods is to provide some insight into how neural
network methods compare to methods developed in the statistics community with similar

aims.

The mlp-ese-1 method relies on ensembles of neural networks trained with early stopping.
This method is included as an attempt at a thorough implementation of the commonly used
early stopping paradigm. The intention of including this method is to get an impression of

the accuracy that can be expected from this widely-used technique.

The mlp-mc-1 method implements Bayesian learning in neural networks. The software for
this method was developed by Neal [1996]. This method uses Monte Carlo techniques to fit
the model and may be fairly computer intensive. Given enough time, one may expect this

method to have very good predictive performance. It should thus be a strong competitor.

32 Learning Methods

It would be of obvious interest to include many other promising methods in this study.
Algorithms which seem of particular interest include the “Evidence” framework developed
by MacKay [1992a] and methods relying on weight-decay and pruning following the ideas of
[Le Cun et al. 1990]. However, it has turned out to be very difficult to design appropriate
automating heuristics for these algorithms. The Evidence methods seem quite sensitive to
initial values of the regularising constants and may not work well for large networks. For all
the algorithms it is difficult to automatically select network sizes and reasonable numbers

of training iterations.

One of the motivations behind the DELVE project was to enable the advocates of various
algorithms themselves to present heuristics for their algorithms which could then be tested
in the DELVE environment. This avoids the common problem of people comparing their
highly tuned methods to “crummy versions” of competing methods. These considerations
have motivated my decision not to implement a large number of methods. Instead I present

results that constitute a challenge to the designers of those methods.

The following sections contain descriptions and discussions of the methods that were studied,
except for the Gaussian process methods which are discussed in the next chapter. First a
few general comments: None of the methods include detailed specifications of any kind
of preprocessing. It is assumed that the default preprocessing in DELVE is applied. For
the datasets considered in this thesis, binary values are encoded using the values 0 and
1 and real inputs are rescaled by a linear transformation such that that the training set
has zero median and unit average absolute deviation from the median. This is intended
as a robust way of centering and scaling attributes. For some problems, this scaling might
be inappropriate, e.g., if the relative scales of inputs convey important information; such
special cases are not considered further here. The performance measurements will focus on
three loss functions: squared error loss, absolute error loss and negative log predictive loss.
Evaluation of this last loss type requires that the method produces a predictive distribution,
and the loss is the negative log density of the test targets under the predictive distribution.
An interesting aspect of this loss type is that the method is forced to know about the size of
uncertainties in its predictions in order to be able to do well — in contrast to the situation

with the two other more commonly used loss functions.

3.3 The linear model: 1in-1 33

3.3 The linear model: 1in-1

The linear model is one of the most popular models used in data analysis. The reason for its
popularity is that it is both conceptually and computationally simple to fit a linear model,
and the resulting model is easily given an intuitive representation. The most prominent
deficiency of the linear model is its strong assumption about the true relationship in the
data; for data which do not conform well to a linear model, predictions may be inaccurate

and over-confident.

My implementation of the linear model is called 1in-1. Details of the implementation are
given in appendix A. The algorithm for fitting a linear model is well known and the only
heuristic necessary is a principled way of handling the situation where the linear system

used to determine the parameters of the model is close to singular.

For simplicity, I will initially assume that the targets are scalar; a simple extension to handle

multiple outputs will be given later. The linear model is defined as

m+1

fula) =Y ww;, (3.1)
=1

where w;, ¢ = 1,...,m+1 are the m+ 1 model parameters, w,,+1 being the bias and
xi, © =1,...,m are the inputs, augmented by x,,+1 = 1 to take care of the bias. The model
is fit to the training data D = {z® t@|i = 1...n} by maximum likelihood, assuming zero

mean Gaussian noise with variance o2. The likelihood is

n n . fw(x(c)) _t(C) ’
p(t(l),...,t()‘m(l),...,x(),w,02) occl_IleXp <— (902) > (3.2)

The maximum likelihood estimate for the weights wy, is independent of o2 and is found
by minimizing the cost function

n

Ew) =" (ful@®) —t)?, (3.3)

c=1
with respect to the model parameters. Notice that the Gaussian noise assumption gives
rise to a squared error cost function; this cost function will always be used regardless

of whatever loss function we choose to evaluate the linear model. The solution to this

34 Learning Methods

optimization problem is well known from linear algebra; if the solution is unique, then

OB (w) RN @ oy
=0 = Z(Zwlazl —t)Cﬂj =0 = wur,=A"'b
Ow; e=1 i=1 (3.4)

where A,y = sz(c)xg,c), b; = Zt(c)xgc), ii'=1,...,m+ 1.
c=1 c=1

If A is ill-conditioned, numerical evaluation of eq. (3.4) may be troublesome, and even if
fairly accurate solutions could be obtained, these would not necessarily lead to good model
predictions. In an attempt to define a method which has a high degree of reproducibility
(i.e., that would produce the same results on another machine) I propose choosing w such
that directions in input space with insufficient variation in the training set are ignored by
the model. This can conveniently be computed using singular value decomposition (SVD),
see for example [Press et al. 1992]. The decomposition is A = U diag(\;)VT, where U and
V are orthonormal matrices and) is a vector of length m + 1 containing the singular values
of A. A regularised A~! can be computed by setting 1/X; = 0 for those i whose \; are too
small in

A~ =V diag(1/)\)UT. (3.5)

The exact criterion for regularisation is: set 1/A; = 0 whenever \; < 1075 max;(};), i.e.,
whenever A is close to singular. The constant of 107° is chosen as a rather conservative
estimate of machine precision which will not interfere when A is well-conditioned. The
condition number of A depends on the scale of the inputs, so the procedure should always be
used in conjunction with the standard normalisations provided by DELVE. The (modified)

maximum likelihood weights can then be computed as

v, = A b, (3.6)
We now derive the predictive distribution for the model. For simplicity we will derive the
predictive distribution for a fixed estimate of the noise, and only account for uncertainty in
the predictions arising from the estimated noise inherent in the data and from uncertainty

in the estimate for the weights. The noise is estimated by the standard unbiased estimator

. 1 < c N 2
6% = n_k;(fi)ML(x())_t()) (3'7)

where k is the number of parameters in wy, which were fit by the data; this is m + 1
minus 1 for every singular value whose reciprocal was set to zero in eq. (3.5). This estimate
may break down if there are too few training cases (if n < m + 1), in which case we can’t

compute a predictive distribution. Assuming an improper uniform prior on the weights, the

3.3 The linear model: 1in-1 35

posterior for the weights is proportional to the likelihood. Thus, the predictive distribution

for a test case with input z("+1) is
p(t(n+1) |D, x(n-{-l), 6'2)
~ /p(t(n+1)‘D’$(n+1)’ 62)p(w|D, 62)dm+1w

3.8
OC/p(t(nﬂ)‘x(nﬂ)’w,&Q)p(t(l),-..,t(")‘m(l),...7x("),w7(}2)dm+1w (3.8)

» x(n-}—l) _t(n—l—l) 2 1 B
oc/exp (— (ul 2;2) - §(w —) YA (w — wML))dew.

This Gaussian integral can be solved exactly; we get a Gaussian predictive distribution with

mean and variance

f= leML (x(n-i-l))

n+1 n+1) 22 A A2
p(t" D, 2" 52) ~ N(j1,é%), where 62 = 62 4 (@Y T A-140

The optimal point prediction for any symmetric loss function is given by fg,, (). Con-
sequently, these predictions can be used for both absolute error and squared error loss
functions. For the negative log density loss function, we compute the log of the density of

the targets under the predictive Gaussian distribution

P
logp(t("+1)|D,x(”+1), &2) = —% log(2mé?) — (,1127;) (3.10)
é

For tasks that have multiple outputs, we can re-use the decomposition of A from eq. (3.5)
for every set of weights. The maximum likelihood weights and inherent noise estimates can
be found by using eq. (3.6) and (3.7) for each target attribute, and point predictions can be
obtained from the maximum likelihood weights as before. For the log density predictions we
assume that the joint density for the targets is Gaussian with a diagonal covariance matrix,
such that the density of the targets can be obtained by summing (in the log domain)
contributions of the form in eq. (3.10). This is equivalent to assuming that the residual

errors in the outputs are independent.

This completes the definition of the linear model; following this recipe the model will always
be uniquely defined by the data. Many elaborations to this basic linear model exist, but

they will not be pursued further here.

The computational complexity involved in fitting 1in-1 is O(nm? + m3), for computing
and decomposing the A matrix respectively. Even for fairly large tasks this can usually be

considered trivial, since it scales only linearly with n.

36 Learning Methods

3.4 Nearest neighbor models: knn-cv-1

Nearest neighbor models are popular non-parametric memory-based models. I will consider
a simple k nearest neighbor model, which in the context of DELVE will be called knn-cv-1.
I will attempt to define a nearest neighbor method that has reproducible results, that does
not depend heavily on details of implementation, that has few “free” parameters, and that
behaves reasonably under a broad variety of conditions. Also, I wish the method to be
applicable to our three standard loss functions (absolute error, squared error and negative

log density loss).

Simple nearest neighbor models do not require any training. The algorithm for making
predictions involves searching through the training cases to find those whose inputs are
closest to the inputs of the test case, and then using some kind of weighted average of the
targets of these neighbors as a prediction. Neighborhoods can either be defined in terms
of a kernel (e.g. Gaussian) which supplies weighting factors, or in terms of the number
of neighbors, k, to use (or hybrids of these). Although methods using kernels have the
intuitively appealing ability to weight neighbors according to distance, they will not be used
here. Firstly, they involve the somewhat arbitrary choice of kernel shape, and secondly, the
choice of width for the kernel (a continuous equivalent of the discrete choice of k) may
be plagued by local minima, unless the width itself is expressed in terms of distances to
neighbors. This makes the procedure unsuitable as a reproducible base-line nearest neighbor
approach. Instead, I will use the k nearest neighbor approach with uniform weighting of
neighbors for predictions. More sophisticated methods are certainly possible; for regression
tasks it is common to fit local linear models to the neighbors as in LOESS [Cleveland 1979],

but these will not be pursued further here.

We also need to define the metric in which to measure closeness; I will use the simple and
common choice of Euclidean distance. Many extensions of nearest neighbor algorithms exist
which attempt to adapt the distance metric [Lowe 1995; Hastie and Tibshirani 1996], but

these more complicated algorithms will not be pursued here.

We need to resolve what to do if two or more cases have the same distance as the k’th
nearest neighbor. In an attempt to make the algorithm less sensitive to round off effects on
different floating point arithmetic implementations, I will further set some small distance
tolerance, below which cases are deemed to have tied distances. Two cases are defined to
be ties if their squared distances to the test point differ by less than 1075, I propose the

following scheme for making a prediction for a test case:

3.4 Nearest neighbor models: knn-cv-1 37

1. Sort the cases by distances, placing ties in arbitrary order.

2. Find all the neighbors which have the same distance as the k’th case in the ordering

(including both cases earlier and later in the list) and average their targets.

3. Include this average of ties in the final prediction with a weight equal to the number

of ties that were at or earlier than k in the list.

This procedure together with the small tolerance on deciding whether cases are ties, should

help in avoiding differences due to finite precision arithmetic.

We need to find an appropriate neighborhood size, k. In general, we expect the optimal
choice of k to depend on the particular dataset and on the number of available training
points. As the number of training cases increases, the nearest neighbor method will be
consistent (a consistent estimator gets the right answer in the limit of an infinitely large
sample size) only if k grows. An appealing idea is to find the best k by leave one out
cross validation. Using this procedure, we leave out each of the training cases in turn, find
its k¥’ nearest neighbors (handling ties appropriately) and compute the loss associated with
predictions using this neighborhood. This is repeated for all k¥ = 1...n—1, and k is selected
to be the k' with the smallest average loss. The leave-one-out procedure gives an unbiased
estimate for the situation where we had n—1 training cases, which in the case of fairly large

n should be close to optimal for the current training set size.

The neighborhood size k is estimated using the desired loss function. For the squared error
loss function, the average of the targets of the nearest neighbors are used as predictions.
If the outputs are multidimensional, then averages are computed for each dimension. For

absolute error loss we use the median along each dimension as a prediction.

Some special problems present themselves for negative log density loss. We have to form
a predictive distribution based on the k nearest neighbors. The simplest idea is to fit a
Gaussian to the targets of the k& neighbors, again weighting the neighbors uniformly. The
mean for the Gaussian is chosen simply to be the empirical mean of the k nearest neighbors.
Two special cases arise when estimating the variance. Firstly, if the leave one out procedure
estimates k = 1, then we cannot estimate both the mean and variance for the predictive
distribution based on the single nearest neighbor. Secondly, if all k£ neighbors have exactly
the same targets (or targets that differ only very slightly), the naive empirical variance

estimate is undesirable since it leads to unbounded losses. Both of these problems can be

38 Learning Methods

addressed by regularising the variance estimate

k

(D™ -9+, (3.11)

k'=1

v =

el

where ¢2 is the regulariser, y*") is the targets of the k’’th nearest neighbor and 7 is the
average of the targets for the k nearest neighbors. A convenient value to choose for ¢? is
the average squared difference between targets corresponding to first nearest neighbors, the
average extending over all training cases. This can be interpreted as a global estimate of the
variance which, whenever available, is modified by local information. Thus the regulariser
will act much like a conjugate prior. In the case of k = 1, no local information about
variance is available, and the sum over k¥’ will vanish from eq. (3.11) leaving just the global
term. As k grows, the amount of local information increases and the importance of the
regulariser decreases. The problem of vanishing variance estimates is also addressed by this
approach, since normalisation of the targets before learning guarantees that ¢2 > 0 (except

for the pathological case where all available training cases have identical targets).

The computational demands of the leave-one-out procedure for training the knn-cv-1 model
depend on how it is implemented. We need to leave out each of the n cases in turn; for
each of these we compute the distance to all other neighbors, which takes a total time
of O(n?m). Then we need to sort these distances, requiring O(nlogn). Now for each of
the n—1 possible values of k we need to compute the mean, variance and median of the
neighbors. For simple implementations, computation of these values take O(n) for each of
these estimates. However, it should be noted that it is possible to re-use partial results
obtained with other values of k; means and variances can be updated in constant time
and the median can (through use of a heap data structure) be updated in O(logn). The
total computational effort involved in finding & is thus O(nQ(m—l—n—l—log n)) for a simple
implementation or O(n*(m+logn)) for a more elaborate implementation. The current

version of knn-cv-1 uses the simple implementation.

Once the appropriate value of & is found, we can make predictions in time O (mn—i—k—|—n log n)
for each test case, if the prediction algorithm sorts all training cases according to distance
(the current implementation of knn-cv-1 uses this approach). If instead of sorting we
attempt to locate the k closest neighbors, we can replace logn in the previous expression
by k, but it is not clear which is best in general, since we expect the optimal k to grow (at

a sub-linear rate) as n grows.

3.5 MARS with and without Bagging 39

3.5 MARS with and without Bagging

The Multivariate Adaptive Regression Splines (MARS) method of Friedman [1991] has also
been tested. This is a fairly well known method for non-linear regression for high dimensional
data from the statistics community. A detailed description of MARS will not be given here,
see [Friedman 1991]. The following is a simplistic account of MARS which gives a flavor of
the method. The input space is carved up into several (overlapping) regions in which splines
are fit. The fit is built using first a constructive phase, which introduces input regions and
splines, followed by a pruning phase. The final model has the form of a sum of products of
univariate splines; it is a continuous function (with continuous derivatives) and is additive

in the sets of variables allowed to interact.

Friedman has supplied his FORTRAN implementation of MARS (version 3.6). Two ver-
sions of the method have been tested. The original implementation is given the DELVE
name mars3.6-1. Since MARS is not very computationally demanding, it can be used in
conjunction with the Bagging procedure of Breiman [1994]. Using this method, one trains
MARS on a number of bootstrap samples of the training set and averages the resulting pre-
dictions. The bootstrap samples are generated by sampling the original training set with
replacement; samples of the same size as the original training set are used. Only one set
of predictions is generated regardless of the loss function — the same predictions are used
for the absolute error loss function and the squared error loss function. The negative log
density loss function is not applicable to the current version of MARS. The bagged version
of MARS is referred to as mars3.6-bag-1.

The following parameter settings have been used for MARS: 50 bootstrap repetitions were
used in the bagging procedure, the maximum number of basis functions was 15, the maxi-
mum number of variables allowed to interact was 8. The computational cost of applying this
method is fairly modest. Using a training set with 32 inputs and 1024 training cases, the
50 bootstrap replications take a total of 5 minutes on a 200MHz R4400/R4010 processor.

3.6 Neural networks trained with early stopping: mlp-ese-1

In this method, the predictions are the average of the outputs of between 3 and 50 multi-layer
perceptron neural networks each trained on 2/3 of the training data for a time determined by

validation on the remaining 1/3. All the networks have identical architectures with a single

40 Learning Methods

hidden layer of hyperbolic tangent units. Early stopping is a technique for avoiding over-
fitting in models that use iterative learning procedures. One uses a model that is expected
to have too large capacity and through early stopping one ensures that the model does
not over-fit. Consequently this approach should be helpful in overcoming the bias/variance
dilemma of frequentist methods [Geman et al. 1992]. Since early stopping will help to avoid
overfitting, we do not necessarily need an accurate estimate of the required model capacity,

but can use a network with a large number of hidden units.

A fraction of the training cases are held out for validation, and performance on this set is
monitored while the iterative learning procedure is applied. Typically, the validation error
will initially decrease as the model fits the data better and better, but later on, when the
model begins to over-fit, the validation error starts rising. The idea is to stop learning as
soon as this minimum in validation error is achieved. For neural networks, one of the great
advantages of early stopping is that it simplifies the otherwise difficult question of how long

to train the model.

A number of details have to be specified to make the method practically applicable. This
section contains a discussion of the issues involved and the decisions that I have made for
how to implement the method. I should stress that I am not claiming my choices to be
optimal in any sense, rather I have tried to define an automatic method which cannot in

any obvious (and well documented) way be improved upon.

I use a multi-layer perceptron neural network with a single hidden layer of hyperbolic tangent
units and a linear output unit. All units have biases. The network is fully connected
(including direct connections from inputs to outputs). A network with I inputs and H

hidden units implements the function

H

I I
f(z) = Z gn(z)vp, + Z xiw; + by gn(z) = tanh (Z Tiwin + ap), (3.12)
h=1 i=1 i=1
where v, are the hidden-output weights, by the output-bias, w; the direct input-output
weights, aj, the hidden-biases, and u;;, the input-hidden weights.

The number of hidden units is chosen to be the smallest such that the number of weights
is at least as large as the total number of training cases (after removal of the validation
cases). There is experimental evidence that the number of hidden units is not important as
long as it is large enough [Tetko et al. 1995]. We need to decide how large a fraction of the
training cases to use for validation. There are two obvious conflicting interests; we want a

large validation set to achieve a good estimate of performance and we want a large training

3.6 Neural networks trained with early stopping: mlp-ese-1 41

set to be able to train a complex model, namely as complex a model as could be supported
by the entire training data set. For non-linear models trained with finite amounts of data,
there seem to be no helpful theoretical results about this trade-off. I chose to use one third

of the training cases (rounded down if necessary) for validation and the rest for training.

Another question is the exact criterion for when the training should stop, since we do not
want to stop merely when small fluctuations in the validation error occur. A number of
more or less complicated stopping criteria have been proposed in the literature, but none
has convincingly been shown to outperform others. Here I use the simple scheme of training
until the iteration with smallest validation error lies 33% backwards in the run. In this way
I will have trained for 50% more epochs than “necessary” and can thus be fairly confident
that I have found a good minimum. I will do a validation after every line-search in the
training run (training with conjugate gradients). Since the validation set is only half the
size of the training set and validation only requires a forward pass, validation will typically
slow down training by about 20% (since typically the line search involved in each iteration
requires on average about 1.3 forward and backward passes), which is not alarming. More
compute efficient strategies could be employed by validating only at longer intervals, at the
risk of finding worse stopping times. If a simpler method of steepest descent with a fixed
step-size was used as an optimization technique, it would probably be sufficient to validate
at longer intervals, but the conjugate gradient technique I use involves line-searches and

can potentially take very large steps.

The idea of including the validation data in the training set and continuing training is
appealing, since it is expected that better performance can be achieved with larger training
sets. However, the problem of when to stop this additional training presents itself. One
suggestion could be to continue training on the combined set until the same training error
per case as was found by early stopping is achieved. From a theoretical point of view,
this idea seems reasonable in an average case analysis, since it is expected that validation
cases will have a slightly larger error initially than the training cases. However, there are
practical problems; what if the validation error is already lower (per case) than the training
error? And what if it is impossible to achieve the same training error using all the training
data? Even if scenarios as bad as these do not occur frequently, it is still possible that the

generalisation performance will often be decreased by using this procedure.

Instead of including all the training data and retraining, I will effectively use all the data
by training an ensemble of networks, each of which is trained using a different validation
set (chosen at random). This is a convenient way of combining the benefits of averaging

over ensembles with the ability to use all cases for training. When using different validation

42 Learning Methods

sets for each net, one cannot choose between networks and only include the ones with
best validation error, since the variation in validation error might be due to the differing
validation sets. Consequently I will include all trained nets in the final ensemble. A more
complicated hybrid scheme with a few networks trained for each validation set could be

contemplated, but for simplicity this will not be pursued further.

Additionally, we must take care of the cases where early stopping seems to stop too early or
too late. In the initial phases of training it is conceivable that the validation error fluctuates
quite wildly and this may cause the stopping criteria to be fulfilled (since the extra 50%
epochs may be very few and thus not be a reliable indicator of local minima). To rule out
this scenario, I require that each training run uses at least 2% of the total available training
time and that at least 250 iterations have been done (unless the minimization algorithm
converges). This will limit the number of possible members of the final ensemble to 50,
which is probably adequate for getting most of the benefit from averaging. On the other
hand, it may be that the validation error keeps decreasing and the stopping criterion is
never satisfied. Recall that the expected behaviour of the validation error is that it should
increase when over-fitting sets in, but there is no guarantee that this will happen in any
particular run. On the other hand, it may be that it simply takes a large number of epochs
to train the network. To resolve this dilemma, I will terminate a training if it uses more
than 33% of the total computational resources available, such that the final ensemble will
contain at least 3 networks. Technically, some of the above criteria can be conflicting; in the
actual implementation the conditions for deciding to stop the training of a particular net in
order of precedence are: if the network has converged; OR if more than 33% of the allowed
cpu time has been used on training this net; OR if more than 250 iterations of training has
been completed AND the minimum validation error was achieved at least 33% backwards

in the run AND we’ve used at least 2% of the total available cpu time on this net.

This method can now be run automatically without any further specifications, except that
a limit on the allowed amount of cpu time has to be specified. As a default I have chosen
to let the allowed cpu time scale linearly with the number of training cases. The default
allows 1.875 seconds per training case; this means that a net with 1024 training cases will

be allowed to train for 32 minutes.

3.7 Bayesian neural network using Monte Carlo: mlp-mc-1 43

3.7 Bayesian neural network using Monte Carlo: mlp-mc-1

A Bayesian implementation of learning in neural networks using Monte Carlo sampling has
been developed by Neal [1996]. This computation intensive method has shown encouraging

performance in [Neal 1996] and in a study using several datasets in [Rasmussen 1996].

For a full description of the method the reader is referred to [Neal 1996]. Here a brief
description of the algorithm will be given, along with the heuristics employed. A feed
forward multi-layer perceptron neural network with a single hidden layer of hyperbolic
tangent units is used; the network is fully connected, including direct connections from the
input to the output layer. The output units are linear. All units have biases. The network is
identical to the one used by the mlp-ese-1 method, eq. (3.12). All the network parameters
are given prior distributions specified in terms of hyperparameters. Predictions are made

using Monte Carlo samples of the posterior distribution of weights.

The network weights, w, together with the hyperparameters are collectively termed 6. The

posterior distribution of 6 is given by Bayes’ rule
p(0D) x p(@)p(tM, ...tV M) g, (3.13)

where p(6) is the prior and p(t™M, ..., t™[zM . 2) is the likelihood. We assume that
the noise is independent Gaussian with variance o2. We don’t know the magnitude of the
noise, so we will attempt to infer it from the data. We put a Gamma prior on the inverse

variance 7 = o2, known as the precision. The gamma density is given by

p(7) ~ Gamma(p, o) o< 72 L exp(—Ta/2p), (3.14)

where p is the mean and « is known as the shape parameter. We use . = 400 (corresponding
to 0 = 0.05) and o = 0.5, which is intended as a vague prior, allowing noise variances down

to 107* and up past unity. The density for the resulting prior is depicted in fig. 3.1.

The network weights are assigned to groups according to the identity of the units that they
connect. There are 5 groups of weights: output-biases b,, hidden-biases by, input-hidden
weights wy,, hidden-output weights w, and direct input-output weights wy. The priors
for the network weights are different for each group of weights. They are given in terms
of hierarchically specified distributions in which higher level hyperparameters are shared

between all the weights in the group, thereby introducing dependencies between weights.

The output-biases are given zero-mean Gaussian priors b, ~ N(0,02) with a standard

44 Learning Methods

o op(o)

o L L L
107 10" 10° 3

standard deviation of noise, o

Figure 3.1: Non-normalised prior on the noise level o. The function op(o) has been plotted against
o on a log scale to allow the usual interpretation of probabilities as being proportional to areas under
the curve.

deviation of o = 1. Since the targets in the training set will have been normalised by DELVE

to have roughly zero mean and unit variance, this prior should accommodate typical values.

The group of hidden-unit biases is given a hierarchical prior consisting of two layers:
b, ~ N(0,0?); the distribution of o is specified in terms of a precision 7 = ¢~2 and
given a Gamma form as eq. (3.14) with parameters: p = 100 and o = 0.5. I have not
attempted to plot the resulting prior on the weights (obtained by integrating out 7) since
the dependencies between weights through the common value of 7 makes it difficult to give

a faithful representation of the distribution.

The hidden-output weights are given a similar two layer prior, with parameters a = 0.5
and p = 100H !, where H is the number of hidden units. This prior is scaled according
to the number of hidden units with the variance for the weights inversely proportional
to the number of hidden units. The scaling accomplishes an invariance of the prior on
the magnitude of the output signal with respect to the number of hidden units. Such a
decoupling of signal magnitude and model complexity is useful in setting priors and when

considering networks with numbers of hidden units tending to infinity (see section 4.1).

The input-to-hidden weights are given a three layer prior: again each weight is given a
zero-mean Gaussian prior w ~ AN(0,02); the corresponding precision for the weights out
of input unit 4 is given a Gamma prior with a mean y and a shape parameter ay = 1:

7; ~ Gamma(u, o). The mean p is determined on the top level by a Gamma distribution

3.7 Bayesian neural network using Monte Carlo: mlp-mc-1 45

with mean po = 25712, where I is the number of inputs, and shape parameter oy = 0.5 :
wi ~ Gamma(2512, o). The prior variance for the weights scales proportional to I~2. This
is done in accordance with the (subjective) expectation, that the more inputs there are,
the more unlikely it is for any single one of them to be very important for the predictions.
Under the scaled prior, a constant number of inputs will be “important” (i.e., have a large
value of 0;) as the number of inputs increase. The direct input-to-output connections are

also given this prior.

The above-mentioned three layer prior incorporates the idea of Automatic Relevance De-
termination (ARD), due to MacKay and Neal, and discussed in [Neal 1996]. The hyperpa-
rameters, 7;, associated with individual inputs can adapt according to the relevance of the
input; for an unimportant input, 7; can grow very large (governed by the top level prior),

thus forcing o; and the associated weights to vanish.

Given the likelihood and the prior we can compute the posterior distribution for the network
weights. In order to make predictions, we integrate over the posterior. The predictive

n+1)

distribution for the target t(*1) corresponding to a novel input is given by

T
1
p(t(nJrl)‘x(nJrl),D) — /p(t(”“)‘:c(”“),H)p(HID)dH ~ = ;p(t(nﬂ){x(nﬂ)’g(ﬂ), (3.15)

where 0() are samples drawn from the posterior distribution. For neural network models
this integral cannot be handled analytically. Instead, we employ the Hybrid Monte Carlo
algorithm [Duane et al. 1987] to obtain samples from the posterior with which we can
approximate the predictive distribution. This method combines the Metropolis algorithm
with dynamical simulation which helps to avoid the random walk behavior of simple forms
of Metropolis; this is essential if we wish to explore weight space efficiently. The hyperpa-

rameters are updated using Gibbs sampling.

Sampling from the posterior weight distribution is performed by iteratively updating the
values of the network weights and hyperparameters. Each iteration involves two compo-
nents: weight updates and hyperparameter updates. A cursory description of these steps

follows.

Weight updates are done using the Hybrid Monte Carlo algorithm. This algorithm is also
used for the gp-mc-1 method in section 4.6, where a more extensive explanation is given.
A fictitious dynamical system is generated by interpreting weights as positions, and aug-
menting the weights w with momentum variables p. The purpose of the dynamical system

is to give the weights “inertia” so that random walk behaviour can be avoided during ex-

46 Learning Methods

ploration of weight space. The total energy, H, of the system is the sum of the kinetic
energy, KC, (a function of the momenta) and the potential energy, £. The potential energy
is defined such that p(w) o exp(—&). We sample from the joint distribution for w and p
given by p(w,p) x exp(—& — K), under which the marginal distribution for w is given by
the posterior. A sample of weights from the posterior can therefore be obtained by simply

ignoring the momenta.

Sampling from the joint distribution is achieved by two steps: 1) finding new points in phase
space with near-identical energies H by simulating the dynamical system using a discretised
approximation to Hamiltonian dynamics, and 2) changing the energy H by doing Gibbs

sampling for the momentum variables.

Hamilton’s first order differential equations for H are approximated by a series of discrete
first order steps (specifically by the leapfrog method). The first derivatives of the network
error function enter through the derivative of the potential energy, and are computed us-
ing back-propagation. In the original version of the hybrid Monte Carlo method, the final
position is then accepted or rejected depending on the final energy H* (which is not neces-
sarily equal to the initial energy H because of the discretisation). Here we use a modified
version that uses an average (in the probability domain) over a window of states instead
[Neal 1994]. The step size of the discrete dynamics should be as large as possible while
keeping the rejection rate low. The step sizes are set individually using several heuristic
approximations, and scaled by an overall parameter €. We use L = 100 iterations, a window

size of 10 and a step size of ¢ = 0.15 for all simulations.

The momentum variables are updated using a modified version of Gibbs sampling, allowing
the energy H to change. A “persistence” of 0.95 is used; the new value of the momentum is a
weighted sum of the previous value (weight 0.95) and the value obtained by Gibbs sampling
(weight (1 —0.95%)1/2) [Horowitz 1991]. With this form of persistence, the momenta change
approximately 20 times more slowly, thus increasing the “inertia” of the weights, so as to
further help in avoiding random walks. Larger values of the persistence will further increase
the weight inertia, but reduce the rate of exploration of H. The advantage of increasing
the weight inertia in this way rather than by increasing L is that the hyperparameters are

updated at shorter intervals, allowing them to adapt to the rapidly changing weights.

The hyperparameters are updated using Gibbs sampling. The conditional distributions for
the hyperparameters given the weights are of the Gamma form, for which efficient generators
exist, except for the top-level hyperparameter in the case of the 3 layer priors used for the

weights from the inputs; in this case the conditional distribution is more complicated and

3.7 Bayesian neural network using Monte Carlo: mlp-mc-1 47

the method of Adaptive Rejection Sampling [Gilks and Wild 1992] is employed.

The network training consists of two levels of initialisation before sampling for network
weights which are used for prediction. At the first level of initialisation the hyperparame-
ters (standard deviations for the Gaussians) are kept constant at 0.5 for hyperparameters
controlling output weights and to 0.1 for all other hyperparameters, while the weights them-
selves are set to zero. Then the weights are allowed to grow during 1000 leapfrog iterations
(with the hyperparameters remaining fixed). Neglecting this phase can cause the network
to get caught for a long time in a state where weights and hyperparameters are both very

small.

The Markov chain described above is then invoked and run for as long as desired, eventu-
ally producing networks from the posterior distribution. The initial 1/3 of these nets are
discarded, since the algorithm may need time to reach regions of high posterior probabil-
ity. Networks sampled during the remainder of the run are saved for making predictions
according to eq. (3.15). I use 100 samples from the posterior to approximate the integral.
Probably the predictions would not get vastly different if more samples were used in the
approximation and this has been avoided because the disk requirements for storing these

network samples become prohibitive.

Since the output unit is linear, the final prediction can be seen as coming from a huge
(fully connected) ensemble net with appropriately scaled output weights. The size of the
individual nets is given by the rule that we want at least as many network parameters as we
have training cases (with a lower limit of 6 hidden units and an upper limit of 25). We hope
thereby to be well out of the under-fitting region. Using even larger nets would probably
not gain us much (in the face of the limited training data) and is avoided for computational

reasons.

All runs used the parameter values given above. The only check that is necessary is that
the rejection rate stays low, say below 5%; if not, the step size should be lowered. In all
runs reported here, ¢ = 0.15 was adequate. The parameters concerning the Monte Carlo
method and the network priors were all selected based on intuition and on experience with
toy problems. Thus no parameters need to be set by the user, save the specification of the

allowable cpu time.

48

Learning Methods

Chapter 4

Regression with Gaussian

Processes

This chapter presents a new method for regression which was inspired by Neal’s work
[Neal 1996] on priors for infinite networks and pursued in [Williams 1996; Williams and
Rasmussen 1996]. Gaussian Process (GP) models are equivalent to a Bayesian treatment of
a certain class of multi-layer perceptron networks in the limit of infinitely large networks.
In the Gaussian process model, these large numbers of network weights are not represented
explicitly and the difficult task of setting priors on network weights is replaced by a simpler
task of setting priors for the GP’s.

Close relatives to the GP model presented here have appeared in various guises in the liter-
ature. An essentially similar approach to the present was taken in [O’Hagan 1978; O’Hagan
1994], but surprisingly it has not spurred much general interest. This thesis extends the
work of O’Hagan by adapting model parameters using their associated likelihood. Gaussian
Process models are being used for analysis of computer experiements [Koehler and Owen
1996], presumably because they are applicable to modelling noise-free data. This seems to
be an undue restriction however, and it is shown in the following chapters that GP models

are also very attractive for modelling noisy data.

The approach of variational analysis to regularised function approximation has been taken
in [Poggio and Girosi 1990; Girosi et al. 1995] and the related spline models have been
studied by Wahba [1990]. In these approaches, cross validation or generalised cross vali-

dation (GCV) are used to estimate regularisation parameters. These approaches may not

49

50 Regression with Gaussian Processes

be viable with large numbers of regularisation constants, as required for Automatic Rel-
evance Determination (ARD) based regularisation schemes. The GP models also have a

close correspondence with variable metric kernel methods [Lowe 1995].

In the present exposition, the two versions of GP models are formulated in terms of a prob-
abilistic model in a Bayesian setting. In the simplest approach, the parameters controlling
the model are optimized in a maximum aposteriori (MAP) approach. In the second version,

the Bayesian formalism is taken further, to allow integration over parameters.

4.1 Neighbors, large neural nets and covariance functions

The methods relying on Gaussian processes described in this chapter differ in several re-
spects from other methods commonly used for data modeling and consequently it may not
be easy to get an intuitive feel for how the model works. In order to help readers who are
familiar with more conventional methods, I will start the discussion of the GP model via
an analogy to kernel smoother models. This should help to make the subsequent formal
account more digestible. Next, a simple calculation will show how neural networks with

Gaussian priors on their weights imply Gaussian process priors over functions.

A kernel smoother consists of a kernel function and a local model. The kernel function
defines a neighborhood by giving weights to training examples and the local model is fit to
these weighted examples for predictions. The Gaussian and tri-cubic functions are common
choices of kernel functions. The kernel function is a function of the model inputs and returns
a weighting for each training example to be used when fitting the local model. Often kernel
functions which depend only on (Euclidean) distance are used, e.g., the Gaussian kernel
K o exp(—d?/20?), where d is the distance between the kernel center and the input of a
training case. The properties of the smoother are controlled by the width of the kernel, often
expressed in terms of numbers of neighbors and selected by cross-validation. More advanced
methods with more flexible kernels, sometimes referred to as wvariable metric models, have
also been explored [Lowe 1995]. Often computational arguments are used to favour kernels
which put a non-zero weight on only a small fraction of the training cases. When predicting
the output for a novel test input, the kernel is centered on the test input and weightings
for the training cases are determined. A common choice of local model is the linear model
fit by (weighted) least squares [Cleveland 1979].

In the GP methods, the role of the kernel function and local model are both integrated in

4.1 Neighbors, large neural nets and covariance functions 51

the covariance function. Like the kernel function, the covariance function is a function of the
model inputs, but rather than returning a weighting for a training case given a test input,
it returns the covariance between the outputs corresponding to two inputs. As with the
kernel method, the Gaussian, C(z,2') o exp(—d?/20%) where d is the Euclidean distance
between x and 2/, would be a reasonable choice for a covariance function (note however,
that the the name “Gaussian process” does not refer to the form of the covariance function).
Assuming that the mean output is zero, the covariance between the outputs corresponding
to inputs x and 2’ is defined as E[y(z)y(«’)]. Thus, inputs that are judged to be close by
the covariance function will have outputs that are highly correlated and thus are likely to
be quite similar. In the Gaussian process model we assume that the outputs of any finite
set of cases have a joint multivariate Gaussian distribution with covariances given by the
covariance function. Predictions will be made by considering the covariances between the
test case and all the training cases, which will enable us to compute the most likely output
for the test case. In fact we can obtain the entire predictive distribution for the test output,

which given the assumptions is also Gaussian.

The idea of using Gaussian processes directly was inspired by investigations by Neal [1996]
into priors over weights for neural networks. Consider a neural network with I inputs, a
single output unit and a single layer of H tanh hidden units. The hidden and output units

have biases and the network is fully connected between consecutive layers

H I
f(z) = Z gn(x)vp, + bo gn(z) = tanh (Z Tilih + ap). (4.1)

h=1 i=1
The weights are all given zero mean Gaussian priors; the standard deviations for the input-
to-hidden weights, u;;, and hidden-biases, ay, are o, and o, respectively, for the hidden-
to-output weights, vy, and the output-bias, b, the standard deviations are o, and 0. This

sort of prior was suggested by MacKay [1992b].

Consider the distribution of a network output under the prior distribution of weights, given a
specific input z(*). The contribution of each hidden unit has a mean of zero: E[vj,gp,(z")] =
E[vp) Elgn(z¥)] = 0, since v, and gj, () are independent. The variance of the contribution
from each hidden unit is finite E[(vpgs(2%))?] = 02 E[(hy(x™))?], since hy(z™) is bounded.
Setting V(2()) = E[(hy(2))?], we can conclude by the Central Limit Theorem that as
the number of hidden units H tends to infinity, the prior distribution of f (Cﬂ(i)) converges
to a zero mean Gaussian with variance o7 + H o2V (™). By selecting a value for o, which
scales inversely with H we obtain a well defined prior in the limit of infinite numbers of
hidden units.

52 Regression with Gaussian Processes

Following a similar argument, the joint distribution for several inputs converges in the limit

of infinite H to a multivariate Gaussian with means of zero and covariance of

H H
Elf @)1 @] = B[(3 on(a®)en +bo) (3 gn()en + bo)]
h=1 h=1

(4.2)
= of + Ho2E[g (™) gy, (z))),

which defines a Gaussian process; the crucial property being that the joint distribution of
any finite set of function values is Gaussian. I will not attempt to further characterize the

covariance functions implied by weight priors for neural networks, see [Neal 1996].

The preceding paragraphs are meant to motivate investigation of models relying on Gaus-
sian processes. The correspondences to these other models will not play a crucial role in
the following — rather, it will be shown how to model data purely in terms of Gaussian
processes. This will require that the reader becomes accustomed to thinking about distribu-
tions over functions in terms of their covariances; this will hopefully be aided by illustrations

of functions drawn from various Gaussian process priors.

4.2 Predicting with a Gaussian Process

Formally, a Gaussian process is a collection of random variables {Y,} indexed by a set
x € X, where any finite subset of Y’s has a joint multivariate Gaussian distribution. A
typical application of Gaussian processes is in the field of signal analysis, where the random
variables are indexed by time. In contrast, in our case we index the random variables by
X, the input space of dimensionality m. A Gaussian process is fully specified by its mean
and its covariance function, C(z, z’). In the following I will consider only GP’s with a mean
of zero. The random variable Y, will model the output of the GP model when the input
is #. The covariance is a function of the inputs C(z,) = E[(Y; — p(z)) (Yo — ()],
where p = 0. Here, C(z,2’) is called the covariance function and the matrix of covariances
between pairs of examples is referred to as the covariance matriz. In section 4.3 it will
be shown how to parameterise the covariance function; for now, we consider the form of
C(z,2') as given. For presentational convenience, in the following I will index training and

test cases by superscripts in brackets, such that y is the output associated with input z®.

Our goal is, as usual, to compute the distribution p(y™+t1|D, (1) of scalar output y+1

(n+1)

given a test input x and a set of n training points D = {(z®,t®)}i = 1...n}. Note

that we distinguish between the model outputs ¥, and the training set targets t(9; they

4.2 Predicting with a Gaussian Process 53

are both random variables but differ in that the targets are noise corrupted versions of
the outputs. We introduce n + 1 stochastic variables YV, ... y(®) y(+l) modeling the
function at the corresponding inputs z™), ..., ("1, Note that this formulation is different
from the common frequentist model where a single random variable is used to model the
conditional distribution p(t|z) of the targets given the inputs. An example will help to
clarify the difference: consider the linear model with coefficients given by the vector 3; the

linear model and noise contributions are
_ QT _
y =0z, t=y+e, (4.3)

where ¢ is the noise. In the frequentist framework the use of a single random variable ¢ is
possible because the model output y is a deterministic function of the inputs x, once the
parameters (3 have been estimated (using for example maximum likelihood). In a Bayesian
approach, on the contrary, the model parameters are treated as random variables and
the model outputs are obtained through integration over model parameters, introducing
stochasticity and dependencies between outputs, thus requiring separate random variables.
In fact, in the GP model the only quantities being modeled are the covariances between

outputs.

We proceed by assigning a multivariate Gaussian prior distribution to these variables

p(y(l), Ly gyt ‘x(l)’ . ’x(nﬂ)) o
1 where X = C(x(p),x(q)). (4.4)
Ty—1
exp -5y X7,

Note that this prior specifies the joint distribution of the function values (not the noisy
targets) given the inputs. It is a prior in so far as the targets for the training cases
have not yet been considered. A reasonable prior would specify that we expect a larger
covariance between function values corresponding to nearby inputs than for function values
corresponding to inputs that are further apart. Covariance functions are discussed in the

next section.

It will often be convenient to partition the prior covariance matrix in the following manner

E:[K a], (4.5)

al b

where K contains the covariances between pairs of training cases and a is a vector of
covariances between the test case and the training cases and b is the prior covariance between

the test case and itself.

54 Regression with Gaussian Processes

The likelihood relates the underlying function which is modeled by the y variables to the
observed noisy targets t(), i = 1...n. The noise is assumed to be independent Gaussian

with some (unknown) variance 12

p(t(l), e ,t(")‘y(l), e ,y("),y("Jrl)) x 27 0

where Q7! =
[o’ 0

1 N] . (4.6)
exp—o(y —t) Q7 (y — t),

Here I is an n x n identity matrix. To gain some notational convenience in the following,
I have written this joint distribution conditioning also on y("t1) although the distribution
does not depend on this variable. Formally the vector t in this equation has n+1 elements,
whereas there are only n observed targets — the vector is simply augmented by an element

(its value is inconsequential).

Using Bayes’ rule, we combine the prior and the likelihood to obtain the posterior distribu-
tion
p(y™, ...y D, (D)
o p(y(l), Lyt ‘x(l), .. ,x("Jrl))p(t(l), ot |y(1), .. ,y(”H)) (4.7)
= p(t(l), ot () () ‘x(l), . x("+1))

The constant of proportionality in this equation is p(D), a normalisation constant which is
independent of the y(? variables. Note, that in general it is not necessary to compute the
normalisation terms in any of the previous equations. The posterior is

1 1
p(y?, . y™, y D 2)) o exp <— Y YTy —Sy-0Te(y - t))

= exp <— %(y —ym) [ET Q7 (y - Ym)>’

where y,, is a vector of posterior means. The posterior distribution is again Gaussian

(4.8)

with an inverse covariance given by the sum of the inverse covariances of the prior and the
likelihood. The posterior mean is where the product takes on its maximum value, and can
consequently be found by differentiation
0 _

— logp(y(l), . ,y("),y("ﬂ)‘D,x("H)) =0 = y,= [2_1 + Q_l] 01t (4.9)

8y(1)
However, we are mostly interested in the distribution for "+ and do not necessarily
wish to attempt to evaluate this expression. Notice that the posterior means y,, do not
necessarily coincide with the corresponding target values. To compute the distribution for
y™*t1) we need to marginalise over y™), ... y™ from eq. (4.8) which yields a Gaussian

distribution with mean and variance
T -1
Pyt =a Q@ °t

(n+1) (n+1)y 2
p(y ‘D7 x) N(lu’y("Jfl)) O-y("-H))? 0_2(n+1) —bh— aTQ—la
Y

4.2 Predicting with a Gaussian Process 55

Y+ D) y(n+D)

+@) p(y“**”)

Figure 4.1: The left panel shows the one standard deviation contour of the joint Gaussian distri-
bution of a single training case t(!) and the test point y("*1) in the situation where we have a single
training point, n = 1. When the target value for the training point is observed, we condition on
this value indicated by the dotted vertical line. This gives rise the the predictive distribution on the
right. The vertical axes of the two plots are to scale.

where Q = K + r2I. This completes the analysis of the model, since we now have access
to the desired predictive distribution. Depending on the loss function of a particular ap-
plication, we can make optimal predictions by making point predictions that minimize the
expected loss. Notice, that in order to use this result we must invert the ¢ matrix which

has size n x n.

A slightly different view of the same formalism as above, may lead to a better intuitive
understanding of what is going on. Starting from the middle line of eq. (4.7) we can

directly marginalise over the y(, i = 1...n, which we are not interested in and obtain

/.../p(t@),._.,t<n>,y<1>,...,y<n+1>\x<1>,._.,x<n+1>)dy<1>..-dy<"> _

(4.11)
1
p(t(l),)yt ‘x(l), . ,x("+1)) X exp —§t5(2_1 + 0,

where t, indicates the vector of targets augmented by y™*t1D_ We can then condition on the
observed values of the targets in the training set, and using the standard rule for conditioning

Gaussians we recover the result from eq. (4.10). This conditioning is illustrated in fig. 4.1.

56 Regression with Gaussian Processes

4.3 Parameterising the covariance function

In the previous section we have seen how to derive the predictive distribution for test cases
when the covariance function was given. This section discusses various choices for covariance

functions.

There are many possible choices of prior covariance functions. Formally, we are required to
specify a function which will generate a non-negative definite covariance matrix for any set
of input points. From a modeling point of view, we wish to specify prior covariances which

contain our prior beliefs about the structure of the function we are modeling.

As is often the case in Bayesian modeling, it turns out that it is convenient to specify priors
in terms of hyperparameters, whose values (or distributions) are not specified a priori, but
will be adapted as the model is fit to the training data. An example will clarify this idea;
the covariance function used extensively in this thesis sets the covariance between the points

z® and 29, p.g=1...n to be

_ 0 (@ LN (o) (@2
C(x(p),m(q)) =ap+ a1§ "2 ¥ + vy exp <— 3 lei (27 — ;") >, (4.12)
where 6 = log(vg, 72, w1, ..., Wn,ap,a1) is a vector of parameters playing the role of hy-

perparameters (the log is applied elementwise). Note that the noise level 72 is included in
the hyperparameters although it doesn’t appear in the covariance function, since it will be

treated in the same way as the hyperparameters in the following analysis.

The covariance is conceptually made up of two components. The first part involving the ag
and a; parameters controls the scale of the bias and linear contributions to the covariance.

To understand the form of these contributions consider a linear function

m
y(@) = a0+ Y ailw; —), (4.13)
i=1
where the coefficients «;, i = 0,...,m are considered random variables and Z; is the mean

of x;. Giving the « variables independent zero-mean distributions with finite variance we

can compute the covariances

Oe,o!) = E[y(e)y(@)] = E {a% £ 0 - m)(-)
. =1 (4.14)
=ap+ a1 Z(&L’Z — @)(x; — i’i),
=1

4.3 Parameterising the covariance function 57

where qg is the variance of ag and we have assumed that all the remaining coefficients have
a common variance aj. The pre-processing of the data used for tests normalises the inputs
to have a mean (or median) of zero, so we can (approximately) drop the Z; term and recover
the form for linear contribution to the covariance in eq. (4.12). One may worry that the
use of a common variance a; for all inputs may be dimensionally inconsistent if inputs are
measured in different units. Naturally, we may group the variables of common variance
differently; in particular, one choice would be to allow a separate hyperparameter for each

input dimension.

The contributions from the linear terms in the covariance functions may become large for
inputs which are quite distant from the bulk of the training examples. This is probably a
useful mechanism for extrapolating to data points which are at the boundary of the training
examples; without this term the covariance from the local interactions alone would become

close to zero, and the prediction at large distances would be close to zero.

The last part of the covariance function in eq. (4.12) expresses the idea that cases with
nearby inputs should have highly correlated outputs. The w; parameters are multiplied by
the coordinate-wise distances in input space and thus allow for different distance measures
for each input dimension. For irrelevant inputs, the corresponding w; should be small in
order for the model to ignore these inputs. The “characteristic lengths” for input directions
—-1/2

are given by w;, When a w; parameter gets large, the resulting function will have
a short characteristic length and the function will vary rapidly along the corresponding
axis, indicating that this input is of high “importance”. This idea is closely related the
Automatic Relevance Determination (ARD) idea of MacKay and Neal. The associated vy
variable gives the overall scale of the local correlations. In the following discussion, this

term will be referred to as the ARD-term.

The covariance in eq. (4.12) will be used extensively for the experiments in this thesis.
Many other choices may also be reasonable. Some other choices will be discussed briefly at
the end of this chapter. As an example, two functions drawn at random from the ARD-
part of the prior covariance function are plotted in fig. 4.2. Each of the two 50 x 50 mesh
plots represent a single sample drawn at random from the 2500 dimensional joint Gaussian
distribution. These random samples were obtained by multiplying a vector of zero-mean
unit-variance Gaussian random numbers by the Cholesky factor of the covariance matrix,

requiring 48Mb of memory and 8 minutes of cpu time.

58 Regression with Gaussian Processes

25 \\\‘“{\
't“ s

‘0“ “ IQ “‘\\ \\““‘\\‘ \
5 3\\“‘ c:.;o.«::m}\‘&‘k‘\\\““\\\\\\\\\\\

[I/’r ”lllln,' ," bl
i \\\\\\\\vfé’f’f’%’/’”” . 'IIIIIII

\\\\/’
\%\\\\\\ v

\'« 55
‘ ‘t I / “
4/’//""”’//,m 8

o"'
o

SO
S
NS
A

i

‘

‘{(":‘““‘/7/'//:& :II
_ \\\“0 7 ‘\ i
3 \\‘3'1, ulf ‘&\\\\\,\\\«"

.~ 7

\

2, -2 2

Figure 4.2: Functions drawn at random from ARD prior covariance functions. There are two input
dimensions z; and z3. Only the ARD-part of the covariance in eq. (4.12) was considered. In the left
plot, the ARD hyperparameters were w; = 10 and we = 0.5, corresponding to characteristic lengths
of 0.32 and 1.41 respectively. In the plot on the right, both ARD hyperparameters were set to 10.
As expected the functions generated from this prior are smooth. In both plots vy = 1.

4.4 Adapting the covariance function

So far, we have only considered the properties of the model for fixed values of the hyperpa-
rameters. In the following I will discuss how to adapt the hyperparameters in the light of

training data. The log likelihood of the hyperparameters at this higher level is given by

logp(D|6) = logp(t(l), AL ‘x(l), o a™, 6?)
1 1 (4.15)
==3 log det QQ — §tTQ_1t — glog 2.

It is possible to express analytically the partial derivatives of the log likelihood, which can
form the basis of an efficient learning scheme. These derivatives are

0 1 ~19Q 0Q
ne) (n)).,.(1) (n) - = tTo-! 1
20, logp(N A P A ,9) 2trace(Q 60) tQ ZQ t. (4.16)

In order to compute the parameters of the predictive distribution in eq. (4.10) it was neces-
sary to invert the matrix); we also need it for the partial derivatives of the likelihood. Since
the covariance matrix is guaranteed to be positive definite we can invert it using Cholesky
2n3 multiply and accumulate

operations. Cholesky decomposition also produces the determinant of the matrix which is

decomposition [Golub and van Loan 1989] which requires

needed to evaluate the likelihood. The remaining computations involved in evaluating the
likelihood and its partial derivatives (vector by matrix multiply and evaluation of the trace
of a product) are of order O(n?). Thus, the main computational obstacle is computation

of Q™! which is certainly feasible on workstation computers with n of several hundred. For

4.4 Adapting the covariance function 59

larger values of n the computations can be demanding; as an example, the inversion for
n = 1024 takes about 5 minutes of CPU time on our 200MHz R4400/R4010 processor.

Several learning schemes are possible given the availability of partial derivatives of the
likelihood. Maximum likelihood can be implemented by employing gradient descent. One
may also specify a prior on the hyperparameters, a hyperprior and compute the posterior for
the hyperparameters. Two possible implementations are covered in the following sections:
a conjugate gradient approach to maximum aposteriori (MAP) estimation and a Monte

Carlo method for integrating over hyperparameters. First I will discuss the hyperprior.

The same priors are used for the MAP method and the Monte Carlo approach. The prior
assumes that the training data has been normalised to roughly zero mean and unit variance.
The priors on the log of ag, a; and r? are all Gaussian with mean —3 and standard deviation
3, corresponding to fairly vague priors. The prior on log vg is Gaussian with mean —1 and
standard deviation 1. This prior seems reasonable, since vy gives the variance of the signal
predicted by the ARD-term of the covariance function; since the targets are assumed to
be normalized to roughly unit variance, we expect the hyperparameter (which is in the log
domain) to be in the vicinity of 0 for tasks with low noise and lower for tasks with very

high noise.

The priors for the ARD hyperparameters are more complicated. I wish to introduce a scaling
of this prior with the number of inputs m. If m is small e.g. 8, then it seems reasonable that
say 4 of these parameters are highly relevant; however if m is larger e.g. 32, then probably
somewhat less than 16 inputs are highly relevant. Consequently, we expect the prior on the
importance of the ARD hyperparameters to be lower with increasing numbers of inputs.
Following the derivations in [Neal 1996] we employ a gamma prior whose mean scales with

the number of inputs m; the inverse hyperparameters are given gamma priors

2.,)¢/2
p(w™) = %(wl)o‘/21 exp(—w ™ a/2u), with g = pom?. (4.17)
Here p~! is the mean of w™'. I chose o = 1 and pug = 1 from looking a plots of the

distributions, see fig 4.3. It may be difficult to decide how many inputs should be thought
relevant, so one might attempt to make g a top-level hyperparameter, and set some vague
prior on this. This has not been attempted in the current implementation. The resulting
prior for the 6 parameters, which are given by 6 = log(w) is

0 exp(—0)

p(0) = mt(2m) % exp (— 3 W) (4.18)

Naturally, this prior may not be appropriate for all tasks — indeed there may be some tasks

where a large number of inputs are all relevant. However, the prior is still vague enough

60 Regression with Gaussian Processes

m x p(6)

0 L L
-10 -5 0 5

ARD hyperparameter, 6 = log(w)

Figure 4.3: The scaling gamma prior used for the ARD hyperparameters. Here m X p(#) is plotted
against 0 = log(w) for m = 8 and m = 32 from eq. (4.18). Note, that the expected number of
hyperparameters corresponding to important inputs is the same in the two cases; for larger values
of m the mass of the prior moves toward lower values indicating that we expect a larger proportion
of the inputs to be less relevant.

that many hyperparameters may grow to large values if the likelihood strongly suggests this.
Another benefit of putting pressure on the hyperparameters to remain small is that this
may help the learning procedures in locating areas of high posterior probability. Consider
the situation early in learning before the hyperparameters have had time to adapt; the
hyperparameters will be more or less random and if any irrelevant ones take on large values
then the exponential of eq. (4.12) may take on very small values. This will tend to attenuate
the partial derivatives of the likelihood which in turn may make learning slow. Another
way of saying this is that the initial search for regions of high posterior probability may be

slow if the prior and the likelihood are very different.

4.5 Maximum aposteriori estimates

The maximum aposteriori (MAP) estimates are found using a conjugate gradient optimiza-
tion technique (discussed in detail in Appendix B) to locate a (local) maximum of the
posterior. This approach has the advantage that a reasonable approximation to a (local)
maximum can be found with relatively few function and gradient evaluations. Hence, this

would be the preferred approach when there is a large number of training cases, when in-

4.6 Hybrid Monte Carlo 61

tegration via Monte Carlo is computationally infeasible. When there is a large number of
training cases we would generally expect the posterior to be fairly narrow, such that the
predictions for a MAP method may not differ much from the results of integrating over

hyperparameters if it were feasible.

The risk using a conjugate gradient optimization technique is that one may get stuck in
bad local maxima. Since the algorithm is “greedy” it can get stuck in even very shallow
local maxima. It is difficult to say whether this is a big problem in the current context.
One could attempt to clarify this by trying multiple random restarts for the optimization,
but I have not pursued this. Rather, I just do a single run allowing about 150 function and
gradient evaluations, by which time the likelihood is changing very slowly in cases with, for

example, 36 hyperparameters.

It should be noted that the resulting MAP estimates for the hyperparameters may be very
useful for interpretation of the data. The linear and non-linear parts of the function are sep-
arated out in the different sets of hyperparameters (although small ARD hyperparameters
may also carry linear contributions) and the magnitude of the different ARD hyperparam-
eters may convey the relative importance of the input attributes through their relation to

the characteristic lengths.

The initialisation of the hyperparameters is fairly important, since it may be that very
inappropriate initial values will make the partial derivatives of the likelihood very small,
thus creating problems for the optimization algorithm. I found that it works well to set

w=1/m, vo = 1 and all of ag, a; and r? to exp(—2).

4.6 Hybrid Monte Carlo

According to Bayesian formalism we should multiply the prior p(6) by the likelihood p(D|6)
from eq. (4.15) and integrate over the resulting posterior. Unfortunately, the likelihood has
a complex form, so analytical integration is infeasible. Instead we approximate the integral

using a Markov chain to sample from the posterior

p(y(n-l-l)‘rD’x(n—i—l)) _ /p(y("+1)|D,x("+1),0)p(9!D)d0 (4.19)
1 T
> Zp(y(""'l) {D, () G(t)), (4.20)

t=1

62 Regression with Gaussian Processes

where () are samples from the posterior distribution for . Note that the terms in the
sum are Gaussian distributions which means that the approximate predictive distribution
is a mixture of Gaussians with identical mixing proportions. As the number of samples T
grows, the approximate predictive distribution will tend to the true predictive distribution.

Note, that the predictive distribution may have a complex form, e.g. multi-modal.

The Hybrid Monte Carlo (HMC) method [Duane et al. 1987] seems promising for this
application. When attempting to sample from complicated multidimensional distributions
it is often advantageous to use gradient information to seek regions of high probability
in cases where these gradients can be computed. One can then use a Markov chain that
takes a series of small steps while exploring the probability distribution (while ensuring
that regions are visited according to their probability). One of the problems with simple
implementations of this idea is that the distributions are explored using random walks,

which have poor exploratory properties.

The Hybrid Monte Carlo method avoids this random walk behaviour by creating a fictitious
dynamical system where 6 plays the role of position variables, which are augmented by a
set of momentum variables ¢. The combined system tends to avoid random walks since the
momentum will introduce “inertia” in the hyperparameters and tend to keep the system

moving in the same direction on successive steps.

Formally, the total energy H of the system is the sum of the kinetic energy K and the
potential energy £. There are a total of m + 4 hyperparameters, and the kinetic energy is
a function of the associated momenta IC(¢) = % ?:{4 @7/, where X is the particle mass.
The potential energy £ is defined in such a way that p(8|D) x exp(—E&). We sample from
the joint distribution for # and ¢ given by p(6, ¢|D) x exp(—E — K); the marginal of this
distribution for 6 is the required posterior. A sample of the hyperparameters from the
posterior can therefore be obtained by simply ignoring the momenta. Sampling from the
joint distribution is achieved in two steps: (i) finding new points in phase space with near
identical energies H by simulating the dynamical system using a discretised approximation
to Hamiltonian dynamics, and (ii) changing the energy H by doing Gibbs sampling for the

momentum variables.

I will use a variation of HMC due to Horowitz [1991]. In this approach, having defined the
parameters L, € and «, transitions of the Markov chain take place according to the following

scheme

1. Starting from the current state (6, ¢), perform L leapfrog steps with step size €, re-

4.6 Hybrid Monte Carlo 63

sulting in the state (6%, ¢*).

2. With probability min(1, exp[H (6, ¢) — H(0*, ¢*)]), accept the new state, (0,¢) =
(0%, ¢*); otherwise reject the new state, and retain the old state with negated mo-

menta7 (07¢) = (07 _(b)

3. Update the total energy of the system by perturbing the momenta according to ¢; :=
ag;+v;V/1 — o2 for all 4, where v; are drawn at random from a zero-mean unit-variance

Gaussian.

Hamilton’s differential equations govern the evolution of the dynamical system through

fictitious time 7

d9; _OH _ ¢ dgi OH _ 0&
dr 0d; D) dr 06; N 00;

In practice we cannot simulate these equations exactly, since the partial derivative of £ with

(4.21)

respect to 6 is a complicated function. The leapfrog iterations are used to approximate the

dynamics
Gilr+5) = i) — 552 (00)
0;(1+€) = 0;(1) +edi(T+ 5)/A (4.22)
Blr+e) = 6T+~ 5o (0 +)

The formal proof of the correctness of this approach to sampling from the posterior in
the context of neural networks can be found in [Neal 1996; Neal 1993]. In the current
implementation I use L = 1, a single leapfrog iteration to find proposal states. It is not
entirely clear whether longer trajectories with the standard algorithm would be better than

the use of “persistence”, see discussion in [Neal 1993].

The step sizes € are set to the same value for all hyperparameters. This may work fairly well,
since the hyperparameters are given in the log domain, such that the step sizes implicitly
scale with the magnitude of the underlying parameter. The step size is chosen to scale as

1/2

€ < n~ /% since the magnitude of the gradients at a “typical” point under the posterior

are expected to be scale roughly as n'/2

when the prior is vague. The particle mass A is
arbitrarily set to 1 and the constant of proportionality for the step sizes is chosen to give a

low rejection rate; I have found that e = 0.5n~Y/2 typically gives rejection rates of around

1%.

The momenta are updated with a “persistence”, a = 0.95. This will make the total energy

change approximately 20 times more slowly than without persistence. The advantage of

64 Regression with Gaussian Processes

persistence is that consecutive steps in hyperparameter space will tend to be in the same
direction (because of the momenta) thus avoiding random walks. This is particularly impor-
tant if the posterior distribution is highly correlated in which case exploration by random
walks can be extremely slow. Whether or not the posterior distributions for hyperparam-
eters in the current context are generally highly correlated is an open question. However,
it seems reasonable in such cases to introduce a litt