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Abstract

This thesis develops two Bayesian learning methods relying on Gaussian processes and a

rigorous statistical approach for evaluating such methods. In these experimental designs

the sources of uncertainty in the estimated generalisation performances due to both vari-

ation in training and test sets are accounted for. The framework allows for estimation of

generalisation performance as well as statistical tests of significance for pairwise compar-

isons. Two experimental designs are recommended and supported by the DELVE software

environment.

Two new non-parametric Bayesian learning methods relying on Gaussian process priors

over functions are developed. These priors are controlled by hyperparameters which set

the characteristic length scale for each input dimension. In the simplest method, these

parameters are fit from the data using optimization. In the second, fully Bayesian method,

a Markov chain Monte Carlo technique is used to integrate over the hyperparameters. One

advantage of these Gaussian process methods is that the priors and hyperparameters of the

trained models are easy to interpret.

The Gaussian process methods are benchmarked against several other methods, on regres-

sion tasks using both real data and data generated from realistic simulations. The ex-

periments show that small datasets are unsuitable for benchmarking purposes because the

uncertainties in performance measurements are large. A second set of experiments provide

strong evidence that the bagging procedure is advantageous for the Multivariate Adaptive

Regression Splines (MARS) method.

The simulated datasets have controlled characteristics which make them useful for under-

standing the relationship between properties of the dataset and the performance of different

methods. The dependency of the performance on available computation time is also inves-

tigated. It is shown that a Bayesian approach to learning in multi-layer perceptron neural

networks achieves better performance than the commonly used early stopping procedure,

even for reasonably short amounts of computation time. The Gaussian process methods

are shown to consistently outperform the more conventional methods.
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Chapter 1

Introduction

The ability to learn relationships from examples is compelling and has attracted interest in

many parts of science. Biologists and psychologists study learning in the context of animals

interacting with their environment; mathematicians, statisticians and computer scientists

often take a more theoretical approach, studying learning in more artificial contexts; people

in artificial intelligence and engineering are often driven by the requirements of technolog-

ical applications. The aim of this thesis is to contribute to the principles of measuring

performance of learning methods and to demonstrate the effectiveness of a particular class

of methods.

Traditionally, methods that learn from examples have been studied in the statistics commu-

nity under the names of model fitting and parameter estimation. Recently there has been

a huge interest in neural networks. The approaches taken in these two communities have

differed substantially, as have the models that are studied. Statisticians are usually con-

cerned primarily with interpretability of the models. This emphasis has led to a diminished

interest in very complicated models. On the other hand, workers in the neural network field

have embraced ever more complicated models and it is not unusual to find applications with

very computation intensive models containing hundreds or thousands of parameters. These

complex models are often designed entirely with predictive performance in mind.

Recently, these two approaches to learning have begun to converge. Workers in neural

networks have “rediscovered” statistical principles and interest in non-parametric modeling

has risen in the statistics community. This intensified focus on statistical aspects of non-

parametric modeling has brought an explosive growth of available algorithms. Many of

1



2 Introduction

these new flexible models are not designed with particular learning tasks in mind, which

introduces the problem of how to choose the best method for a particular task. All of these

general purpose methods rely on various assumptions and approximations, and in many

cases it is hard to know how well these are met in particular applications and how severe

the consequences of breaking them are. There is an urgent need to provide an evaluation

of these methods, both from a practical applicational point of view and in order to guide

further research.

An interesting example of this kind of question is the long-standing debate as to whether

Bayesian or frequentist methods are most desirable. Frequentists are often unhappy about

the setting of priors, which is sometimes claimed to be “arbitrary”. Even if the Bayesian

theory is accepted, it may be considered computationally impractical for real learning prob-

lems. On the other hand, Bayesians claim that their models may be superior and may avoid

the computational burden involved in the use of cross-validation to set model complexity.

It seems doubtful that these disputes will be settled by continued theoretical debate.

Empirical assessment of learning methods seems to be the most appealing way of choosing

between them. If one method has been shown to outperform another on a series of learning

problems that are judged to be representative, in some sense, of the applications that we

are interested in, then this should be sufficient to settle the matter. However, measuring

predictive performance in a realistic context is not a trivial task. Surprisingly, this is a

tremendously neglected field. Only very seldom are conclusions from experimental work

backed up by statistically compelling evidence from performance measurements.

This thesis is concerned with measuring and comparing the predictive performance of learn-

ing methods, and contains three main contributions: a theoretical discussion of how to

perform statistically meaningful comparisons of learning methods in a practical way, the

introduction of two novel methods relying on Gaussian processes, and a demonstration of

the assessment framework through empirical comparison of the performance of Gaussian

process methods with other methods. An elaboration of each of these topics will follow

here.

I give a detailed theoretical discussion of issues involved in practical measurement of pre-

dictive performance. For example, many statisticians have been uneasy about the fact that

many neural network methods involve random initializations, such that the result of learn-

ing is not a unique set of parameter values. However, once these issues are faced it is not

difficult to give them a proper treatment. The discussion involves assessing the statistical

significance of comparisons, developing a practical framework for doing comparisons and
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measures ensuring that results are reproducible. The focus of Chapter 2 is to make the goal

of comparisons precise and to understand the uncertainties involved in empirical evalua-

tions. The objective is to obtain a good tradeoff between the conflicting aims of statistical

reliability and practical applicability of the framework to computationally intensive learning

algorithms. These considerations lead to some guidelines for how to measure performance.

A software environment which implements these guidelines called DELVE — Data for Eval-

uating Learning in Valid Experiments — has been written by our research group headed

by Geoffrey Hinton. DELVE is freely available on the world wide web1. DELVE contains

the software necessary to perform statistical tests, datasets for evaluations, results of ap-

plying methods to these datasets, and precise descriptions of methods. Using DELVE one

can make statistically well founded simulation experiments comparing the performance of

learning methods. Chapter 2 contains a discussion of the design of DELVE, but implemen-

tational details are provided elsewhere [Rasmussen et al. 1996].

DELVE provides an environment within which methods can be compared. DELVE in-

cludes a number of standardisations that allow for easier comparisons with earlier work

and attempts to provide a realistic setting for the methods. Most other attempts at mak-

ing benchmark collections provide the data in an already preprocessed format in order to

heighten reproducibility. However, this approach seems misguided, if one is attempting to

measure the performance that could be achieved in a realistic setting, where the prepro-

cessing could be tailored to the particular method. To allow for this, definitions of methods

in DELVE must include descriptions of preprocessing. DELVE provides facilities for some

common types of preprocessing, and also a “default” attribute encoding to be used by

researchers who are not primarily interested in such issues.

In Chapter 3 detailed descriptions of several learning methods that emphasize reproducibil-

ity are given. The implementations of many of the more complicated methods involve

choices that may not be easily justifiable from a theoretical point of view. For example,

many neural networks are trained using iterative methods, which raises the question of how

many iterations one should apply. Sometimes convergence cannot be reached within rea-

sonable amount of computational effort, for example, and sometimes it may be preferable

to stop training before convergence. Often these issues are not discussed very thoroughly

in the articles describing new methods. Furthermore authors may have used preliminary

simulations to set such parameters, thereby inadvertently opening up the possibility of bias

in simulation results.

1The DELVE web address is: http://www.cs.utoronto.ca/∼delve
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In order to avoid these problems, the learning methods must be specified precisely. Methods

that contain many parameters that are difficult to set should be recognized as having this

handicap, and heuristic rules for setting their parameters must be developed. If these rules

don’t work well in practice, this may show up in the comparative studies, indicating that

this learning method would not be expected to do well in an actual application. Naturally,

some parameters may be set by some initial trials on the training data, in which case this

would be considered a part of the training procedure. This precise level of specification is

most easily met for “automatic” algorithms, which do not require human intervention in

their application. In this thesis only such automatic methods will be considered.

The methods described in Chapter 3 include methods originating in the statistics com-

munity as well as neural network methods. Ideally, I had hoped to find descriptions and

implementations of these methods in the literature, so that I could concentrate on testing

and comparing them. Unfortunately, the descriptions found in the literature were rarely

detailed enough to allow direct application. Most frequently details of the implementations

are not mentioned, and in the rare cases where they are given they are often of an un-

satisfactory nature. As an example, it may be mentioned that networks were trained for

100 epochs, but this hardly seems like a principle that should be applied universally. On

the other hand it has proven extremely difficult to design heuristic rules that incorporate a

researcher’s “common sense”. The methods described in Chapter 3 have been selected par-

tially from considerations of how difficult it may be to invent such rules. The descriptions

contain precise specifications as well as a commentary.

In Chapter 4 I develop a novel Bayesian method for learning relying on Gaussian processes.

This model is especially suitable for learning on small data sets, since the computational

requirements grow rapidly with the amount of available training data. The Gaussian process

model is inspired by Neal’s work [1996] on priors for infinite neural networks and provides

a unifying framework for many models. The actual model is quite like a weighted nearest

neighbor model with an adaptive distance metric.

A large body of experimental results has been generated using DELVE. Several neural net-

work techniques and some statistical methods are evaluated and compared using several

sources of data. In particular, it is shown that it is difficult to get statistically significant

comparisons on datasets containing only a few hundred cases. This finding suggests that

many previously published comparisons may not be statistically well-founded. Unfortu-

nately, it seems hard to find suitable real datasets containing several thousand cases that

could be used for assessments.
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In an attempt to overcome this difficulty in DELVE we have generated large datasets from

simulators of realistic phenomena. The large size of these simulated datasets provides a high

degree of statistical significance. We hope that they are realistic enough that researchers will

find performance on these data interesting. The simulators allow for generation of datasets

with controlled attributes such as degree of non-linearity, input dimensionality and noise-

level, which may help in determining which aspects of the datasets are important to various

algorithms. In Chapter 5 I perform extensive simulations on large simulated datasets in

DELVE. These simulations show that the Gaussian process methods consistently outperform

the other methods.
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Chapter 2

Evaluation and Comparison

In this chapter I discuss the design of experiments that test the predictive performance of

learning methods. A large number of such learning methods have been proposed in the

literature, but in practice the choice of method is often governed by tradition, familiarity

and personal preference rather than comparative studies of performance. Naturally, pre-

dictive performance is only one aspect of a learning method; other characteristics such as

interpretability and ease of use are also of concern. However, for predictive performance a

well developed set of directly applicable statistical techniques exist that enable comparisons.

Despite this, it is very rare to find any compelling empirical performance comparisons in

the literature on learning methods [Prechelt 1996]. I will begin this chapter by defining

generalisation, which is the measure of predictive performance, then discuss possible exper-

imental designs, and finally give details of the two most promising designs for comparing

learning methods, both of which have been implemented in the DELVE environment.

2.1 Generalisation

Usually, learning methods are trained with one of two goals: either to identify an inter-

pretation of the data, or to make predictions about some unmeasured events. The present

study is concerned only with accuracy of this latter use. In statistical terminology, this is

sometimes called the expected out-of-sample predictive loss; in the neural network literature

it is referred to as generalisation error. Informally, we can define this as the expected loss

for a particular method trained on data from some particular distribution on a novel (test)

7



8 Evaluation and Comparison

case from that same distribution.

In the formalism alluded to above and used throughout this thesis the objective of learning

will be to minimize this expected loss. Some commonly used loss functions are squared

error loss for regression problems and 0/1-loss for classification; others will be considered

as well. It should be noted that this formalism is not fully general, since it requires that

losses can be evaluated on a case by case basis. We will also disallow methods that use the

inputs of multiple test cases to make predictions. This confinement to fixed training sets

and single test cases rules out scenarios which involve active data selection, incremental

learning where the distribution of data drifts, and situations where more than one test case

is needed to evaluate losses. However, a very broad class of learning problems can naturally

be cast in the present framework.

In order to give a formal definition of generalisation we need to consider the sources of

variation in the basic experimental unit, which consists of training a method on a particular

set of training cases and measuring the loss on a test case. These sources of variation are

1. Random selection of test case.

2. Random selection of training set.

3. Random initialisation of learning method; e.g. random initial weights in neural net-

works.

4. Stochastic elements in the training algorithm used in the method; e.g. stochastic hill-

climbing.

5. Stochastic elements in the predictions from a trained method; e.g. Monte Carlo esti-

mates from the posterior predictive distribution.

Some of these sources are inherent to the experiments while others are specific to certain

methods such as neural networks. Our definition of generalisation error involves the expec-

tation over all these effects

GF (n) =

∫

L
[

Fri,rt,rp
(Dn, x), t

]

p(x, t)p(Dn)p(ri)p(rt)p(rp) dx dt dDn dri drt drp. (2.1)

This is the generalisation error for a method that implements the function F , when trained

on training sets of size n. The loss function L measures the loss of making the prediction

Fri,rt,rp
(Dn, x) using training set Dn of size n and test input x when the true target is t. The
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loss is averaged over the distribution of training sets p(Dn), test points p(x, t) and random

effects of initialisation p(ri), training p(rt) and prediction p(tp).

Here it has been assumed that the training examples and the test examples are drawn

independently from the same (unknown) distribution. This is a simplifying assumption

that holds well for many prediction tasks; one important exception is time series prediction,

where the training cases are usually not drawn independently. Without this assumption,

empirical evaluation of generalisation error becomes problematic.

The definition of generalisation error given here involves averaging over training sets of a

particular size. It may be argued that this is unnecessary in applications where we have

a particular training set at our disposal. However, in the current study, we do empirical

evaluations in order to get an idea of how well methods will perform on other data sets with

similar characteristics. It seems unreasonable to assume that these new tasks will contain

the same peculiarities as particular training sets from the empirical study. Therefore, it

seems essential to take the effects of this variation into account, especially when estimating

confidence intervals for G.

Evaluation of G is difficult for several reasons. The function to be integrated is typically

too complicated to allow analytical treatment, even if the data distribution were known.

For real applications the distribution of the data is unknown and we only have a sample

from the distribution available. Sometimes this sample is large compared to the n for which

we wish to estimate G(n), but for real datasets we often find ourselves in the more difficult

situation of trying to estimate G(n) for values of n not too far from the available sample

size.

The goal of the discussion in the following sections is the design of experiments which allow

the generalisation error to be estimated together with the uncertainties of this estimate,

and which allow the performance of methods to be compared. The ability to estimate un-

certainties is crucial in a comparative study, since it allows quantification of the probability

that the observed differences in performance can be attributed to chance, and may thus not

reflect any real difference in performance.

In addition to estimating the overall uncertainty associated with the estimated generalisa-

tion error it may sometimes be of interest to know the sizes of the individual effects giving

rise to this uncertainty. As an example, it may be of interest to know how much variability

there is in performance due to random initialisation of weights in a neural network method.

However, there are potentially a large number of effects which could be estimated — and
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to estimate them all would be rather a lot of work. In the present study I will focus on one

or two types of effects that are directly related to the sensitivity of the experiments. These

effects will in general be combinations of the basic effects from eq. (2.1). The same general

principles can be used in slightly modified experimental designs if one attempts to isolate

other effects.

2.2 Previous approaches to experimental design

This section briefly describes some previous approaches to empirical evaluation in the neural

network community. These have severe shortcomings, which the methodologies discussed

in the remainder of this chapter will attempt to address.

Perhaps the most common approach is to use a single training set Dn, where n is chosen

to be some fraction of the total number of cases available. The remaining fraction of the

cases are devoted to a test set. In some cases an additional validation set is also provided;

this set is also used for fitting model parameters (such as weight-decay constants) and is

therefore in the present discussion considered to be part of the training set. The empirical

mean loss on the test set is reported, which is an unbiased and consistent estimate of the

generalisation loss. It is possible (but not common practice) to estimate the uncertainty

introduced by the finite test set. In particular, the standard error due to this uncertainty

on the generalisation estimate falls with the number of test cases as n
−1/2
test . Unfortunately

the uncertainty associated with variability in the training set cannot be estimated — a fact

which is usually silently ignored.

The above simple approach is often extended using n-way cross-testing. Here the data is

divided into n equally sized subsets, and the method is trained on n−1 of these and tested on

the cases in the last subset. The procedure is repeated n times with each subset left out for

testing. This procedure is frequently employed with n = 10 [Quinlan 1993]. The advantage

that is won at the expense of having to train 10 methods is primarily that the number of

test cases is now increased to be the size of the entire data set. We may also suspect that

since we have now trained on 10 (slightly) differing training sets, we may be able to estimate

the uncertainty in the estimated GF (n). However, this kind of analysis is complicated by

the fact that the training sets are dependent (since several training sets include the same

training examples). In particular, one would need to model how the overlapping training

sets introduce correlations in the performance estimates, which seems very difficult.
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Recently, a book on the StatLog project appeared [Michie et al. 1994]. This is a large

study using many sources of data and evaluating 20 methods for classification. In this

study, either single training and test sets or n-way cross-testing was used. The authors also

discuss the possible use of bootstrapping for estimating performance. However, they do not

attempt to evaluate uncertainties in their performance estimates, and ignore the statistical

difficulties which their proposals entail.

In the ELENA project [Guérin-Dugué et al. 1995] simple (non-paired) analysis of categor-

ical losses is considered. Although a scheme resembling 5-way cross-testing was used, the

subsequent analysis failed to take the dependence between the training sets into account.

In the conclusions it is remarked: “. . . [W]e evaluated this robustness by using a Holdout

method on five trials and we considered the minimum and maximum error by comput-

ing confidence intervals on these extrema. We obtained large confidence intervals and this

measure hasn’t been so helpful for the comparisons.”

In conclusion, these approaches do not seem applicable to addressing fundamental questions

such as whether one method generalises better that another on data from a particular task,

since they do not provide ways of estimating the relevant uncertainties. Occasionally, a

t-test for significance of difference has been used [Larsen and Hansen 1995; Prechelt 1995],

again using a particular training set and using pairing of losses of different methods on test

examples.

2.3 General experimental design considerations

The essence of a good experimental design is finding a suitable tradeoff between practicality

and statistical power. By practicality of the approach I am referring to the number of

experiments required and the complexity of these in terms of both computation time and

memory. By statistical power, I mean the ability of the tests to (correctly) identify trends

of small magnitude in the experiments. It should be obvious that these two effects can be

traded off against each other, since in general we may gain more confidence in conclusions

with more repetitions, but this becomes progressively less practical.

The practicality of an approach can be subdivided into three issues: computational time

complexity of the experiments, memory and data requirements, and computational require-

ments for the statistical test. Many learning algorithms require a large amount of compu-

tation time for training. In many cases there is a fairly strong (super-linear) dependency
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between the available number of training cases and the required amount of computation

time. However, we are not free to determine the number of training cases in the experi-

mental design, since this is regarded as being externally fixed according to our particular

interests. Thus, the main objective is to keep the number of training sessions as low as

possible. The time needed for making predictions from the method for test cases may occa-

sionally be of concern, however this requirement will scale linearly with the number of test

cases.

The data and memory considerations have different causes but give rise to similar restric-

tions in the tests. The data requirement is the total number of cases available for construct-

ing training and test sets. For real datasets this will always be a limited number, and in

many cases this limitation is of major concern. In cases where artificial data is generated

from a simulator, one may be able to generate as many test cases as desired, but for very

large sets it may become impractical to store all the individual losses from these tests (which

will be necessary when performing paired tests, discussed later in this chapter).

Finally we may wish to limit ourselves to tests whose results are easily computed from the

outcomes of the learning experiments. The analysis of some otherwise interesting experi-

mental designs cannot be treated analytically, and approximate or stochastic computation

may be needed in order to draw the desired conclusions. Such situations are probably

undesirable for the present applications, since it is often difficult to ensure accuracy or

convergence with such methods. In such cases people may find the required computational

mechanics suspect, and the conclusions will not in general be convincing.

The statistical power of the tests depends on the details of the experimental design. In

general, the more training sets and test cases, the smaller the effects that can be detected

reliably. But also the distributional assumptions about the losses are of importance. These

issues are most easily clarified through some examples. From a purely statistical point of

view, the situation is simplest when one can assume independence between experimental

observations. As an extreme case, we may consider an experimental design where a method

is trained several times using disjoint training sets, and single independently drawn test

cases. The analysis of the losses in this case is simple because the observed losses are

independent and the Central Limit theorem guarantees that the empirical mean will follow

an unbiased Gaussian distribution with a standard deviation scaling as n−1/2. However, for

most learning methods that we may wish to consider this approach will be computationally

prohibitively expensive, and for real problems where the total amount of data is limited,

such an approach is much too wasteful of data: the amount of information extracted from

each case is far too small.
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In order to attempt to overcome the impracticality of this previous design example, we may

use the same training set for multiple test cases, thereby bringing down the total number of

required training sessions. This corresponds to using (disjoint) test sets instead of individual

test cases. Computationally, this is a lot more attractive, since many fewer training sessions

are required. We extract more information per training run about the performance of the

method by using several test cases. However, the losses are no longer independent, since

the common training sets introduce dependencies, which must be accounted for in the

analysis of the design. A persistent concern with this design is that it requires several

disjoint training and test sets, which may be a problem when dealing with real data sets

of limited size. For artificially generated (and very large real) datasets, this design may be

the most attractive and its properties are discussed in the following section under the name

“hierarchical ANOVA design”.

To further increase the effectiveness of the use of data for real learning tasks, we can test

all the trained methods on all the available testing data, instead of carving up the test data

into several disjoint sets. By doing more testing, we are able to extract more information

about the performance of the method. Again, this comes at an expense of having to deal

with a more complicated analysis. Now the losses are not only dependent through common

training sets but also through common test cases. This design will be discussed in a later

section under the title “2-way ANOVA design”. This will be the preferred design for real

data sets.

The different requirement for disk-storage for the hierarchical and 2-way designs may also be

of importance. When methods have been tested, we need to store all the individual losses in

order to perform paired comparisons (discussed in detail in the next section). Although disk

storage is cheap, this requirement does become a concern when testing numerous methods

on large test sets. In this respect the hierarchical design is superior, since losses for more

test cases can be stored with the same disk requirements.

Attempts can be made to further increase the effectiveness (in terms of data) of the tests.

Instead of using disjoint training sets, one may reuse cases in several training and test sets.

The widely used n-way cross-testing mentioned in the previous section is an example of

such a design. There are no longer any independencies in these designs, and it becomes

hard to find reasonable and justifiable assumptions about how the performance depends

on the composition of the training sets. In traditional n-way cross-testing the data is split

into n subsets, and one could attempt to model the effects of the subsets individually and

neglecting their interactions, but this may not be a good approximation, since one may

expect the training cases to interact quite strongly. These difficulties deterred us from
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Overall mean ȳ

Means ȳi for I training sets

Individual losses yij

Figure 2.1: Schematic diagram of the hierarchical design. In this case there are I = 4 disjoint
training sets and I = 4 disjoint test sets each containing J = 3 cases. Since both training and test
sets are disjoint, the average losses for each training set ȳi are independent estimates of the expected
loss µ.

using these designs. It is possible that there is some way of overcoming the difficulties

and this would certainly be of importance if one hopes to be able to use small datasets

for benchmarking. It should be noted that when n-way cross-testing is usually used in the

literature, one does not attempt to estimate uncertainties associated with the performance

estimates. In such cases it is not easy to justify the conclusions of the experiments.

2.4 Hierarchical ANOVA design

The simplest loss model that we will consider is the analysis of variance (ANOVA) in the

hierarchical design. In this loss model, the learning algorithm is trained on I different

training sets. These training sets are disjoint, i.e., a specific training case appears only in a

single training set. Associated with each of the training sets there is a test set with J cases.

These test sets are also disjoint from one another and disjoint from the training sets.

We train the method on each of the I training sets and for each training set we evaluate the

loss on each case in the corresponding test set. A particular training set and the associated

test cases will be referred to as an instance of the task in the following. We assume that

the losses can be modeled by

yij = µ + ai + εij . (2.2)

Here yij is the loss on test case j from test set i when the method was trained on training
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set i. The ai and εij are assumed Normally and independently distributed with

ai ∼ N (0, σ2
a) εij ∼ N (0, σ2

e ). (2.3)

The µ parameter models the mean loss which we are interested in estimating. The ai vari-

ables are called the effects due to training set, and can model the variability in the losses

that is caused by varying the training set. Note, that the training set effects include all

sources of variability between the different training sessions: the different training examples

and stochastic effects in training, e.g., random initialisations. The εij variables model the

residuals; these include the effects of the test cases, interactions between training and test

cases and stochastic elements in the prediction procedure. For some loss functions, these

Normality assumptions may not seem appropriate; refer to section 2.6 for a further discus-

sion. In the following analysis, we will not attempt to evaluate the individual contributions

to the ai and εij effects.

Using eq. (2.2) and (2.3) we can obtain the estimated expected loss and one standard

deviation error bars on this estimate

µ̂ = ȳ SD(µ̂) =
(σ2

a

I
+

σ2
ε

IJ

)1/2
, (2.4)

where a hat indicates an estimated value, and a bar indicates an average. This estimated

standard error is for fixed values of the σ’s, which we can estimate from the losses. We

introduce the following means

ȳi =
1

J

∑

j

yij ȳ =
1

IJ

∑

i

∑

j

yij, (2.5)

and the “mean squared error” for a and ε and their expectations

MSa =
J

I − 1

∑

i

(ȳi − ȳ)2 E[MSa] = Jσ2
a + σ2

ε

MSε =
1

I(J − 1)

∑

i

∑

j

(yij − ȳi)
2 E[MSε] = σ2

ε .
(2.6)

In ANOVA models it is common to use the following minimum variance unbiased estimators

for the σ2 values which follow directly from eq. (2.6)

σ̂2
ε = MSε σ̂2

a =
MSa − MSε

J
. (2.7)

Unfortunately the estimate σ̂2
a may sometimes be negative. This behaviour can be explained

by referring to fig. 2.1. There are two sources of variation in ȳi; firstly the variation due

to the differences in the training sets used and secondly the uncertainty due to the finitely
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many test cases evaluated for that training set. This second contribution may be much

greater than the former, and empirically eq. (2.7) may produce negative estimates if the

variation in ȳi values is less than expected from the variation over test cases. It is customary

to truncate negative estimates at zero (although this introduces bias).

In order to compare two learning algorithms the same model can be applied to the differences

between the losses from two learning methods k and k′

yij = yijk − yijk′ = µ + ai + εij , (2.8)

with similar Normal and independence assumptions as before, given in eq. (2.3). In this

case µ is the expected difference in performance and ai is the training set effect on the

difference. Similarly, εij are residuals for the difference loss model. It should be noted that

the tests derived from this model are known as paired tests, since the losses have been paired

according to training sets and test cases. Generally paired tests are more powerful than

non-paired tests, since random variation which is irrelevant to the difference in performance

is filtered out. Pairing requires that the same training and test sets are used for every

method. Pairing is readily achieved in DELVE, since losses for methods are kept on disk.

A central objective in a comparative loss study is to get a measure of how confident we

can be that the observed difference between the two methods reflects a real difference in

performance rather than a random fluctuation. Two different approaches will be outlined

to this problem: the standard t-test and a Bayesian analysis.

The idea underlying the t-test is to assume a null hypothesis, and compute how probable the

observed data or more extreme data is under the sampling distribution given the hypothesis.

In the current application, the null hypothesis is H0 : µ = 0, that the two models have

identical average performances. It may seem odd to focus on this null hypothesis, when

it would seem more natural to draw our conclusions based on p(µ < 0|{yij}) and p(µ >

0|{yij}). The reasoning underlying the frequentist test of H0 is the following: if we can

show that we are unlikely to get the observed losses given the null hypothesis, then we

can presumably have confidence in the sign of the difference. Technically, the treatment of

composite hypothesis, such as H ′

0: µ<0 is much more complicated than a simple hypothesis.

Thus, since H0 can be treated as a simple hypothesis (through exact analytical treatment

of the unknown σ2
a and σ2

ε), this is often preferred although it may at first sight seem less

appropriate.

Under the null hypothesis, H0: µ = 0, the distribution of the differences in losses and their
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partial means can be obtained from eq. (2.8), giving

yij ∼ N (0, σ2
a + σ2

ε), ȳi ∼ N (0, σ2
a + σ2

ε/J) (2.9)

for which the variances are unknown in a practical application. The different partial means

ȳi are independent observations from the above Gaussian distribution. A standard result

(dating back to Student and Fisher) from the theory of sampling distributions states if ȳi

is independently and Normally distributed with unknown variance, then the t-statistic

t = ȳ
( 1

I(I − 1)

∑

i

(ȳi − ȳ)2
)

−1/2
(2.10)

has a sampling distribution given by the t-distribution with I−1 degrees of freedom

p(t) ∝
(

1 +
t2

I − 1

)

−I/2
. (2.11)

To perform a t-test, we compute the t-statistic, and measure how unlikely it would be

(under the null hypothesis) to obtain the observed t-value or something more extreme.

More precisely, the p-value is

p = 1 −
∫ t

−t
p(t′)dt′, (2.12)

for which there does not exist a closed form expression; numerically it is easily evaluated

via the incomplete beta distribution for which rapidly converging continued fractions are

known, [Abramowitz and Stegun 1964]. Notice, that the t-test is two-sided, i.e., that the

limits of the integral are ±t, reflecting our prior uncertainty as to which method is actually

the better. If in contrast it was apriori inconceivable that the true value of µ was negative

we could use a one-sided test, extending the integral to −∞ and getting a p-value which

was only half as large.

Very low p-values thus indicate that we can have confidence that the observed difference is

not due to chance. Notice that failure to obtain small p-values does not necessarily imply

that the performance of the methods are equal, but merely that the observed data does not

rule out this possibility, or the possibility that the sign of the actual difference differs from

that of the observed difference.

Fig. 2.2 shows an example of the output from DELVE when comparing two methods. Here

the estimates of performances ȳk and ȳk′ , their estimated difference µ̂ and the standard

error on this estimate SD(µ̂) are given and below the two effects σ̂a and σ̂ε. Finally, the

p-value for a t-test is given for the significance of the observed difference.

At this point it may be useful to note that the standard error for the difference estimate

SD(µ̂) is computed using fixed estimates for the standard deviations, given by eq. (2.7),
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Estimated expected loss for knn-cv-1: 357.909
Estimated expected loss for /lin-1: 397.82

Estimated expected difference: -39.9114
Standard error for difference estimate: 11.4546

SD from training sets and stochastic training: 15.3883
SD from test cases & stoch. pred. & interactions: 271.541

Significance of difference (T-test), p = 0.0399302

Based on 4 disjoint training sets, each containing 256 cases and
4 disjoint test sets, each containing 256 cases.

Figure 2.2: An example of applying this analysis to comparison of the two methods lin-1 and
knn-cv-1 using the squared error loss function on the task demo/age/std.256 in DELVE.

where the distribution of µ̂ is Gaussian. However, there is also uncertainty associated

with the estimates for these standard deviations. This could potentially be used to obtain

better estimates of the standard error for the difference (interpreted as a 68% confidence

interval); computationally this may be cumbersome, since it requires evaluations of t from p

in eq. (2.12) which is a little less convenient. For reasonably large values of I the differences

will be small, and our primary interest is not in these intervals but rather in the p-values

(which are computed correctly).

As an alternative to the frequentist hypothesis test, one can adopt a Bayesian viewpoint

and attempt to compute the posterior distribution of µ from the observed data and a prior

distribution. In the Bayesian setting the unknown parameters are the mean difference µ

and the two variances σ2
a and σ2

ε . Following Box and Tiao [1992] the likelihood is given by

p({yij}|µ, σ2
a, σ2

ε) ∝

(σ2
ε)

−I(J−1)/2(σ2
ε + Jσ2

a)
−I/2 exp

(

− J
∑

i(ȳi − µ)2

2(σ2
ε + Jσ2

a)
−

∑

i

∑

j(yij − ȳi)
2

2σ2
ε

)

.
(2.13)

We obtain the posterior distribution by multiplying the likelihood by a prior. It may not in

general be easy to specify suitable priors for the three parameters. In such circumstances

it is sometimes possible to dodge the need to specify subjective priors by using improper

non-informative priors. The simplest choices for improper priors are the standard non-

informative

p(µ) ∝ 1 p(σ2
a) ∝ σ−2

a p(σ2
ε) ∝ σ−2

ε , (2.14)

since the variances are positive scale parameters. In many cases the resulting posterior is

still proper, despite the use of these priors. However, in the present setting these priors do

not lead to proper posteriors, since there is a singularity at σ2
a = 0; the data can be explained

(i.e., acquire non-vanishing likelihood) by the σ2
ε effect alone and the prior density for σ2

a
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will approach infinity as σ2
a goes to zero. This inability to use a non-informative improper

prior reflects a real uncertainty in the analysis of the design. For small values of σ2
a the

likelihood is almost independent of this parameter and the amount of mass placed in this

region of the posterior is largely determined by the prior. In other words, the likelihood

does not provide much information about σ2
a in this region. An alternative prior is proposed

in Box and Tiao [1992], setting

p(µ) ∝ 1 p(σ2
ε) ∝ σ−2

ε p(σ2
ε + Jσ2

a) ∝ (σ2
ε + Jσ2

a)
−1. (2.15)

This prior has the somewhat unsatisfactory property that the effective prior distribution

depends on J , the number of test cases per training set, which is an unrelated arbitrary

choice by the experimenter. On the positive side, the simple form of the posterior allows us

to express the marginal posterior for µ in closed form

p(µ|{yij}) =

∫

∞

0

∫

∞

0
p(µ, σ2

ε , σ
2
a)p({yij}|µ, σ2

a, σ2
ε) dσ2

a dσ2
ε

∝ a−p2
2 betaia2/(a1+a2)(p2, p1),

(2.16)

where betai is the incomplete beta distribution and

a1 =
1

2

∑

i

∑

j

(yij − ȳi)
2 a2 =

J

2

∑

i

(ȳi − µ)2 p1 =
I(J − 1)

2
p2 =

I

2
. (2.17)

In fig. 2.3 the posterior distribution of µ is shown for a comparison between two learning

methods. The p-value from the frequentist test in fig. 2.2 is p = 0.040 which is reasonably

close to the posterior probability that µ has the opposite sign of the observed difference,

which was calculated by numerical integration to be 2.3%. These two styles of analysis

are making statements of a different nature, and there is no reason to suspect that they

should produce identical values. Whereas the frequentist test assumes that µ = 0 and

makes a statement about the probability of the observed data or something more extreme,

the Bayesian analysis treats µ as a random variable. However, it is reassuring that they do

not differ to a great extent.

There are several reasons that I have not pursued the Bayesian analysis further. The most

important reason is that my primary concern was to find a methodology which could be

adopted in DELVE, for which the Bayesian method does not seem appropriate. Firstly,

because the Bayesian viewpoint is often met with scepticism, and secondly because of

analytical problems when attempting to use priors other than eq. (2.15). Perhaps the most

promising approach would be to use proper priors and numerical integration to evaluate

eq. (2.16) and then investigate how sensitive the conclusions are to a widening of the priors.

Sampling approaches to the problem of estimating the posterior may be viable, and open
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Figure 2.3: Posterior distribution of µ when comparing the lin-1 and knn-cv-1 methods on the
demo/age/std.256 data for squared error loss, using eq. (2.16). By numerical integration it is found
that 2.3% of the mass lies at positive values for µ (indicated by hatched area).

up interesting possibilities of being able to relax some of the distributional assumptions

underlying the frequentist t-test. However, extreme care must be taken when attempting

to use sampling methods (such as simple Gibbs sampling) where it may be hard to ensure

convergence, since this may leave the conclusions from experiments open to criticism.

2.5 The 2-way ANOVA design

The experimental setup for a 2-way design differs from the hierarchical design in that we

use all the test cases for every training session thereby gaining more information about the

performances, fig. 2.4. This is more efficient (in terms of data) which may be important

if the number of available cases is small. However, the analysis of this model is more

complicated. The loss model is:

yij = µ + ai + bj + εij , (2.18)

with ai being the effects for the training sets, bj the effects for the test cases, and εij their

interactions and noise. As was the case for the hierarchical design, these effects may have

several different components, but no attempt will be made to estimate these individually.
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ȳ i

I
=

3
tr

ai
n
in

g
se

ts

Figure 2.4: Schematic diagram of the 2-way design. There are I = 3 disjoint training sets and a
common test set containing J = 4 cases giving a total of 12 losses. The partial average performances
are not independent.

We make the same assumptions of independence and normality as previously

ai ∼ N (0, σ2
a) bj ∼ N (0, σ2

b ) εij ∼ N (0, σ2
ε ). (2.19)

In analogy with the hierarchical design, these assumptions give rise to the following expec-

tation and standard error

µ̂ = ȳ SD(µ̂) =
(σ2

a

I
+

σ2
b

J
+

σ2
ε

IJ

)1/2
. (2.20)

We introduce the following partial mean losses

ȳ =
1

IJ

∑

i

∑

j

yij ȳi =
1

J

∑

j

yij ȳj =
1

I

∑

i

yij, (2.21)

and the “mean squared error” for a, b and ε and their expectations:

MSa =
J

I − 1

∑

i

(ȳi − ȳ)2 E[MSa] =Jσ2
a + σ2

ε

MSb =
I

J − 1

∑

j

(ȳj − ȳ)2 E[MSb] =Iσ2
b + σ2

ε

MSε =
1

(I − 1)(J − 1)

∑

i

∑

j

(

(yij − ȳ) − (ȳi − ȳ) − (ȳj − ȳ)
)2

E[MSε] =σ2
ε (2.22)

Now we can use the empirical values of MSa, MSb and MSε to estimate values for the σ’s:

σ̂ε
2 = MSε σ̂b

2 =
MSb − MSε

I
σ̂a

2 =
MSa − MSε

J
(2.23)
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These estimators are uniform minimum variance unbiased estimators. As before, the esti-

mates for σ2
a and σ2

b are not guaranteed to be positive, so we set them to zero if they are

negative. We can then substitute these variance estimates into eq. (2.20) to get an estimate

for the standard error for the estimated mean performance.

Note that the estimated standard error σ̂ diverges if we only have a single training set (as is

common practice!). This effect is caused by the hopeless task of estimating an uncertainty

from a single observation. At least two training sets must be used and probably more if

accurate estimates of uncertainty are to be achieved.

Another important question is whether the observed difference between two learning pro-

cedures can be shown to be significantly different from each other. To settle this question

we again use the model from eq. (2.18), only this time we model the difference between the

losses of the two models, k and k′:

yijk − yijk′ = µ + ai + bj + εij , (2.24)

under the same assumptions as above. The question now is whether the estimated overall

mean difference µ̂ is significantly different from zero. We can test this hypothesis using a

quasi-F test [Lindman 1992], which uses the F statistic with degrees of freedom:

Fν1,ν2 = (SSm + MSε)/(MSa + MSb), where SSm = IJȳ2

ν1 = (SSm + MSε)
2/(SS2

m + MS2
ε/((I − 1)(J − 1))) (2.25)

ν2 = (MSa + MSb)
2/(MS2

a/(I − 1) + MS2
b/(J − 1)).

The result of the F-test is a p-value, which is the probability given the null-hypothesis

(µ = 0) is true, that we would get the observed data or something more extreme. In

general, low p-values indicates a high confidence in the difference between the performance

of the learning procedures.

Unfortunately this quasi-F test is only approximate even if the assumptions of independence

and Normality are met. I have conducted a set of experiments to clarify how accurate the

test may be. For our purposes, the most serious mistake that can be made is what is nor-

mally termed a type I error: concluding that the performances of two methods are different

when in reality they are not. In our experiments, we would not normally anticipate that

the performance of two different methods would be exactly the same, but if we ensure that

the test only rarely strongly rejects the null hypothesis if it is really true, then presumably

it will be even rarer for it to declare the observed difference significant if its sign is opposite

to that of the true difference.
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Figure 2.5: Experiments using 2 training instances, showing the empirical distribution of 1000
p-values in 100 bins obtained from fake observations from under the null hypothesis. Here a and b
give the standard deviations for the training set effect and test case effect respectively.
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Figure 2.6: Experiments using 4 training instances, showing the empirical distribution of p-values
obtained from fake observations from under the null hypothesis. Here a and b give the standard
deviations for the training set effect and test case effect respectively.
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I generated mock random losses under the null hypothesis, from eq. (2.18) and (2.19) with

µ ≡ 0 and σε = 1.0 for various values of σa and σb. The unit σε simply sets the overall scale

without loss of generality. I then computed the p-value for the F-test for repeated trials.

In fig. 2.5 and 2.6 are histograms of the resulting p-values. Ideally these histograms ought

to show a uniform distribution — the reason why these do not (apart from finite sample

effects) is due to the approximation in the F-test. The most prominent effects are the spikes

in the histograms around p = 0 and p = 1. The spikes at p = 1 are not of great concern

since the test here is strongly in favor of the (true) null hypothesis. This may lead to a

reduced power of the test, but not to type I errors. The spikes that occur around p = 0

are directly of concern. Here the test is strongly rejecting the null hypothesis, leading us to

infer that the methods have differing performance when in fact they do not. This effect is

only strong in the case where there are only 2 instances and where the training set effect is

large. With 4 instances (and 8, not shown) these problems have more or less vanished. To

avoid interpretative mistakes whenever there are fewer than 4 instances and the computed

p-value is less than 0.05, the result is reported by DELVE as p < 0.05.

2.6 Discussion

One may wonder what happens to the tests described in earlier sections when the assump-

tions upon which they rely are violated. The independence assumptions should be fairly

safe, since we are carefully designing the training and test sets with independence in mind.

The Normality assumptions however, may not be met very well. For example, it is well

known that when using squared error loss, one often sees a few outliers accounting for a

large fraction of the total loss over the test set. In such cases one may wonder whether

squared error loss is really the most interesting loss measure. Given that we insist on

pursuing this loss function, we need to consider violations of Normality.

The Normality assumptions of the experimental designs are obviously violated in the case

of loss estimation for squared error loss functions, which are guaranteed positive. This ob-

jection disappears for the comparative designs where only the loss differences are assumed

Normal. However, it is well known that extreme losses may occour — so Gaussian assump-

tions may be inappropriate. As a solution to this problem, Prechelt [1994] suggests using

the log of the losses in t-tests after removing up to 10% “outliers”. I do not advocate this

approach. The loss function should reflect the function that one is interested in minimising.

If one isn’t concerned by outliers then one should choose a loss function that reflects this.

Removing outlying losses does not appear defensible in a general application. Also, method
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A having a smaller expected log loss than method B does not imply anything about the

relation of their expected losses.

Generally, both the t-test and F-test are said to be fairly robust to small deviations from

Normality. Large deviations in the form of huge losses from occasional outliers turn out to

have interesting effects. For the comparative loss models described in the previous sections,

the central figure determining the significance of an observed difference is the ratio of the

mean difference to the uncertainty in this estimate ȳ/σ̂, as in eq. (2.10). If this ratio is

large, we can be confident that the observed difference in not due to chance. Now, imagine

a situation where ȳ/σ̂ is fairly large; we select a loss difference y′ at random and perturb it

by an amount ξ, and observe the behaviour of the ratio as we increase ξ

ȳ

σ̂
=

∑

yi + ξ
√

n(
∑

y2
i + ξ2 + y′ξ) − (

∑

yi + ξ)2
→ 1√

n − 1
when ξ → ∞. (2.26)

Thus, for large values of n the tests will tend to become less significant, as the magnitude of

the outliers increase. Here we seem to be lucky that outliers will not tend to produce results

that appear significant but merely reduce the power of the test. However, this tendency

may in some cases have worrying proportions. In fact, let’s say we are testing two methods

against each other, and one seems to be doing significantly better than the other. Then

the losing method can avoid losing face in terms of significance by increasing its loss on a

single test case drastically. Because the impact on the mean is smaller than the impact on

σ̂ for such behaviour, the end result for large ξ is a slightly worse performance for the bad

method, but insignificant test results. This scenario is not contrived; I have seen its effects

on many occasions and we shall see it in Chapter 5.

This somewhat unsatisfactory behaviour arises from the symmetry assumptions in the loss

model. If the losses for one model can have occasional huge values, and the distribution

of loss differences is assumed symmetric, it could also happen (although it didn’t) that

the other model would have a huge loss, hence the insignificant result. Clearly, this is not

exactly what we had in mind. There may be cases where these assumptions are reasonable,

but there are situations where some methods may tend to make wild predictions while

others are more conservative.

It is possible that these deficiencies could be overcome in a Bayesian setting that allowed for

non-Gaussian and skew distributional assumptions. It seems obvious that great care must

be taken when designing such a scheme, both with respect to its theoretical properties as

well as provisions for a satisfactory implementation of the required computations.
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Another idea as to how this situation could be remedied is to allow the “winning” method

to perturb the losses of the “losing” method, subject to the constraint that losses of the

losing method may only be lowered. This may in many cases alleviate the problems of

insignificance in situations plagued by extreme losses in a competing method. Several

questions remain open in respect to this approach. What is the sampling distribution for

the obtained p-values under the null hypothesis? Is there a unique (and simple) way of

figuring out which losses to perturb and by how much? I have not pursued these ideas

further, but this may well be worthwhile. For the time being, it underlines that one should

always consider both the mean difference in performance as well as the p-value for the test.

This will also help reduce the importance of very small p-values when they are associated

with negligible reductions in loss.

The loss models considered in this chapter have mainly been developed with continuous loss

functions in mind. Continuous loss functions are used when the outputs are continuous,

and tasks of classification can similarly be handled if one has access to the output class

probabilities (which are continuous). However, it is also quite common to use the binary

0/1-loss function for classification. It is not quite obvious how well the present loss models

will work for binary losses. Clearly, the assumptions about Normality are not appropriate —

but they will probably not lead to ridiculous conclusions. It does not seem straightforward to

design more appropriate models for discrete losses that allow for the necessary components

of variability. An empirical study of tests of difference in performance of learning methods

for binary classification has appeared in [Dietterich 1996].
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Chapter 3

Learning Methods

3.1 Algorithms, heuristics and methods

A prerequisite of measuring the performance of a learning method is defining exactly what

the method is. This may seem like a trivial statement, but a detailed investigation reveals

that it is uncommon in the neural network literature to find a description of an algorithm

that is detailed enough to allow replication of the experiments — see [Quinlan 1993; Thod-

berg 1996] for examples of unusually detailed descriptions. For example, an article may

propose to use part of the training data for a neural network as a validation set to mon-

itor performance while training and to stop training when a minimum in validation error

is encountered (this is known as early stopping). I will refer to such a description as an

algorithm. This algorithm must be accompanied by details of the implementation, which

I will call heuristics in order to produce a method which is applicable to practical learn-

ing problems. In this example, the heuristics would include details such as the network

architecture, the minimization procedure, the size of the validation set, rules for how to

determine whether a minimum in validation error was reached, etc.

It is often appealing to think of performance comparisons in terms of algorithms and not

heuristics. For example, one may wish to make statements like: “Linear models are su-

perior to neural networks on data from this domain”. In this case we are clearly talking

about algorithms, but as I have argued above, the empirical assessments supporting such

statements necessarily involve the methods — including heuristics. We hope that in most

cases the exact details of the heuristics are not crucial to the performance of the method, so

29
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that it will be reasonable to generalise the results of the methods to the algorithm itself. It

should be stressed that the experimental results involving methods are the objective basis of

the more subjective (but more useful) generalisations about algorithms. A more principled

approach of investigating several sets of heuristics for each algorithm would be extremely

arduous and would still not address the central issue of attempting to project experimental

results to novel applications.

I focus my attention on automatic methods, i.e., methods that can be applied without

human intervention. The reason for this choice is primarily a concern about reproducibility.

It may be argued that for practical problems one should allow a human expert to design

special models that take the particular characteristics of the learning problem into account.

This does not rule out the usefulness of automatic procedures as aids to an expert. Also, it

may be possible to invent heuristics which embody some of the “common sense” of the expert

— however, it turns out that this can be an extremely difficult endeavor. My approach is

to try to develop methods with sufficiently elaborate heuristics that the method cannot be

improved upon by a simple (well documented) modification. I require the methods to be

automatic, but I monitor the progress of the algorithm and take note of the cases where

the heuristics seem to break down, in order to be able to identify the reasons for poor

performance.

The primary target of comparisons is the predictive performance of the methods. However,

it does not seem reasonable to completely ignore computational issues, such as cpu time and

memory requirements. For many algorithms one may expect there to be a tradeoff between

predictive accuracy and cpu time — for example when training an ensemble of networks,

we may expect the performance to improve as the ensemble gets larger. I wish to study

algorithms that have a reasonably large amount of cpu time at their disposal. For many

practical learning problems a few days of cpu time on a fast computer would typically not

seem excessive. However, for practical reasons I will limit the computational resources to a

few hours per task.

It turns out that it is convenient from a practical point of view to develop heuristics for a

particular amount of cpu time, so that the algorithm itself can make choices based on the

amount of time spent so far, etc. As an example, consider the case of training an ensemble

of 10 networks. In general, reasonable heuristics for this problem are difficult to devise

because it may be very hard to determine how long it is necessary to train the individual

nets for. If we have a fixed time to run the algorithm, we may circumvent this problem by

simply training all nets for an equal amount of time. Naturally, it may turn out that none

of the nets were trained well in this time; indeed, it may turn out to have been better to
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train a single net for the entire allowed period of time, instead of trying an ensemble of 10

nets. I have used this convenient notion of a cpu time constraint for many of the methods,

although this may not correspond well to realistic applications. In the experiments, the

algorithms will be tested for different amounts of allowed time, and from these performance

measures it is usually possible to judge whether the algorithm could perform better given

more time.

3.2 The choice of methods

In this thesis, experiments are carried out using eight different methods. Six of these

methods will be described in the remainder of this chapter and the two methods relying on

Gaussian processes will be developed in the following chapter.

Two of the methods, a linear method called lin-1 and a nearest neighbor method using

cross-validation to choose the neighborhood size called knn-cv-1, rely on simple ideas that

are often used for data modeling. These methods are included as a “base-line” of per-

formance, to give a feel for how well simple methods can be expected to perform on the

tasks.

Two versions of the MARS (Multivariate Regression Splines) method have been included.

This method was developed by Friedman [1991], who has also supplied the software. This

method is not described in detail in this thesis, since it has been published by Friedman.

The primary goal of including these methods is to provide some insight into how neural

network methods compare to methods developed in the statistics community with similar

aims.

The mlp-ese-1 method relies on ensembles of neural networks trained with early stopping.

This method is included as an attempt at a thorough implementation of the commonly used

early stopping paradigm. The intention of including this method is to get an impression of

the accuracy that can be expected from this widely-used technique.

The mlp-mc-1 method implements Bayesian learning in neural networks. The software for

this method was developed by Neal [1996]. This method uses Monte Carlo techniques to fit

the model and may be fairly computer intensive. Given enough time, one may expect this

method to have very good predictive performance. It should thus be a strong competitor.
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It would be of obvious interest to include many other promising methods in this study.

Algorithms which seem of particular interest include the “Evidence” framework developed

by MacKay [1992a] and methods relying on weight-decay and pruning following the ideas of

[Le Cun et al. 1990]. However, it has turned out to be very difficult to design appropriate

automating heuristics for these algorithms. The Evidence methods seem quite sensitive to

initial values of the regularising constants and may not work well for large networks. For all

the algorithms it is difficult to automatically select network sizes and reasonable numbers

of training iterations.

One of the motivations behind the DELVE project was to enable the advocates of various

algorithms themselves to present heuristics for their algorithms which could then be tested

in the DELVE environment. This avoids the common problem of people comparing their

highly tuned methods to “crummy versions” of competing methods. These considerations

have motivated my decision not to implement a large number of methods. Instead I present

results that constitute a challenge to the designers of those methods.

The following sections contain descriptions and discussions of the methods that were studied,

except for the Gaussian process methods which are discussed in the next chapter. First a

few general comments: None of the methods include detailed specifications of any kind

of preprocessing. It is assumed that the default preprocessing in DELVE is applied. For

the datasets considered in this thesis, binary values are encoded using the values 0 and

1 and real inputs are rescaled by a linear transformation such that that the training set

has zero median and unit average absolute deviation from the median. This is intended

as a robust way of centering and scaling attributes. For some problems, this scaling might

be inappropriate, e.g., if the relative scales of inputs convey important information; such

special cases are not considered further here. The performance measurements will focus on

three loss functions: squared error loss, absolute error loss and negative log predictive loss.

Evaluation of this last loss type requires that the method produces a predictive distribution,

and the loss is the negative log density of the test targets under the predictive distribution.

An interesting aspect of this loss type is that the method is forced to know about the size of

uncertainties in its predictions in order to be able to do well — in contrast to the situation

with the two other more commonly used loss functions.
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3.3 The linear model: lin-1

The linear model is one of the most popular models used in data analysis. The reason for its

popularity is that it is both conceptually and computationally simple to fit a linear model,

and the resulting model is easily given an intuitive representation. The most prominent

deficiency of the linear model is its strong assumption about the true relationship in the

data; for data which do not conform well to a linear model, predictions may be inaccurate

and over-confident.

My implementation of the linear model is called lin-1. Details of the implementation are

given in appendix A. The algorithm for fitting a linear model is well known and the only

heuristic necessary is a principled way of handling the situation where the linear system

used to determine the parameters of the model is close to singular.

For simplicity, I will initially assume that the targets are scalar; a simple extension to handle

multiple outputs will be given later. The linear model is defined as

fw(x) =

m+1
∑

i=1

xiwi, (3.1)

where wi, i = 1, . . . ,m+1 are the m+1 model parameters, wm+1 being the bias and

xi, i = 1, . . . ,m are the inputs, augmented by xm+1 ≡ 1 to take care of the bias. The model

is fit to the training data D = {x(i), t(i)|i = 1 . . . n} by maximum likelihood, assuming zero

mean Gaussian noise with variance σ2. The likelihood is

p
(

t(1), . . . , t(n)
∣

∣x(1), . . . , x(n), w, σ2
)

∝
n

∏

c=1

exp
(

−
(

fw(x(c)) − t(c)
)2

2σ2

)

. (3.2)

The maximum likelihood estimate for the weights wML is independent of σ2 and is found

by minimizing the cost function

E(w) =
n

∑

c=1

(

fw(x(c)) − t(c)
)2

, (3.3)

with respect to the model parameters. Notice that the Gaussian noise assumption gives

rise to a squared error cost function; this cost function will always be used regardless

of whatever loss function we choose to evaluate the linear model. The solution to this
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optimization problem is well known from linear algebra; if the solution is unique, then

∂E(w)

∂wj
= 0 ⇒

n
∑

c=1

(

m+1
∑

i=1

wix
(c)
i − t

(c))
x

(c)
j = 0 ⇒ wML = A−1b

where Aii′ =
n

∑

c=1

x
(c)
i x

(c)
i′ , bi =

n
∑

c=1

t
(c)

x
(c)
i , i, i′ = 1, . . . ,m + 1.

(3.4)

If A is ill-conditioned, numerical evaluation of eq. (3.4) may be troublesome, and even if

fairly accurate solutions could be obtained, these would not necessarily lead to good model

predictions. In an attempt to define a method which has a high degree of reproducibility

(i.e., that would produce the same results on another machine) I propose choosing w such

that directions in input space with insufficient variation in the training set are ignored by

the model. This can conveniently be computed using singular value decomposition (SVD),

see for example [Press et al. 1992]. The decomposition is A = Udiag(λi)V
T, where U and

V are orthonormal matrices and λ is a vector of length m+1 containing the singular values

of A. A regularised Ã−1 can be computed by setting 1/λi = 0 for those i whose λi are too

small in

Ã−1 = V diag(1/λi)U
T. (3.5)

The exact criterion for regularisation is: set 1/λi = 0 whenever λi < 10−6 maxj(λj), i.e.,

whenever A is close to singular. The constant of 10−6 is chosen as a rather conservative

estimate of machine precision which will not interfere when A is well-conditioned. The

condition number of A depends on the scale of the inputs, so the procedure should always be

used in conjunction with the standard normalisations provided by DELVE. The (modified)

maximum likelihood weights can then be computed as

w̃ML = Ã−1b. (3.6)

We now derive the predictive distribution for the model. For simplicity we will derive the

predictive distribution for a fixed estimate of the noise, and only account for uncertainty in

the predictions arising from the estimated noise inherent in the data and from uncertainty

in the estimate for the weights. The noise is estimated by the standard unbiased estimator

σ̂2 =
1

n − k

n
∑

c=1

(

fw̃ML
(x(c)) − t(c)

)2
(3.7)

where k is the number of parameters in wML which were fit by the data; this is m + 1

minus 1 for every singular value whose reciprocal was set to zero in eq. (3.5). This estimate

may break down if there are too few training cases (if n ≤ m + 1), in which case we can’t

compute a predictive distribution. Assuming an improper uniform prior on the weights, the
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posterior for the weights is proportional to the likelihood. Thus, the predictive distribution

for a test case with input x(n+1) is

p
(

t(n+1)
∣

∣D, x(n+1), σ̂2
)

∝
∫

p
(

t(n+1)
∣

∣D, x(n+1), σ̂2
)

p
(

w|D, σ̂2
)

dm+1w

∝
∫

p
(

t(n+1)
∣

∣x(n+1), w, σ̂2
)

p
(

t(1), . . . , t(n)
∣

∣x(1), . . . , x(n), w, σ̂2
)

dm+1w

∝
∫

exp
(

−
(

fw(x(n+1)) − t(n+1)
)2

2σ̂2
− 1

2
(w − w̃ML)TÃ(w − w̃ML)

)

dm+1w.

(3.8)

This Gaussian integral can be solved exactly; we get a Gaussian predictive distribution with

mean and variance

p
(

t(n+1)
∣

∣D, x(n+1), σ̂2
)

∼ N (µ̂, ê2), where
µ̂ = fw̃ML

(x(n+1))

ê2 = σ̂2 + (x(n+1))TÃ−1x(n

The optimal point prediction for any symmetric loss function is given by fw̃ML
(x). Con-

sequently, these predictions can be used for both absolute error and squared error loss

functions. For the negative log density loss function, we compute the log of the density of

the targets under the predictive Gaussian distribution

log p
(

t(n+1)
∣

∣D, x(n+1), σ̂2
)

= −1

2
log(2πê2) − (µ̂ − t)2

2ê2
. (3.10)

For tasks that have multiple outputs, we can re-use the decomposition of A from eq. (3.5)

for every set of weights. The maximum likelihood weights and inherent noise estimates can

be found by using eq. (3.6) and (3.7) for each target attribute, and point predictions can be

obtained from the maximum likelihood weights as before. For the log density predictions we

assume that the joint density for the targets is Gaussian with a diagonal covariance matrix,

such that the density of the targets can be obtained by summing (in the log domain)

contributions of the form in eq. (3.10). This is equivalent to assuming that the residual

errors in the outputs are independent.

This completes the definition of the linear model; following this recipe the model will always

be uniquely defined by the data. Many elaborations to this basic linear model exist, but

they will not be pursued further here.

The computational complexity involved in fitting lin-1 is O(nm2 + m3), for computing

and decomposing the A matrix respectively. Even for fairly large tasks this can usually be

considered trivial, since it scales only linearly with n.
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3.4 Nearest neighbor models: knn-cv-1

Nearest neighbor models are popular non-parametric memory-based models. I will consider

a simple k nearest neighbor model, which in the context of DELVE will be called knn-cv-1.

I will attempt to define a nearest neighbor method that has reproducible results, that does

not depend heavily on details of implementation, that has few “free” parameters, and that

behaves reasonably under a broad variety of conditions. Also, I wish the method to be

applicable to our three standard loss functions (absolute error, squared error and negative

log density loss).

Simple nearest neighbor models do not require any training. The algorithm for making

predictions involves searching through the training cases to find those whose inputs are

closest to the inputs of the test case, and then using some kind of weighted average of the

targets of these neighbors as a prediction. Neighborhoods can either be defined in terms

of a kernel (e.g. Gaussian) which supplies weighting factors, or in terms of the number

of neighbors, k, to use (or hybrids of these). Although methods using kernels have the

intuitively appealing ability to weight neighbors according to distance, they will not be used

here. Firstly, they involve the somewhat arbitrary choice of kernel shape, and secondly, the

choice of width for the kernel (a continuous equivalent of the discrete choice of k) may

be plagued by local minima, unless the width itself is expressed in terms of distances to

neighbors. This makes the procedure unsuitable as a reproducible base-line nearest neighbor

approach. Instead, I will use the k nearest neighbor approach with uniform weighting of

neighbors for predictions. More sophisticated methods are certainly possible; for regression

tasks it is common to fit local linear models to the neighbors as in LOESS [Cleveland 1979],

but these will not be pursued further here.

We also need to define the metric in which to measure closeness; I will use the simple and

common choice of Euclidean distance. Many extensions of nearest neighbor algorithms exist

which attempt to adapt the distance metric [Lowe 1995; Hastie and Tibshirani 1996], but

these more complicated algorithms will not be pursued here.

We need to resolve what to do if two or more cases have the same distance as the k’th

nearest neighbor. In an attempt to make the algorithm less sensitive to round off effects on

different floating point arithmetic implementations, I will further set some small distance

tolerance, below which cases are deemed to have tied distances. Two cases are defined to

be ties if their squared distances to the test point differ by less than 10−6. I propose the

following scheme for making a prediction for a test case:
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1. Sort the cases by distances, placing ties in arbitrary order.

2. Find all the neighbors which have the same distance as the k’th case in the ordering

(including both cases earlier and later in the list) and average their targets.

3. Include this average of ties in the final prediction with a weight equal to the number

of ties that were at or earlier than k in the list.

This procedure together with the small tolerance on deciding whether cases are ties, should

help in avoiding differences due to finite precision arithmetic.

We need to find an appropriate neighborhood size, k. In general, we expect the optimal

choice of k to depend on the particular dataset and on the number of available training

points. As the number of training cases increases, the nearest neighbor method will be

consistent (a consistent estimator gets the right answer in the limit of an infinitely large

sample size) only if k grows. An appealing idea is to find the best k by leave one out

cross validation. Using this procedure, we leave out each of the training cases in turn, find

its k′ nearest neighbors (handling ties appropriately) and compute the loss associated with

predictions using this neighborhood. This is repeated for all k′ = 1 . . . n−1, and k is selected

to be the k′ with the smallest average loss. The leave-one-out procedure gives an unbiased

estimate for the situation where we had n−1 training cases, which in the case of fairly large

n should be close to optimal for the current training set size.

The neighborhood size k is estimated using the desired loss function. For the squared error

loss function, the average of the targets of the nearest neighbors are used as predictions.

If the outputs are multidimensional, then averages are computed for each dimension. For

absolute error loss we use the median along each dimension as a prediction.

Some special problems present themselves for negative log density loss. We have to form

a predictive distribution based on the k nearest neighbors. The simplest idea is to fit a

Gaussian to the targets of the k neighbors, again weighting the neighbors uniformly. The

mean for the Gaussian is chosen simply to be the empirical mean of the k nearest neighbors.

Two special cases arise when estimating the variance. Firstly, if the leave one out procedure

estimates k = 1, then we cannot estimate both the mean and variance for the predictive

distribution based on the single nearest neighbor. Secondly, if all k neighbors have exactly

the same targets (or targets that differ only very slightly), the naive empirical variance

estimate is undesirable since it leads to unbounded losses. Both of these problems can be



38 Learning Methods

addressed by regularising the variance estimate

v =
1

k

(

k
∑

k′=1

(y(k′) − ȳ)2 + ς2
)

, (3.11)

where ς2 is the regulariser, y(k′) is the targets of the k′’th nearest neighbor and ȳ is the

average of the targets for the k nearest neighbors. A convenient value to choose for ς2 is

the average squared difference between targets corresponding to first nearest neighbors, the

average extending over all training cases. This can be interpreted as a global estimate of the

variance which, whenever available, is modified by local information. Thus the regulariser

will act much like a conjugate prior. In the case of k = 1, no local information about

variance is available, and the sum over k′ will vanish from eq. (3.11) leaving just the global

term. As k grows, the amount of local information increases and the importance of the

regulariser decreases. The problem of vanishing variance estimates is also addressed by this

approach, since normalisation of the targets before learning guarantees that ς2 > 0 (except

for the pathological case where all available training cases have identical targets).

The computational demands of the leave-one-out procedure for training the knn-cv-1model

depend on how it is implemented. We need to leave out each of the n cases in turn; for

each of these we compute the distance to all other neighbors, which takes a total time

of O(n2m). Then we need to sort these distances, requiring O(n log n). Now for each of

the n−1 possible values of k we need to compute the mean, variance and median of the

neighbors. For simple implementations, computation of these values take O(n) for each of

these estimates. However, it should be noted that it is possible to re-use partial results

obtained with other values of k; means and variances can be updated in constant time

and the median can (through use of a heap data structure) be updated in O(log n). The

total computational effort involved in finding k is thus O
(

n2(m+n+log n)
)

for a simple

implementation or O
(

n2(m+log n)
)

for a more elaborate implementation. The current

version of knn-cv-1 uses the simple implementation.

Once the appropriate value of k is found, we can make predictions in time O
(

mn+k+n log n
)

for each test case, if the prediction algorithm sorts all training cases according to distance

(the current implementation of knn-cv-1 uses this approach). If instead of sorting we

attempt to locate the k closest neighbors, we can replace log n in the previous expression

by k, but it is not clear which is best in general, since we expect the optimal k to grow (at

a sub-linear rate) as n grows.
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3.5 MARS with and without Bagging

The Multivariate Adaptive Regression Splines (MARS) method of Friedman [1991] has also

been tested. This is a fairly well known method for non-linear regression for high dimensional

data from the statistics community. A detailed description of MARS will not be given here,

see [Friedman 1991]. The following is a simplistic account of MARS which gives a flavor of

the method. The input space is carved up into several (overlapping) regions in which splines

are fit. The fit is built using first a constructive phase, which introduces input regions and

splines, followed by a pruning phase. The final model has the form of a sum of products of

univariate splines; it is a continuous function (with continuous derivatives) and is additive

in the sets of variables allowed to interact.

Friedman has supplied his FORTRAN implementation of MARS (version 3.6). Two ver-

sions of the method have been tested. The original implementation is given the DELVE

name mars3.6-1. Since MARS is not very computationally demanding, it can be used in

conjunction with the Bagging procedure of Breiman [1994]. Using this method, one trains

MARS on a number of bootstrap samples of the training set and averages the resulting pre-

dictions. The bootstrap samples are generated by sampling the original training set with

replacement; samples of the same size as the original training set are used. Only one set

of predictions is generated regardless of the loss function — the same predictions are used

for the absolute error loss function and the squared error loss function. The negative log

density loss function is not applicable to the current version of MARS. The bagged version

of MARS is referred to as mars3.6-bag-1.

The following parameter settings have been used for MARS: 50 bootstrap repetitions were

used in the bagging procedure, the maximum number of basis functions was 15, the maxi-

mum number of variables allowed to interact was 8. The computational cost of applying this

method is fairly modest. Using a training set with 32 inputs and 1024 training cases, the

50 bootstrap replications take a total of 5 minutes on a 200MHz R4400/R4010 processor.

3.6 Neural networks trained with early stopping: mlp-ese-1

In this method, the predictions are the average of the outputs of between 3 and 50 multi-layer

perceptron neural networks each trained on 2/3 of the training data for a time determined by

validation on the remaining 1/3. All the networks have identical architectures with a single
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hidden layer of hyperbolic tangent units. Early stopping is a technique for avoiding over-

fitting in models that use iterative learning procedures. One uses a model that is expected

to have too large capacity and through early stopping one ensures that the model does

not over-fit. Consequently this approach should be helpful in overcoming the bias/variance

dilemma of frequentist methods [Geman et al. 1992]. Since early stopping will help to avoid

overfitting, we do not necessarily need an accurate estimate of the required model capacity,

but can use a network with a large number of hidden units.

A fraction of the training cases are held out for validation, and performance on this set is

monitored while the iterative learning procedure is applied. Typically, the validation error

will initially decrease as the model fits the data better and better, but later on, when the

model begins to over-fit, the validation error starts rising. The idea is to stop learning as

soon as this minimum in validation error is achieved. For neural networks, one of the great

advantages of early stopping is that it simplifies the otherwise difficult question of how long

to train the model.

A number of details have to be specified to make the method practically applicable. This

section contains a discussion of the issues involved and the decisions that I have made for

how to implement the method. I should stress that I am not claiming my choices to be

optimal in any sense, rather I have tried to define an automatic method which cannot in

any obvious (and well documented) way be improved upon.

I use a multi-layer perceptron neural network with a single hidden layer of hyperbolic tangent

units and a linear output unit. All units have biases. The network is fully connected

(including direct connections from inputs to outputs). A network with I inputs and H

hidden units implements the function

f(x) =

H
∑

h=1

gh(x)vh +

I
∑

i=1

xiwi + b0 gh(x) = tanh
(

I
∑

i=1

xiuih + ah

)

, (3.12)

where vh are the hidden-output weights, b0 the output-bias, wi the direct input-output

weights, ah the hidden-biases, and uih the input-hidden weights.

The number of hidden units is chosen to be the smallest such that the number of weights

is at least as large as the total number of training cases (after removal of the validation

cases). There is experimental evidence that the number of hidden units is not important as

long as it is large enough [Tetko et al. 1995]. We need to decide how large a fraction of the

training cases to use for validation. There are two obvious conflicting interests; we want a

large validation set to achieve a good estimate of performance and we want a large training
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set to be able to train a complex model, namely as complex a model as could be supported

by the entire training data set. For non-linear models trained with finite amounts of data,

there seem to be no helpful theoretical results about this trade-off. I chose to use one third

of the training cases (rounded down if necessary) for validation and the rest for training.

Another question is the exact criterion for when the training should stop, since we do not

want to stop merely when small fluctuations in the validation error occur. A number of

more or less complicated stopping criteria have been proposed in the literature, but none

has convincingly been shown to outperform others. Here I use the simple scheme of training

until the iteration with smallest validation error lies 33% backwards in the run. In this way

I will have trained for 50% more epochs than “necessary” and can thus be fairly confident

that I have found a good minimum. I will do a validation after every line-search in the

training run (training with conjugate gradients). Since the validation set is only half the

size of the training set and validation only requires a forward pass, validation will typically

slow down training by about 20% (since typically the line search involved in each iteration

requires on average about 1.3 forward and backward passes), which is not alarming. More

compute efficient strategies could be employed by validating only at longer intervals, at the

risk of finding worse stopping times. If a simpler method of steepest descent with a fixed

step-size was used as an optimization technique, it would probably be sufficient to validate

at longer intervals, but the conjugate gradient technique I use involves line-searches and

can potentially take very large steps.

The idea of including the validation data in the training set and continuing training is

appealing, since it is expected that better performance can be achieved with larger training

sets. However, the problem of when to stop this additional training presents itself. One

suggestion could be to continue training on the combined set until the same training error

per case as was found by early stopping is achieved. From a theoretical point of view,

this idea seems reasonable in an average case analysis, since it is expected that validation

cases will have a slightly larger error initially than the training cases. However, there are

practical problems; what if the validation error is already lower (per case) than the training

error? And what if it is impossible to achieve the same training error using all the training

data? Even if scenarios as bad as these do not occur frequently, it is still possible that the

generalisation performance will often be decreased by using this procedure.

Instead of including all the training data and retraining, I will effectively use all the data

by training an ensemble of networks, each of which is trained using a different validation

set (chosen at random). This is a convenient way of combining the benefits of averaging

over ensembles with the ability to use all cases for training. When using different validation
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sets for each net, one cannot choose between networks and only include the ones with

best validation error, since the variation in validation error might be due to the differing

validation sets. Consequently I will include all trained nets in the final ensemble. A more

complicated hybrid scheme with a few networks trained for each validation set could be

contemplated, but for simplicity this will not be pursued further.

Additionally, we must take care of the cases where early stopping seems to stop too early or

too late. In the initial phases of training it is conceivable that the validation error fluctuates

quite wildly and this may cause the stopping criteria to be fulfilled (since the extra 50%

epochs may be very few and thus not be a reliable indicator of local minima). To rule out

this scenario, I require that each training run uses at least 2% of the total available training

time and that at least 250 iterations have been done (unless the minimization algorithm

converges). This will limit the number of possible members of the final ensemble to 50,

which is probably adequate for getting most of the benefit from averaging. On the other

hand, it may be that the validation error keeps decreasing and the stopping criterion is

never satisfied. Recall that the expected behaviour of the validation error is that it should

increase when over-fitting sets in, but there is no guarantee that this will happen in any

particular run. On the other hand, it may be that it simply takes a large number of epochs

to train the network. To resolve this dilemma, I will terminate a training if it uses more

than 33% of the total computational resources available, such that the final ensemble will

contain at least 3 networks. Technically, some of the above criteria can be conflicting; in the

actual implementation the conditions for deciding to stop the training of a particular net in

order of precedence are: if the network has converged; OR if more than 33% of the allowed

cpu time has been used on training this net; OR if more than 250 iterations of training has

been completed AND the minimum validation error was achieved at least 33% backwards

in the run AND we’ve used at least 2% of the total available cpu time on this net.

This method can now be run automatically without any further specifications, except that

a limit on the allowed amount of cpu time has to be specified. As a default I have chosen

to let the allowed cpu time scale linearly with the number of training cases. The default

allows 1.875 seconds per training case; this means that a net with 1024 training cases will

be allowed to train for 32 minutes.
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3.7 Bayesian neural network using Monte Carlo: mlp-mc-1

A Bayesian implementation of learning in neural networks using Monte Carlo sampling has

been developed by Neal [1996]. This computation intensive method has shown encouraging

performance in [Neal 1996] and in a study using several datasets in [Rasmussen 1996].

For a full description of the method the reader is referred to [Neal 1996]. Here a brief

description of the algorithm will be given, along with the heuristics employed. A feed

forward multi-layer perceptron neural network with a single hidden layer of hyperbolic

tangent units is used; the network is fully connected, including direct connections from the

input to the output layer. The output units are linear. All units have biases. The network is

identical to the one used by the mlp-ese-1 method, eq. (3.12). All the network parameters

are given prior distributions specified in terms of hyperparameters. Predictions are made

using Monte Carlo samples of the posterior distribution of weights.

The network weights, w, together with the hyperparameters are collectively termed θ. The

posterior distribution of θ is given by Bayes’ rule

p(θ|D) ∝ p(θ)p(t(1), . . . , t(n)|x(1), . . . , x(n), θ), (3.13)

where p(θ) is the prior and p(t(1), . . . , t(n)|x(1), . . . , x(n), θ) is the likelihood. We assume that

the noise is independent Gaussian with variance σ2. We don’t know the magnitude of the

noise, so we will attempt to infer it from the data. We put a Gamma prior on the inverse

variance τ = σ−2, known as the precision. The gamma density is given by

p(τ) ∼ Gamma(µ, α) ∝ τα/2−1 exp(−τα/2µ), (3.14)

where µ is the mean and α is known as the shape parameter. We use µ = 400 (corresponding

to σ = 0.05) and α = 0.5, which is intended as a vague prior, allowing noise variances down

to 10−4 and up past unity. The density for the resulting prior is depicted in fig. 3.1.

The network weights are assigned to groups according to the identity of the units that they

connect. There are 5 groups of weights: output-biases bo, hidden-biases bh, input-hidden

weights wh, hidden-output weights wo and direct input-output weights wd. The priors

for the network weights are different for each group of weights. They are given in terms

of hierarchically specified distributions in which higher level hyperparameters are shared

between all the weights in the group, thereby introducing dependencies between weights.

The output-biases are given zero-mean Gaussian priors bo ∼ N (0, σ2) with a standard
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Figure 3.1: Non-normalised prior on the noise level σ. The function σp(σ) has been plotted against
σ on a log scale to allow the usual interpretation of probabilities as being proportional to areas under
the curve.

deviation of σ = 1. Since the targets in the training set will have been normalised by DELVE

to have roughly zero mean and unit variance, this prior should accommodate typical values.

The group of hidden-unit biases is given a hierarchical prior consisting of two layers:

bh ∼ N (0, σ2); the distribution of σ is specified in terms of a precision τ = σ−2 and

given a Gamma form as eq. (3.14) with parameters: µ = 100 and α = 0.5. I have not

attempted to plot the resulting prior on the weights (obtained by integrating out τ) since

the dependencies between weights through the common value of τ makes it difficult to give

a faithful representation of the distribution.

The hidden-output weights are given a similar two layer prior, with parameters α = 0.5

and µ = 100H−1, where H is the number of hidden units. This prior is scaled according

to the number of hidden units with the variance for the weights inversely proportional

to the number of hidden units. The scaling accomplishes an invariance of the prior on

the magnitude of the output signal with respect to the number of hidden units. Such a

decoupling of signal magnitude and model complexity is useful in setting priors and when

considering networks with numbers of hidden units tending to infinity (see section 4.1).

The input-to-hidden weights are given a three layer prior: again each weight is given a

zero-mean Gaussian prior w ∼ N (0, σ2); the corresponding precision for the weights out

of input unit i is given a Gamma prior with a mean µ and a shape parameter α1 = 1 :

τi ∼ Gamma(µ, α1). The mean µ is determined on the top level by a Gamma distribution
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with mean µ0 = 25I2, where I is the number of inputs, and shape parameter α0 = 0.5 :

µi ∼ Gamma(25I2, α0). The prior variance for the weights scales proportional to I−2. This

is done in accordance with the (subjective) expectation, that the more inputs there are,

the more unlikely it is for any single one of them to be very important for the predictions.

Under the scaled prior, a constant number of inputs will be “important” (i.e., have a large

value of σi) as the number of inputs increase. The direct input-to-output connections are

also given this prior.

The above-mentioned three layer prior incorporates the idea of Automatic Relevance De-

termination (ARD), due to MacKay and Neal, and discussed in [Neal 1996]. The hyperpa-

rameters, τi, associated with individual inputs can adapt according to the relevance of the

input; for an unimportant input, τi can grow very large (governed by the top level prior),

thus forcing σi and the associated weights to vanish.

Given the likelihood and the prior we can compute the posterior distribution for the network

weights. In order to make predictions, we integrate over the posterior. The predictive

distribution for the target t(n+1) corresponding to a novel input x(n+1) is given by

p
(

t(n+1)
∣

∣x(n+1),D
)

=

∫

p
(

t(n+1)
∣

∣x(n+1), θ
)

p(θ|D)dθ ≃ 1

T

T
∑

t=1

p
(

t(n+1)
∣

∣x(n+1), θ(t)
)

, (3.15)

where θ(t) are samples drawn from the posterior distribution. For neural network models

this integral cannot be handled analytically. Instead, we employ the Hybrid Monte Carlo

algorithm [Duane et al. 1987] to obtain samples from the posterior with which we can

approximate the predictive distribution. This method combines the Metropolis algorithm

with dynamical simulation which helps to avoid the random walk behavior of simple forms

of Metropolis; this is essential if we wish to explore weight space efficiently. The hyperpa-

rameters are updated using Gibbs sampling.

Sampling from the posterior weight distribution is performed by iteratively updating the

values of the network weights and hyperparameters. Each iteration involves two compo-

nents: weight updates and hyperparameter updates. A cursory description of these steps

follows.

Weight updates are done using the Hybrid Monte Carlo algorithm. This algorithm is also

used for the gp-mc-1 method in section 4.6, where a more extensive explanation is given.

A fictitious dynamical system is generated by interpreting weights as positions, and aug-

menting the weights w with momentum variables p. The purpose of the dynamical system

is to give the weights “inertia” so that random walk behaviour can be avoided during ex-
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ploration of weight space. The total energy, H, of the system is the sum of the kinetic

energy, K, (a function of the momenta) and the potential energy, E . The potential energy

is defined such that p(w) ∝ exp(−E). We sample from the joint distribution for w and p

given by p(w,p) ∝ exp(−E − K), under which the marginal distribution for w is given by

the posterior. A sample of weights from the posterior can therefore be obtained by simply

ignoring the momenta.

Sampling from the joint distribution is achieved by two steps: 1) finding new points in phase

space with near-identical energies H by simulating the dynamical system using a discretised

approximation to Hamiltonian dynamics, and 2) changing the energy H by doing Gibbs

sampling for the momentum variables.

Hamilton’s first order differential equations for H are approximated by a series of discrete

first order steps (specifically by the leapfrog method). The first derivatives of the network

error function enter through the derivative of the potential energy, and are computed us-

ing back-propagation. In the original version of the hybrid Monte Carlo method, the final

position is then accepted or rejected depending on the final energy H∗ (which is not neces-

sarily equal to the initial energy H because of the discretisation). Here we use a modified

version that uses an average (in the probability domain) over a window of states instead

[Neal 1994]. The step size of the discrete dynamics should be as large as possible while

keeping the rejection rate low. The step sizes are set individually using several heuristic

approximations, and scaled by an overall parameter ε. We use L = 100 iterations, a window

size of 10 and a step size of ε = 0.15 for all simulations.

The momentum variables are updated using a modified version of Gibbs sampling, allowing

the energy H to change. A “persistence” of 0.95 is used; the new value of the momentum is a

weighted sum of the previous value (weight 0.95) and the value obtained by Gibbs sampling

(weight (1−0.952)1/2) [Horowitz 1991]. With this form of persistence, the momenta change

approximately 20 times more slowly, thus increasing the “inertia” of the weights, so as to

further help in avoiding random walks. Larger values of the persistence will further increase

the weight inertia, but reduce the rate of exploration of H. The advantage of increasing

the weight inertia in this way rather than by increasing L is that the hyperparameters are

updated at shorter intervals, allowing them to adapt to the rapidly changing weights.

The hyperparameters are updated using Gibbs sampling. The conditional distributions for

the hyperparameters given the weights are of the Gamma form, for which efficient generators

exist, except for the top-level hyperparameter in the case of the 3 layer priors used for the

weights from the inputs; in this case the conditional distribution is more complicated and
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the method of Adaptive Rejection Sampling [Gilks and Wild 1992] is employed.

The network training consists of two levels of initialisation before sampling for network

weights which are used for prediction. At the first level of initialisation the hyperparame-

ters (standard deviations for the Gaussians) are kept constant at 0.5 for hyperparameters

controlling output weights and to 0.1 for all other hyperparameters, while the weights them-

selves are set to zero. Then the weights are allowed to grow during 1000 leapfrog iterations

(with the hyperparameters remaining fixed). Neglecting this phase can cause the network

to get caught for a long time in a state where weights and hyperparameters are both very

small.

The Markov chain described above is then invoked and run for as long as desired, eventu-

ally producing networks from the posterior distribution. The initial 1/3 of these nets are

discarded, since the algorithm may need time to reach regions of high posterior probabil-

ity. Networks sampled during the remainder of the run are saved for making predictions

according to eq. (3.15). I use 100 samples from the posterior to approximate the integral.

Probably the predictions would not get vastly different if more samples were used in the

approximation and this has been avoided because the disk requirements for storing these

network samples become prohibitive.

Since the output unit is linear, the final prediction can be seen as coming from a huge

(fully connected) ensemble net with appropriately scaled output weights. The size of the

individual nets is given by the rule that we want at least as many network parameters as we

have training cases (with a lower limit of 6 hidden units and an upper limit of 25). We hope

thereby to be well out of the under-fitting region. Using even larger nets would probably

not gain us much (in the face of the limited training data) and is avoided for computational

reasons.

All runs used the parameter values given above. The only check that is necessary is that

the rejection rate stays low, say below 5%; if not, the step size should be lowered. In all

runs reported here, ε = 0.15 was adequate. The parameters concerning the Monte Carlo

method and the network priors were all selected based on intuition and on experience with

toy problems. Thus no parameters need to be set by the user, save the specification of the

allowable cpu time.
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Chapter 4

Regression with Gaussian

Processes

This chapter presents a new method for regression which was inspired by Neal’s work

[Neal 1996] on priors for infinite networks and pursued in [Williams 1996; Williams and

Rasmussen 1996]. Gaussian Process (GP) models are equivalent to a Bayesian treatment of

a certain class of multi-layer perceptron networks in the limit of infinitely large networks.

In the Gaussian process model, these large numbers of network weights are not represented

explicitly and the difficult task of setting priors on network weights is replaced by a simpler

task of setting priors for the GP’s.

Close relatives to the GP model presented here have appeared in various guises in the liter-

ature. An essentially similar approach to the present was taken in [O’Hagan 1978; O’Hagan

1994], but surprisingly it has not spurred much general interest. This thesis extends the

work of O’Hagan by adapting model parameters using their associated likelihood. Gaussian

Process models are being used for analysis of computer experiements [Koehler and Owen

1996], presumably because they are applicable to modelling noise-free data. This seems to

be an undue restriction however, and it is shown in the following chapters that GP models

are also very attractive for modelling noisy data.

The approach of variational analysis to regularised function approximation has been taken

in [Poggio and Girosi 1990; Girosi et al. 1995] and the related spline models have been

studied by Wahba [1990]. In these approaches, cross validation or generalised cross vali-

dation (GCV) are used to estimate regularisation parameters. These approaches may not

49
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be viable with large numbers of regularisation constants, as required for Automatic Rel-

evance Determination (ARD) based regularisation schemes. The GP models also have a

close correspondence with variable metric kernel methods [Lowe 1995].

In the present exposition, the two versions of GP models are formulated in terms of a prob-

abilistic model in a Bayesian setting. In the simplest approach, the parameters controlling

the model are optimized in a maximum aposteriori (MAP) approach. In the second version,

the Bayesian formalism is taken further, to allow integration over parameters.

4.1 Neighbors, large neural nets and covariance functions

The methods relying on Gaussian processes described in this chapter differ in several re-

spects from other methods commonly used for data modeling and consequently it may not

be easy to get an intuitive feel for how the model works. In order to help readers who are

familiar with more conventional methods, I will start the discussion of the GP model via

an analogy to kernel smoother models. This should help to make the subsequent formal

account more digestible. Next, a simple calculation will show how neural networks with

Gaussian priors on their weights imply Gaussian process priors over functions.

A kernel smoother consists of a kernel function and a local model. The kernel function

defines a neighborhood by giving weights to training examples and the local model is fit to

these weighted examples for predictions. The Gaussian and tri-cubic functions are common

choices of kernel functions. The kernel function is a function of the model inputs and returns

a weighting for each training example to be used when fitting the local model. Often kernel

functions which depend only on (Euclidean) distance are used, e.g., the Gaussian kernel

K ∝ exp(−d2/2σ2), where d is the distance between the kernel center and the input of a

training case. The properties of the smoother are controlled by the width of the kernel, often

expressed in terms of numbers of neighbors and selected by cross-validation. More advanced

methods with more flexible kernels, sometimes referred to as variable metric models, have

also been explored [Lowe 1995]. Often computational arguments are used to favour kernels

which put a non-zero weight on only a small fraction of the training cases. When predicting

the output for a novel test input, the kernel is centered on the test input and weightings

for the training cases are determined. A common choice of local model is the linear model

fit by (weighted) least squares [Cleveland 1979].

In the GP methods, the role of the kernel function and local model are both integrated in
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the covariance function. Like the kernel function, the covariance function is a function of the

model inputs, but rather than returning a weighting for a training case given a test input,

it returns the covariance between the outputs corresponding to two inputs. As with the

kernel method, the Gaussian, C(x, x′) ∝ exp(−d2/2σ2) where d is the Euclidean distance

between x and x′, would be a reasonable choice for a covariance function (note however,

that the the name “Gaussian process” does not refer to the form of the covariance function).

Assuming that the mean output is zero, the covariance between the outputs corresponding

to inputs x and x′ is defined as E[y(x)y(x′)]. Thus, inputs that are judged to be close by

the covariance function will have outputs that are highly correlated and thus are likely to

be quite similar. In the Gaussian process model we assume that the outputs of any finite

set of cases have a joint multivariate Gaussian distribution with covariances given by the

covariance function. Predictions will be made by considering the covariances between the

test case and all the training cases, which will enable us to compute the most likely output

for the test case. In fact we can obtain the entire predictive distribution for the test output,

which given the assumptions is also Gaussian.

The idea of using Gaussian processes directly was inspired by investigations by Neal [1996]

into priors over weights for neural networks. Consider a neural network with I inputs, a

single output unit and a single layer of H tanh hidden units. The hidden and output units

have biases and the network is fully connected between consecutive layers

f(x) =
H

∑

h=1

gh(x)vh + b0 gh(x) = tanh
(

I
∑

i=1

xiuih + ah

)

. (4.1)

The weights are all given zero mean Gaussian priors; the standard deviations for the input-

to-hidden weights, uih, and hidden-biases, ah, are σu and σa respectively, for the hidden-

to-output weights, vh, and the output-bias, b, the standard deviations are σv and σb. This

sort of prior was suggested by MacKay [1992b].

Consider the distribution of a network output under the prior distribution of weights, given a

specific input x(i). The contribution of each hidden unit has a mean of zero: E[vhgh(x(i))] =

E[vh]E[gh(x(i))] = 0, since vh and gh(x(i)) are independent. The variance of the contribution

from each hidden unit is finite E[(vhgh(x(i)))2] = σ2
vE[(hg(x

(i)))2], since hg(x
(i)) is bounded.

Setting V (x(i)) = E[(hg(x
(i)))2], we can conclude by the Central Limit Theorem that as

the number of hidden units H tends to infinity, the prior distribution of f(x(i)) converges

to a zero mean Gaussian with variance σ2
b + Hσ2

vV (x(i)). By selecting a value for σv which

scales inversely with H we obtain a well defined prior in the limit of infinite numbers of

hidden units.
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Following a similar argument, the joint distribution for several inputs converges in the limit

of infinite H to a multivariate Gaussian with means of zero and covariance of

E[f(x(i))f(x(j))] = E
[

(

H
∑

h=1

gh(x(i))vh + b0

)(

H
∑

h=1

gh(x(j))vh + b0

)

]

= σ2
b + Hσ2

vE[gh(x(i))gh(x(j))],

(4.2)

which defines a Gaussian process; the crucial property being that the joint distribution of

any finite set of function values is Gaussian. I will not attempt to further characterize the

covariance functions implied by weight priors for neural networks, see [Neal 1996].

The preceding paragraphs are meant to motivate investigation of models relying on Gaus-

sian processes. The correspondences to these other models will not play a crucial role in

the following — rather, it will be shown how to model data purely in terms of Gaussian

processes. This will require that the reader becomes accustomed to thinking about distribu-

tions over functions in terms of their covariances; this will hopefully be aided by illustrations

of functions drawn from various Gaussian process priors.

4.2 Predicting with a Gaussian Process

Formally, a Gaussian process is a collection of random variables {Yx} indexed by a set

x ∈ X, where any finite subset of Y ’s has a joint multivariate Gaussian distribution. A

typical application of Gaussian processes is in the field of signal analysis, where the random

variables are indexed by time. In contrast, in our case we index the random variables by

X, the input space of dimensionality m. A Gaussian process is fully specified by its mean

and its covariance function, C(x, x′). In the following I will consider only GP’s with a mean

of zero. The random variable Yx will model the output of the GP model when the input

is x. The covariance is a function of the inputs C(x, x′) = E
[(

Yx − µ(x)
) (

Yx′ − µ(x′)
)]

,

where µ ≡ 0. Here, C(x, x′) is called the covariance function and the matrix of covariances

between pairs of examples is referred to as the covariance matrix. In section 4.3 it will

be shown how to parameterise the covariance function; for now, we consider the form of

C(x, x′) as given. For presentational convenience, in the following I will index training and

test cases by superscripts in brackets, such that y(i) is the output associated with input x(i).

Our goal is, as usual, to compute the distribution p(y(n+1)|D, x(n+1)) of scalar output y(n+1)

given a test input x(n+1) and a set of n training points D = {(x(i), t(i))|i = 1 . . . n}. Note

that we distinguish between the model outputs y(i), and the training set targets t(i); they
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are both random variables but differ in that the targets are noise corrupted versions of

the outputs. We introduce n + 1 stochastic variables Y (1), . . . , Y (n), Y (n+1), modeling the

function at the corresponding inputs x(1), . . . , x(n+1). Note that this formulation is different

from the common frequentist model where a single random variable is used to model the

conditional distribution p(t|x) of the targets given the inputs. An example will help to

clarify the difference: consider the linear model with coefficients given by the vector β; the

linear model and noise contributions are

y = βTx, t = y + ε, (4.3)

where ε is the noise. In the frequentist framework the use of a single random variable t is

possible because the model output y is a deterministic function of the inputs x, once the

parameters β have been estimated (using for example maximum likelihood). In a Bayesian

approach, on the contrary, the model parameters are treated as random variables and

the model outputs are obtained through integration over model parameters, introducing

stochasticity and dependencies between outputs, thus requiring separate random variables.

In fact, in the GP model the only quantities being modeled are the covariances between

outputs.

We proceed by assigning a multivariate Gaussian prior distribution to these variables

p
(

y(1), . . . , y(n), y(n+1)
∣

∣x(1), . . . , x(n+1)
)

∝

exp−1

2
yTΣ−1y,

where Σ = C
(

x(p), x(q)
)

. (4.4)

Note that this prior specifies the joint distribution of the function values (not the noisy

targets) given the inputs. It is a prior in so far as the targets for the training cases

have not yet been considered. A reasonable prior would specify that we expect a larger

covariance between function values corresponding to nearby inputs than for function values

corresponding to inputs that are further apart. Covariance functions are discussed in the

next section.

It will often be convenient to partition the prior covariance matrix in the following manner

Σ =

[

K a

aT b

]

, (4.5)

where K contains the covariances between pairs of training cases and a is a vector of

covariances between the test case and the training cases and b is the prior covariance between

the test case and itself.
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The likelihood relates the underlying function which is modeled by the y variables to the

observed noisy targets t(i), i = 1 . . . n. The noise is assumed to be independent Gaussian

with some (unknown) variance r2

p
(

t(1), . . . , t(n)
∣

∣y(1), . . . , y(n), y(n+1)
)

∝

exp−1

2
(y − t)TΩ−1(y − t),

where Ω−1 =

[

r−2I 0

0T 0

]

. (4.6)

Here I is an n × n identity matrix. To gain some notational convenience in the following,

I have written this joint distribution conditioning also on y(n+1), although the distribution

does not depend on this variable. Formally the vector t in this equation has n+1 elements,

whereas there are only n observed targets — the vector is simply augmented by an element

(its value is inconsequential).

Using Bayes’ rule, we combine the prior and the likelihood to obtain the posterior distribu-

tion

p
(

y(1), . . . , y(n+1)
∣

∣D, x(n+1)
)

∝ p
(

y(1), . . . , y(n+1)
∣

∣x(1), . . . , x(n+1)
)

p
(

t(1), . . . , t(n)
∣

∣y(1), . . . , y(n+1)
)

= p
(

t(1), . . . , t(n), y(1), . . . , y(n+1)
∣

∣x(1), . . . , x(n+1)
)

(4.7)

The constant of proportionality in this equation is p(D), a normalisation constant which is

independent of the y(i) variables. Note, that in general it is not necessary to compute the

normalisation terms in any of the previous equations. The posterior is

p
(

y(1), . . . , y(n), y(n+1)
∣

∣D, x(n+1)
)

∝ exp
(

− 1

2
yTΣ−1y − 1

2
(y − t)TΩ−1(y − t)

)

= exp
(

− 1

2
(y − ym)T

[

Σ−1 + Ω−1
]

(y − ym)
)

,
(4.8)

where ym is a vector of posterior means. The posterior distribution is again Gaussian

with an inverse covariance given by the sum of the inverse covariances of the prior and the

likelihood. The posterior mean is where the product takes on its maximum value, and can

consequently be found by differentiation

∂

∂y(i)
log p

(

y(1), . . . , y(n), y(n+1)
∣

∣D, x(n+1)
)

= 0 =⇒ ym =
[

Σ−1 + Ω−1
]

−1
Ω−1t. (4.9)

However, we are mostly interested in the distribution for y(n+1) and do not necessarily

wish to attempt to evaluate this expression. Notice that the posterior means ym do not

necessarily coincide with the corresponding target values. To compute the distribution for

y(n+1) we need to marginalise over y(1), . . . , y(n) from eq. (4.8) which yields a Gaussian

distribution with mean and variance

p
(

y(n+1)
∣

∣D, x(n+1)
)

∼ N (µy(n+1) , σ2
y(n+1)),

µy(n+1) = aTQ−1t

σ2
y(n+1) = b − aTQ−1a
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y(n+1) y(n+1)

t(1) p
(

y(n+1)
)

Figure 4.1: The left panel shows the one standard deviation contour of the joint Gaussian distri-
bution of a single training case t(1) and the test point y(n+1) in the situation where we have a single
training point, n = 1. When the target value for the training point is observed, we condition on
this value indicated by the dotted vertical line. This gives rise the the predictive distribution on the
right. The vertical axes of the two plots are to scale.

where Q = K + r2I. This completes the analysis of the model, since we now have access

to the desired predictive distribution. Depending on the loss function of a particular ap-

plication, we can make optimal predictions by making point predictions that minimize the

expected loss. Notice, that in order to use this result we must invert the Q matrix which

has size n × n.

A slightly different view of the same formalism as above, may lead to a better intuitive

understanding of what is going on. Starting from the middle line of eq. (4.7) we can

directly marginalise over the y(i), i = 1 . . . n, which we are not interested in and obtain

∫

· · ·
∫

p
(

t(1), . . . , t(n), y(1), . . . , y(n+1)
∣

∣x(1), . . . , x(n+1)
)

dy(1) · · · dy(n) =

p
(

t(1), . . . , t(n), y(n+1)
∣

∣x(1), . . . , x(n+1)
)

∝ exp−1

2
tT
y (Σ−1 + Ω−1)ty,

(4.11)

where ty indicates the vector of targets augmented by y(n+1). We can then condition on the

observed values of the targets in the training set, and using the standard rule for conditioning

Gaussians we recover the result from eq. (4.10). This conditioning is illustrated in fig. 4.1.
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4.3 Parameterising the covariance function

In the previous section we have seen how to derive the predictive distribution for test cases

when the covariance function was given. This section discusses various choices for covariance

functions.

There are many possible choices of prior covariance functions. Formally, we are required to

specify a function which will generate a non-negative definite covariance matrix for any set

of input points. From a modeling point of view, we wish to specify prior covariances which

contain our prior beliefs about the structure of the function we are modeling.

As is often the case in Bayesian modeling, it turns out that it is convenient to specify priors

in terms of hyperparameters, whose values (or distributions) are not specified a priori, but

will be adapted as the model is fit to the training data. An example will clarify this idea;

the covariance function used extensively in this thesis sets the covariance between the points

x(p) and x(q), p, q = 1 . . . n to be

C
(

x(p), x(q)
)

= a0 + a1

m
∑

i=1

x
(p)
i x

(q)
i + v0 exp

(

− 1

2

m
∑

i=1

wi

(

x
(p)
i − x

(q)
i

)2
)

, (4.12)

where θ = log(v0, r
2, w1, . . . , wm, a0, a1) is a vector of parameters playing the role of hy-

perparameters (the log is applied elementwise). Note that the noise level r2 is included in

the hyperparameters although it doesn’t appear in the covariance function, since it will be

treated in the same way as the hyperparameters in the following analysis.

The covariance is conceptually made up of two components. The first part involving the a0

and a1 parameters controls the scale of the bias and linear contributions to the covariance.

To understand the form of these contributions consider a linear function

y(x) = α0 +
m

∑

i=1

αi(xi − x̄i), (4.13)

where the coefficients αi, i = 0, . . . ,m are considered random variables and x̄i is the mean

of xi. Giving the α variables independent zero-mean distributions with finite variance we

can compute the covariances

C(x, x′) = E
[

y(x)y(x′)
]

= E

[

α2
0 +

m
∑

i=1

α2
i (xi − x̄i)(x

′

i − x̄i)

]

= a0 + a1

m
∑

i=1

(xi − x̄i)(x
′

i − x̄i),

(4.14)
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where a0 is the variance of α0 and we have assumed that all the remaining coefficients have

a common variance a1. The pre-processing of the data used for tests normalises the inputs

to have a mean (or median) of zero, so we can (approximately) drop the x̄i term and recover

the form for linear contribution to the covariance in eq. (4.12). One may worry that the

use of a common variance a1 for all inputs may be dimensionally inconsistent if inputs are

measured in different units. Naturally, we may group the variables of common variance

differently; in particular, one choice would be to allow a separate hyperparameter for each

input dimension.

The contributions from the linear terms in the covariance functions may become large for

inputs which are quite distant from the bulk of the training examples. This is probably a

useful mechanism for extrapolating to data points which are at the boundary of the training

examples; without this term the covariance from the local interactions alone would become

close to zero, and the prediction at large distances would be close to zero.

The last part of the covariance function in eq. (4.12) expresses the idea that cases with

nearby inputs should have highly correlated outputs. The wi parameters are multiplied by

the coordinate-wise distances in input space and thus allow for different distance measures

for each input dimension. For irrelevant inputs, the corresponding wi should be small in

order for the model to ignore these inputs. The “characteristic lengths” for input directions

are given by w
−1/2
i . When a wi parameter gets large, the resulting function will have

a short characteristic length and the function will vary rapidly along the corresponding

axis, indicating that this input is of high “importance”. This idea is closely related the

Automatic Relevance Determination (ARD) idea of MacKay and Neal. The associated v0

variable gives the overall scale of the local correlations. In the following discussion, this

term will be referred to as the ARD-term.

The covariance in eq. (4.12) will be used extensively for the experiments in this thesis.

Many other choices may also be reasonable. Some other choices will be discussed briefly at

the end of this chapter. As an example, two functions drawn at random from the ARD-

part of the prior covariance function are plotted in fig. 4.2. Each of the two 50 × 50 mesh

plots represent a single sample drawn at random from the 2500 dimensional joint Gaussian

distribution. These random samples were obtained by multiplying a vector of zero-mean

unit-variance Gaussian random numbers by the Cholesky factor of the covariance matrix,

requiring 48Mb of memory and 8 minutes of cpu time.
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Figure 4.2: Functions drawn at random from ARD prior covariance functions. There are two input
dimensions x1 and x2. Only the ARD-part of the covariance in eq. (4.12) was considered. In the left
plot, the ARD hyperparameters were w1 = 10 and w2 = 0.5, corresponding to characteristic lengths
of 0.32 and 1.41 respectively. In the plot on the right, both ARD hyperparameters were set to 10.
As expected the functions generated from this prior are smooth. In both plots v0 = 1.

4.4 Adapting the covariance function

So far, we have only considered the properties of the model for fixed values of the hyperpa-

rameters. In the following I will discuss how to adapt the hyperparameters in the light of

training data. The log likelihood of the hyperparameters at this higher level is given by

log p(D|θ) = log p
(

t(1), . . . , t(n)
∣

∣x(1), . . . , x(n), θ
)

= − 1

2
log det Q − 1

2
tTQ−1t − n

2
log 2π.

(4.15)

It is possible to express analytically the partial derivatives of the log likelihood, which can

form the basis of an efficient learning scheme. These derivatives are

∂

∂θi
log p

(

t(1), . . . , t(n)|x(1), . . . , x(n), θ
)

= −1

2
trace

(

Q−1 ∂Q

∂θi

)

+
1

2
tTQ−1 ∂Q

∂θi
Q−1t. (4.16)

In order to compute the parameters of the predictive distribution in eq. (4.10) it was neces-

sary to invert the matrix Q; we also need it for the partial derivatives of the likelihood. Since

the covariance matrix is guaranteed to be positive definite we can invert it using Cholesky

decomposition [Golub and van Loan 1989] which requires 5
6n3 multiply and accumulate

operations. Cholesky decomposition also produces the determinant of the matrix which is

needed to evaluate the likelihood. The remaining computations involved in evaluating the

likelihood and its partial derivatives (vector by matrix multiply and evaluation of the trace

of a product) are of order O(n2). Thus, the main computational obstacle is computation

of Q−1 which is certainly feasible on workstation computers with n of several hundred. For
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larger values of n the computations can be demanding; as an example, the inversion for

n = 1024 takes about 5 minutes of CPU time on our 200MHz R4400/R4010 processor.

Several learning schemes are possible given the availability of partial derivatives of the

likelihood. Maximum likelihood can be implemented by employing gradient descent. One

may also specify a prior on the hyperparameters, a hyperprior and compute the posterior for

the hyperparameters. Two possible implementations are covered in the following sections:

a conjugate gradient approach to maximum aposteriori (MAP) estimation and a Monte

Carlo method for integrating over hyperparameters. First I will discuss the hyperprior.

The same priors are used for the MAP method and the Monte Carlo approach. The prior

assumes that the training data has been normalised to roughly zero mean and unit variance.

The priors on the log of a0, a1 and r2 are all Gaussian with mean −3 and standard deviation

3, corresponding to fairly vague priors. The prior on log v0 is Gaussian with mean −1 and

standard deviation 1. This prior seems reasonable, since v0 gives the variance of the signal

predicted by the ARD-term of the covariance function; since the targets are assumed to

be normalized to roughly unit variance, we expect the hyperparameter (which is in the log

domain) to be in the vicinity of 0 for tasks with low noise and lower for tasks with very

high noise.

The priors for the ARD hyperparameters are more complicated. I wish to introduce a scaling

of this prior with the number of inputs m. If m is small e.g. 8, then it seems reasonable that

say 4 of these parameters are highly relevant; however if m is larger e.g. 32, then probably

somewhat less than 16 inputs are highly relevant. Consequently, we expect the prior on the

importance of the ARD hyperparameters to be lower with increasing numbers of inputs.

Following the derivations in [Neal 1996] we employ a gamma prior whose mean scales with

the number of inputs m; the inverse hyperparameters are given gamma priors

p(w−1) =
(α/2µ)α/2

Γ(α/2)
(w−1)α/2−1 exp(−w−1α/2µ), with µ = µ0m

2/α. (4.17)

Here µ−1 is the mean of w−1. I chose α = 1 and µ0 = 1 from looking a plots of the

distributions, see fig 4.3. It may be difficult to decide how many inputs should be thought

relevant, so one might attempt to make µ0 a top-level hyperparameter, and set some vague

prior on this. This has not been attempted in the current implementation. The resulting

prior for the θ parameters, which are given by θ = log(w) is

p(θ) = m−1(2π)−1/2 exp
(

− θ

2
− exp (−θ)

2m2

)

. (4.18)

Naturally, this prior may not be appropriate for all tasks — indeed there may be some tasks

where a large number of inputs are all relevant. However, the prior is still vague enough
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Figure 4.3: The scaling gamma prior used for the ARD hyperparameters. Here m× p(θ) is plotted
against θ = log(w) for m = 8 and m = 32 from eq. (4.18). Note, that the expected number of
hyperparameters corresponding to important inputs is the same in the two cases; for larger values
of m the mass of the prior moves toward lower values indicating that we expect a larger proportion
of the inputs to be less relevant.

that many hyperparameters may grow to large values if the likelihood strongly suggests this.

Another benefit of putting pressure on the hyperparameters to remain small is that this

may help the learning procedures in locating areas of high posterior probability. Consider

the situation early in learning before the hyperparameters have had time to adapt; the

hyperparameters will be more or less random and if any irrelevant ones take on large values

then the exponential of eq. (4.12) may take on very small values. This will tend to attenuate

the partial derivatives of the likelihood which in turn may make learning slow. Another

way of saying this is that the initial search for regions of high posterior probability may be

slow if the prior and the likelihood are very different.

4.5 Maximum aposteriori estimates

The maximum aposteriori (MAP) estimates are found using a conjugate gradient optimiza-

tion technique (discussed in detail in Appendix B) to locate a (local) maximum of the

posterior. This approach has the advantage that a reasonable approximation to a (local)

maximum can be found with relatively few function and gradient evaluations. Hence, this

would be the preferred approach when there is a large number of training cases, when in-
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tegration via Monte Carlo is computationally infeasible. When there is a large number of

training cases we would generally expect the posterior to be fairly narrow, such that the

predictions for a MAP method may not differ much from the results of integrating over

hyperparameters if it were feasible.

The risk using a conjugate gradient optimization technique is that one may get stuck in

bad local maxima. Since the algorithm is “greedy” it can get stuck in even very shallow

local maxima. It is difficult to say whether this is a big problem in the current context.

One could attempt to clarify this by trying multiple random restarts for the optimization,

but I have not pursued this. Rather, I just do a single run allowing about 150 function and

gradient evaluations, by which time the likelihood is changing very slowly in cases with, for

example, 36 hyperparameters.

It should be noted that the resulting MAP estimates for the hyperparameters may be very

useful for interpretation of the data. The linear and non-linear parts of the function are sep-

arated out in the different sets of hyperparameters (although small ARD hyperparameters

may also carry linear contributions) and the magnitude of the different ARD hyperparam-

eters may convey the relative importance of the input attributes through their relation to

the characteristic lengths.

The initialisation of the hyperparameters is fairly important, since it may be that very

inappropriate initial values will make the partial derivatives of the likelihood very small,

thus creating problems for the optimization algorithm. I found that it works well to set

w = 1/m, v0 = 1 and all of a0, a1 and r2 to exp(−2).

4.6 Hybrid Monte Carlo

According to Bayesian formalism we should multiply the prior p(θ) by the likelihood p(D|θ)

from eq. (4.15) and integrate over the resulting posterior. Unfortunately, the likelihood has

a complex form, so analytical integration is infeasible. Instead we approximate the integral

using a Markov chain to sample from the posterior

p
(

y(n+1)
∣

∣D, x(n+1)
)

=

∫

p
(

y(n+1)
∣

∣D, x(n+1), θ
)

p(θ|D)dθ (4.19)

≃ 1

T

T
∑

t=1

p
(

y(n+1)
∣

∣D, x(n+1), θ(t)
)

, (4.20)
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where θ(t) are samples from the posterior distribution for θ. Note that the terms in the

sum are Gaussian distributions which means that the approximate predictive distribution

is a mixture of Gaussians with identical mixing proportions. As the number of samples T

grows, the approximate predictive distribution will tend to the true predictive distribution.

Note, that the predictive distribution may have a complex form, e.g. multi-modal.

The Hybrid Monte Carlo (HMC) method [Duane et al. 1987] seems promising for this

application. When attempting to sample from complicated multidimensional distributions

it is often advantageous to use gradient information to seek regions of high probability

in cases where these gradients can be computed. One can then use a Markov chain that

takes a series of small steps while exploring the probability distribution (while ensuring

that regions are visited according to their probability). One of the problems with simple

implementations of this idea is that the distributions are explored using random walks,

which have poor exploratory properties.

The Hybrid Monte Carlo method avoids this random walk behaviour by creating a fictitious

dynamical system where θ plays the role of position variables, which are augmented by a

set of momentum variables φ. The combined system tends to avoid random walks since the

momentum will introduce “inertia” in the hyperparameters and tend to keep the system

moving in the same direction on successive steps.

Formally, the total energy H of the system is the sum of the kinetic energy K and the

potential energy E . There are a total of m + 4 hyperparameters, and the kinetic energy is

a function of the associated momenta K(φ) = 1
2

∑m+4
i=1 φ2

i /λ, where λ is the particle mass.

The potential energy E is defined in such a way that p(θ|D) ∝ exp(−E). We sample from

the joint distribution for θ and φ given by p(θ, φ|D) ∝ exp(−E − K); the marginal of this

distribution for θ is the required posterior. A sample of the hyperparameters from the

posterior can therefore be obtained by simply ignoring the momenta. Sampling from the

joint distribution is achieved in two steps: (i) finding new points in phase space with near

identical energies H by simulating the dynamical system using a discretised approximation

to Hamiltonian dynamics, and (ii) changing the energy H by doing Gibbs sampling for the

momentum variables.

I will use a variation of HMC due to Horowitz [1991]. In this approach, having defined the

parameters L, ǫ and α, transitions of the Markov chain take place according to the following

scheme

1. Starting from the current state (θ, φ), perform L leapfrog steps with step size ǫ, re-
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sulting in the state (θ∗, φ∗).

2. With probability min(1, exp[H(θ, φ) − H(θ∗, φ∗)]), accept the new state, (θ, φ) :=

(θ∗, φ∗); otherwise reject the new state, and retain the old state with negated mo-

menta, (θ, φ) := (θ,−φ).

3. Update the total energy of the system by perturbing the momenta according to φi :=

αφi+νi

√
1 − α2 for all i, where νi are drawn at random from a zero-mean unit-variance

Gaussian.

Hamilton’s differential equations govern the evolution of the dynamical system through

fictitious time τ
dθi

dτ
=

∂H
∂φi

=
φi

λ

dφi

dτ
= −∂H

∂θi
= − ∂E

∂θi
. (4.21)

In practice we cannot simulate these equations exactly, since the partial derivative of E with

respect to θ is a complicated function. The leapfrog iterations are used to approximate the

dynamics

φi(τ + ǫ
2) = φi(τ) − ǫ

2

∂E
∂θi

(

θ(τ)
)

θi(τ + ǫ) = θi(τ) + ǫφi(τ + ǫ
2)/λ

φi(τ + ǫ) = φi(τ + ǫ
2 ) − ǫ

2

∂E
∂θi

(

θ(τ + ǫ)
)

(4.22)

The formal proof of the correctness of this approach to sampling from the posterior in

the context of neural networks can be found in [Neal 1996; Neal 1993]. In the current

implementation I use L = 1, a single leapfrog iteration to find proposal states. It is not

entirely clear whether longer trajectories with the standard algorithm would be better than

the use of “persistence”, see discussion in [Neal 1993].

The step sizes ǫ are set to the same value for all hyperparameters. This may work fairly well,

since the hyperparameters are given in the log domain, such that the step sizes implicitly

scale with the magnitude of the underlying parameter. The step size is chosen to scale as

ǫ ∝ n−1/2, since the magnitude of the gradients at a “typical” point under the posterior

are expected to be scale roughly as n1/2 when the prior is vague. The particle mass λ is

arbitrarily set to 1 and the constant of proportionality for the step sizes is chosen to give a

low rejection rate; I have found that ǫ = 0.5n−1/2 typically gives rejection rates of around

1%.

The momenta are updated with a “persistence”, α = 0.95. This will make the total energy

change approximately 20 times more slowly than without persistence. The advantage of
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persistence is that consecutive steps in hyperparameter space will tend to be in the same

direction (because of the momenta) thus avoiding random walks. This is particularly impor-

tant if the posterior distribution is highly correlated in which case exploration by random

walks can be extremely slow. Whether or not the posterior distributions for hyperparam-

eters in the current context are generally highly correlated is an open question. However,

it seems reasonable in such cases to introduce a little bit of persistence, since this will help

when the distributions are correlated and slow down progress only if the distributions are

fairly spherical — situations where sampling is a fairly easy task.

To make predictions, we let the Markov chain run for as long as desired and save the states

at regular intervals for predictions. I discard the initial 1/3 of the run, since the chain has

to converge on the posterior distribution. I then use 26 samples1 evenly distributed in the

remainder of the run for predictions. It is probably reasonable to expect that fewer samples

will suffice for predictions with gp-mc-1 than are needed for mlp-mc-1, since the former

model effectively has an implicit integration over “weights”. The predictions are made by

averaging the predictive distributions for each of the samples of the posterior. Thus, the

predictive distribution is a mixture of Gaussians. It should be noted that making predictions

may itself be computationally intensive. As well as finding the inverse covariance matrix

(for each of the 26 posterior samples) one has to evaluate eq. (4.10) taking O(n2) for each

test point. If there are many test points this may be a considerable effort.

4.7 Future directions

We have seen that the priors implied by large neural networks with Gaussian weight priors

can be used directly for modeling without implementing the neural network. It is dubious

whether it is useful to attempt to approximate Gaussian processes via Bayesian neural

networks with large numbers of hidden units. However, there may be situations where the

neural network parameterisation can provide some insight. Finally, it should be noted that

neural networks with non-Gaussian priors do not necessarily define Gaussian processes, and

useful models may be found in this class of networks.

Commonly, neural networks with fairly small numbers of hidden units are used for modeling

purposes. In the case of Bayesian learning, small numbers of hidden units are usually

1I originally intended to use 52 of samples for predictions, but due to a misunderstanding of my own

program interface I only got 26. Because of the long run-times for the programs, I redefined the method

instead of re-running it.
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chosen for computational reasons, and in non-Bayesian settings sometimes for fear of over-

fitting. It is conceivable that for some modeling problems a network with 3 hidden units

can approximate the true function very well, but I do not suspect this to be the general

case. The form of the covariance for the neural network is determined by the shape of

the activation function of the hidden units. However, there do not seem to be any reasons

why tanh units should be particularly advantageous. Therefore, from a statistical point

of view there is no clear reason why one should expect Gaussian processes or Bayesian

neural networks to perform very differently. This issue may be clarified though empirical

tests in Chapter 5. However, very different implementations of these two schemes have

been suggested, and it may be that whichever model has the most effective implementation

should be preferred.

A number of possible extensions to the basic ideas may be of interest. These include the

use of more complicated covariance functions to implement additive models, extensions

of computational nature to allow Gaussian processes to be applied to large datasets and

extensions to classification tasks. These possibilities are discussed briefly below.

One possibility is to attempt to model additive functions with Gaussian processes. Additive

functions involve multiple components that each depend only on a subset of the inputs.

These components interact only additively. Such additive models are popular in statistics

[Hastie and Tibshirani 1990] both for reasons of computational convenience and to enable

discovery of interpretable structure in the data. Additive functions in the GP-framework

can be attained by simply adding in several ARD-terms of the form of the exponential

in eq. (4.12), each governed by a separate set of hyperparameters but otherwise identical.

These multiple sets of ARD hyperparameters may be able to discover additive structure

in the data, such that only a certain number of inputs are considered relevant in each of

the covariance contributions. See [Neal 1996] for a discussion of additive models in the

context of neural networks. The computational overhead for these additive models is fairly

modest; at each iteration one needs to calculate the partial derivatives of the likelihood,

and perhaps the search for good hyperparameter values may be more demanding, since the

space is larger.

As an example, two functions drawn at random from additive covariance functions are

shown in fig. 4.4. Each of the two additive components only depends on one of the inputs.

The ARD hyperparameters (for the active inputs) have the same values as in fig. 4.2.

One of the severe limitations of Gaussian processes is the computational requirements when

the training sets get large. I have been able to handle up to about 1000 training cases,



66 Regression with Gaussian Processes

−2
−1

0
1

2

−2

−1

0

1

2

−1.5

−1

−0.5

0

0.5

1

1.5

−2
−1

0
1

2

−2

−1

0

1

2

−5

−4

−3

−2

−1

0

1

2

x1 x2 x1 x2

Figure 4.4: Functions drawn at random from additive ARD prior covariance functions. There are
two input dimensions x1 and x2. There were two ARD-terms in the covariance function each of
which depends only on a single input variable. In the left-hand plot the ARD parameters for the
“active” inputs were w1 = 10 and w2 = 0.5; in the right-hand plot w1 = 10 and w2 = 10. In both
plots v0 = 1.

requiring 24Mb memory (my implementation stores 3 n × n matrices for time efficiency)

and 8 hours of training time; since these requirements scale quadratically and cubically

with the number of training cases it becomes difficult to handle significantly larger training

sets. It should be noted that algorithms exist for matrix inversion in less than O(n3) time;

these algorithms are not easily implemented, and for modest values of n (such as a few

thousands), the computational benefits are not overwhelming.

Another possibility is to consider approximate techniques for matrix inversion. Two ap-

proaches seem promising here. One could attempt to make the covariance sparse by zeroing

terms of small magnitude; this might work best in conjunction with the removal of the lin-

ear term from the covariance matrix (one might fit a standard linear model and apply the

GP to the residuals from a linear fit). The use of a sparse covariance matrix corresponds

to only considering points that actually have high covariance, and would probably yield

good approximations, say considering the 20 points with highest covariance to each of the

training points. However, it may be difficult to find algorithms that can take advantage of

the form of the covariance matrix. This approximate scheme could either be employed for

long trajectories of leapfrog steps, with a final acceptance or rejection based on an exact

calculation; or one could simply use the approximate computations in the current scheme

(thus abandoning the guarantee of eventual convergence to the exact posterior).

Secondly, it should be noted that we do not need the entire inverse covariance matrix in our

computations, but the three quantities xQ−1, det(Q) and trace(Q−1X), when x is a vector

and X a matrix. Such terms can be approximated efficiently using conjugate gradient and
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Monte Carlo methods [Skilling 1989; Skilling 1993], and this approximation has recently

been implemented for Gaussian processes [Gibbs and MacKay 1996].

Gaussian processes for classification have recently been explored by Barber and Williams

[1996].
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Chapter 5

Experimental Results

This chapter contains the results and discussions of empirical tests of learning methods.

The tests are focused on measuring and comparing predictive performance for several real

and simulated datasets under varying computational constraints. All the experiments are

carried out using the DELVE environment; in particular the statistical framework developed

in Chapter 2 will be used extensively. The methods which are tested are all described in

detail in Chapters 3 and 4.

Three sets of experiments are presented. The first experiment addresses the question

whether application of bagging to the MARS procedure is advantageous. Such studies

comparing two variants of the same method are a common and important tool for model

development.

The second set of experiments attempts to rigorously compare seven different methods on a

real dataset, from the well known “Boston Housing” study. This data has been widely used

for benchmarking purposes and has also been incorporated in DELVE. These experiments

are aimed at clarifying how large the uncertainties in the performance measurements may

be when using real datasets of limited size.

Finally, a number of simulated datasets will be used in an extensive comparison of the

seven methods. The aim is to test whether the complicated Bayesian neural networks and

Gaussian Processes are able to outperform the simpler and more traditional methods. In

particular, attention will be paid to computational considerations, and we will attempt to

clarify how much computation time is needed to gain possible advantages of the complicated

69
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methods.

5.1 The datasets in DELVE

The experiments in this chapter will use data from two different sources. The “Boston

Housing” dataset is a well known real dataset that has previously been used for bench-

marking purposes. The other data source is the kin and pumadyn data families, which have

been generated from a realistic robot arm simulator specifically for benchmarking purposes.

In the DELVE environment the learning problems are specified using a hierarchical scheme,

whose naming convention will be used in the following. The datasets are at the top level;

these contain a list of cases (sometimes called examples) with their attribute values as well

as some rudimentary information about the ranges of possible values. At the top level there

is no mention of what should be learnt. At the next level, called the prototask level, a list

of attributes to be used as inputs and outputs (in the case of supervised learning) are given

and the cases to be used are specified. At the task level, the sizes of training and test sets are

given and the desired loss function is specified. At the task level, enough information about

the problem has been specified such that the expected loss for a method is well defined. At

the bottom of the hierarchy are the task-instances, containing the actual training and test

sets on which the methods can be run. Prototasks with similar characteristics are loosely

categorised into families.

The “Boston Housing” data was collected in connection with a study of how air quality

affects housing prices [Harrison and Rubenfeld 1978]. This data set is publicly available at

the UCI database [Murphy and Aha 1994] and in DELVE. The dataset has been used in

several benchmarking studies, e.g. [Neal 1996; Quinlan 1993]. The dataset has a total of

506 cases, containing values for 14 attributes (see fig. 5.1).

The object is to predict the median house value (MEDV) from the other 13 attributes. In

DELVE, this dataset is called boston and the associated prototask is called boston/price;

the data is randomly divided into 256 cases for training and a single common test set of

250 cases according to the 2-way ANOVA model discussed in section 2.5. The 2-way model

for the analysis of losses was chosen since the total number of cases is fairly limited. Three

sizes of tasks are generated containing 8 instances of 32 training cases, 4 instances of 64

training cases and 2 instances of 128 training cases.
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CRIM per capita crime rate by town

ZN proportion of residential land zoned for lots over 25,000 sq. ft.

NDUS proportion of non-retail business acres per town

CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)

RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940

DIS weighted distances to five Boston employment centres

RAD index of accessibility to radial highways

TAX full-value property-tax rate per $10,000

PTRATIO pupil-teacher ratio by town

B 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

LSTAT lower status of the population

MEDV Median value of owner-occupied homes in $1000’s

Figure 5.1: The attributes of the boston dataset

The kin/dist and pumadyn/accel families each contain 8 datasets that are synthetically

generated from realistic simulations of a robot arm. Both families were generated by Zoubin

Ghahramani using a simulator developed by Corke [1996]. Below are short descriptions of

these datasets — for more details refer to the DELVE web-site.

The static state of the robot arm is defined in terms of the lengths, ai, the twists, αi, offset

distances, di, and joint angles, θi for each of the links in the arm. The dynamic state of the

arm can be described by including forces and the first and second order time derivatives of

the variables, here denoted by the “dot” notation, e.g. θ̇i for the angular velocity at joint i.

The tasks in the kin/dist family is to predict the distance of the end-point of an 8-link

robot arm from a fixed point as a function of various state parameters. Thus, these tasks

are static and of a geometric nature. The tasks in this family have either 8 or 32 inputs.

For the tasks with 8 inputs, the inputs are the joint angles, θi, and all other parameters

are set to fixed values. Uniform noise was added to the inputs, so the noise modeled at

the outputs is not expected to be Gaussian. For the kin/dist tasks with 32 inputs, the

inputs were ai, αi, di and θi. The joint angles, θi, were corrupted by additive uniform noise,

and αi, ai, di and target distance were corrupted by multiplicative uniform noise, meant to

emulate noisy measurements.
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The pumadyn/accel family contains 8 datasets synthetically generated from a realistic

simulation of the dynamics of a “Puma 560” robot arm. The tasks associated with these

datasets consist of predicting the angular acceleration of the end-link of the robot arm,

given six joint angles, θi, six joint velocities, θ̇i, five joint torques, τi, five multiplicative mass

changes, ∆mi, five multiplicative length changes, ∆li and five multiplicative perturbations

in viscous friction of joints, ∆bi. Gaussian noise was added to θi, θ̇i and τi. For the 8-

dimensional tasks, the inputs were the joint angles and velocities of links 1, 2 and 3 and

the torques at joint 1 and 2 — all other joint angles, velocities and torques were set to zero

and there were no fluctuations in masses, lengths or viscosities. For tasks with 32 inputs,

all parameters were allowed to vary. The flavour of these task is to learn the dynamical

properties of the arm.

Both data-families give rise to 8 different tasks of various characteristics. The tasks have

names (e.g. pumadyn-32fh) which encode some aspects of the tasks. The number in the

name of the prototask (8 or 32) denotes the input dimensionality. The following ‘f’ or ‘n’

denotes “fairly linear” tasks, and “non-linear” tasks. The trailing ‘m’ or ‘h’ denotes medium

or high levels of unpredictability (noise). The definitions of these features are given in terms

of indexes. The index of non-linearity is

Inl =
EL

EC
, (5.1)

where EL is the squared error loss of the best linear fit on noise-free data and EC is the

squared error loss for the corresponding constant fit. Note that EC is the variance of the

target, and therefore Inl is one minus the proportion of the variance explained by a linear

model. Datasets with Inl < 0.05 were classified as being fairly linear, and Inl > 0.2 were

classified as being non-linear. The index of unpredictability is defined by

Iu =
EN

EC
, (5.2)

where EN is the expected squared error loss on noisy data of the best non-linear fit, i.e., the

expected value of the function. In practice, EN was estimated as follows: for each case in

the dataset, several targets were generated for fixed inputs and the average variance (over

cases) of these targets was taken as a measure of EN . Data with 0.01 > Iu > 0.05 are

classified as having medium noise, and tasks where Iu > 0.2 as high noise.

Each dataset contains 8192 cases which are divided evenly between training and test set.

Since there are a large number of cases, the tasks are set up according to the hierarchical

model described in section 2.4. Tasks of 5 different sizes are created, with training sets

containing 64, 128, 256, 512 and 1024 cases respectively. For each of the four smallest tasks
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there are 8 instances and the 8 corresponding test sets contain 512 cases each; for the largest

task there are only 4 instances and the corresponding test sets comprise 1024 cases.

The advantages of the data in these two families are their large test sets as well as the various

controlled attributes: input size, degree of non-linearity and degree of non-predictability.

This may enable us to pinpoint the characteristics for which certain learning methods excel

or perform poorly.

All the experiments are conducted using the DELVE environment. Three different loss

functions will be used: squared error loss, absolute error loss and negative log density loss.

The last of these is evaluated by measuring the negative log of the density of the targets

in the test set, under the predictive distribution from the model. The mars3.6-bag-1 and

mlp-ese-1 methods do not produce predictive distributions and will therefore not be eval-

uated with this error measure. The losses reported here have been standardized by DELVE,

such that we can make intuitive sense of the losses without knowing the domain of the data.

For squared error loss, standardization is obtained by dividing the loss by the variance of the

targets of the test cases; this causes the trivial method that guesses the mean of the data to

have a loss of approximately one. For absolute error loss, standardization is done by division

by the absolute deviation from the median. For negative log probability, standardization

is done by subtracting the loss that would be obtained if one used a Gaussian predictive

distribution with mean and standard deviation from the test set. Thus, standardized losses

for the negative log density loss function are approximately zero for simple methods and

negative for better methods.

5.2 Applying bagging to MARS

The DELVE framework can be used both to compare methods which differ in fundamental

principles as well as testing small refinements of methods. As an example of this latter sort,

I will attempt to clarify whether bagging [Breiman 1994] improves the performance of the

MARS method [Friedman 1991] by comparing the methods mars3.6-1 and mars3.6-bag-1.

Since MARS is not very computationally demanding, it may often be possible to use bagging.

One possible disadvantage of using bagging may be increased difficulty associated with

interpretation of the composite model.

The two methods mars3.6-1 and mars3.6-bag-1 as described in section 3.5 are tested

on the kin and pumadyn data families. The results for the squared error loss function
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training set sizes 64 128 256 512 1024

r p r p r p r p r p

kin-32fh 36.4 1 27.2 2 8.9 16 3.7 13 -3.8 22
kin-32fm 26.3 4 24.1 2 10.8 30 -8.1 28 -5.7 47
kin-32nh 40.1 1 28.7 1 23.6 1 12.3 1 6.8 1
kin-32nm 25.8 1 28.8 1 21.7 1 13.0 1 6.1 1

kin-8fh 37.3 1 16.0 4 16.8 1 13.2 2 3.8 4
kin-8fm 37.0 7 17.0 5 13.6 20 13.0 2 9.8 7
kin-8nh 20.7 5 17.6 1 11.6 1 8.3 1 9.4 4
kin-8nm 31.3 2 19.2 1 16.0 1 11.5 1 7.7 1

pumadyn-32fh 21.3 2 32.7 13 11.4 1 9.0 1 2.6 4
pumadyn-32fm 4.3 52 24.2 2 22.4 1 3.8 1 3.8 3
pumadyn-32nh 25.0 21 22.2 24 9.3 2 10.4 1 3.3 17
pumadyn-32nm 28.3 43 -23.9 44 22.5 1 16.8 1 5.3 7

pumadyn-8fh 12.9 11 3.6 59 4.5 16 5.5 1 3.6 7
pumadyn-8fm 20.2 2 15.1 2 8.4 3 4.4 2 5.9 4
pumadyn-8nh 12.1 41 19.0 2 10.5 1 10.1 1 4.0 7
pumadyn-8nm 22.7 8 30.3 1 17.0 3 13.0 3 7.5 25

averages 25.1 18.9 14.3 8.7 4.3

Figure 5.2: Comparison of plain mars3.6-1 and bagged mars3.6-bag-1 on the kin and pumadyn

data families. For each task, the expected decrease in squared error introduced by bagging is given
in percent r = 100%× (Lp −Lb)/Lp, where Lp is the expected squared error loss for plain mars and
Lb is the expected squared error loss for bagged mars. The columns marked p give the p-values in
percent rounded up to the nearest integer for a pairwise comparison between the two methods.

are tabulated in fig. 5.2. The table shows that bagging leads to an improved expected

performance on all except 4 tasks out of a total of 80. Further, for the tasks where a

decrease was seen in performance, the difference was not statistically significant — the

lowest p-value being 0.22. For tasks with small training sets the relative improvement is

substantial — on average 25% for training sets containing 64 cases. For larger training sets

the benefits of bagging decline. This is not surprising, since given enough training examples

plain MARS can probably get a performance close to the theoretical limit (the inherent

noise-level in the data) which does not leave much scope for improvement by bagging. It is

conceivable however, that bagging may degrade performance for very large training sets.

In conclusion, the experiments strongly favour bagging MARS. No example was found of

statistically significant decrease in performance by using bagging, for any size or dataset,

although this does not rule out the possibility of the existence of such tasks. It should be

noted that it would not be easy to show theoretically that bagging always improves certain

methods, such as is possible for example for ensembles [Hansen and Salamon 1990]. This

is because the individual members in the bag do not have the same expected performance

as a model trained with plain MARS. The empirical evidence suggests that the benefits of

averaging outweigh the expected decline in performance of the individual models.
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Similar experiments could provide insights into the possible utility of more elaborate versions

of the other methods under investigation. For example, weight-decay selected by leave-one-

out cross-validation can be implemented efficiently for the linear model, and may under

broad conditions be helpful. Another possibility is the extension of knn-cv-1 to incorporate

a running line smoother, [Cleveland 1979].

5.3 Experiments on the boston/price prototask

The performance of seven different learning methods was evaluated using three different loss

functions on boston/price. In all cases, the analysis of losses was done using the 2-way

ANOVA model described in section 2.5.

The results are displayed using a special plot, which conveys information about average

losses with standard errors as well as p-values for pairwise comparisons, fig. 5.3. In the

upper half of the plots the estimated expected losses are indicated by small horizontal lines

intersected by vertical lines indicating the standard error. The y-axis gives the standardized

losses. The losses for different task-sizes are grouped together in rectangles with the training

set sizes indicated above the rectangle. Inside the rectangles, losses for several methods are

given; the horizontal ordering of the methods is the same as the vertical ordering given

below the y-axis. The ∅ symbol indicates that the method has not been run. An upward

arrow indicates that the loss is off the graph.

Below the x-axis is a matrix of p-values for pairwise comparisons, obtained from paired

t-tests or F-tests. The p-values have been rounded up to the nearest whole number in

percent, and are reported in one digit in percent. Thus the strongest p-value is 1% and

the weakest reported value is 9%. If the value was larger than 9% it is not considered

significant and is not reported. The p-values are reported in the column of the winning

method. Thus, looking column-wise at the matrix tells you which methods the current

method significantly out-performs. Looking row-wise, you see which methods significantly

out-performed the method of that row. The dots in the matrix are simply included to

help guide the eye. These matrices are most easily read row-wise. Note that there are two

possible causes of the absence of an entry in the row: either the row method performed

worse, or it did not perform statistically significantly better. However, the presence of an

entry in a row always means that the row method was significantly outperformed.

The results of tests for the boston/price data is given in fig. 5.3 – 5.5, for squared error
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Figure 5.3: Performances on the boston/price data using squared error loss. The horizontal
ordering of the methods is the same as the vertical ordering. The numerical values in the matrices
under the x-axis are (rounded up) p-values for pairwise comparisons given in percent. The p-values
appear in the column of the winning method. See section 5.3 for further details.

loss, absolute error loss and negative log density loss respectively. The most striking feature

of these plots is the large error bars and consequently small number of significant results.

Several aspects are important when interpreting the plots. Recall, that the error bars are

computed separately for each method and therefore do not reflect the effects of pairing. In

fig. 5.3 for squared error loss and 64 training cases, the gp-map-1 and gp-mc-1 methods have

significantly overlapping error-bars; nevertheless, the p-value for the pairwise comparison is

p < 1% in favour of gp-mc-1. Here the pairing of the two methods leads to a cancellation of

noise, thus enabling a stronger statement about the difference in performance than would

be anticipated from the error-bars alone.

A different effect works in the opposite direction. The error-bars are computed from single

estimates of the variability due to training sets and test-cases, which are themselves prone

to uncertainty which is not accounted for in the plots, but which the F-tests producing the

p-values do take into account. As an example, compare knn-cv-1 and mars3.6-bag-1 for
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Figure 5.4: Performances on the boston/price data using absolute error loss.

128 training cases in fig. 5.3. Here the error-bars are clearly separated on the graph, but

the pairwise test comes out insignificant. This is due to the uncertainty in the estimated

effects of training sets; this uncertainty is large because only 2 instances were available for

this size of training set. Surprisingly, the difference between gp-map-1 and knn-cv-1 is

(marginally) significant in this example, although gp-map-1 has larger error-bars and worse

expected performance than mars3.6-bag-1 — again this different outcome is due to the

effects of pairing. Remember that the strongest possible p-value for tests with the 2-way

ANOVA and only two instances is p = 5% (as discussed in section 2.5).

All in all, the test results are not very strong. The lin-1 and knn-cv-1 never have lower

expected loss than the other methods, except for gp-map-1 for the two smallest tasks

for negative log density loss in which case the differences are not significant. In general,

the differences between lin-1, knn-cv-1 and the remaining methods are only sometimes

considered significant. Comparisons within the better methods remain inconclusive, except

that mlp-ese-1 and gp-map-1 never win significantly over the others. We also note that

the results for different loss functions show similar tendencies.

It is clear that the usefulness of the boston/price data is severely limited by the large
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Figure 5.5: Performances on the boston/price data using negative log density loss; note that the
mars3.6-bag-1 and mlp-ese-1 methods do not produce a predictive distribution and this loss type
cannot be applied to them.

uncertainties associated with the loss estimates. Differences in expected losses as large as

10 − 20% are often not declared significant. However, differences of this magnitude would

often be important for practical purposes.

It may be argued that the failure to obtain statistically significant results is caused by a

sub-optimal split of data into training and test sets. Since the cases were split roughly

half/half into training and test partitions, it is not possible to increase these sets by more

than a factor of two; leading to an expected reduction in error-bars of the order
√

2. In

conclusion it seems unlikely that experiments with a much larger sensitivity can be designed

using the boston data if one insists on using disjoint training sets. As discussed in section

2.3, the analysis of experiments with overlapping training sets would require assumptions

to be made about the dependencies introduced by overlapping training sets, which seems

difficult. However, this route could be pursued in future, to enable meaningful assessment

to be made with real datasets not exceeding 500 cases.

In the literature on learning methods, it is not rare that results on even smaller datasets
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than boston (with 506 cases) are reported — and sometimes losses differing by only a few

percent are reported. The present results suggest that it may be wise to exercise caution

when evaluating results of tests on such small datasets. In general, one should be wary of

results that do not consider the uncertainties in the observed performances.

5.4 Results on the kin and pumadyn datasets

Extensive tests have been carried out on the kin and pumadyn families. These datasets are

much larger than the boston set, allowing reliable detection of much smaller differences in

performance. The same seven methods are tested as in the experiments on the boston data.

Results on each of the 16 prototasks on the 5 different task sizes are given in the plots in

fig. 5.6 – 5.13 on the following pages. For reasons of brevity only results for squared error

loss function are given.

The error-bars in these plots are mostly quite small, although there is a tendency for the

tasks with small training sets to have slightly larger error-bars than the tasks with large

training sets. This tendency probably reflects a larger training set effect — for such small

training sets, the performance of the methods is sensitive to the details of the training sets.

However, in general the error-bars are small and a large number of differences are significant.

Notice that the mlp-mc-1 method has larger error-bars than the other methods for tasks

with small training sets for the kin-8nm, pumadyn-32nm and pumadyn-32nh datasets. This

may be caused by convergence problems for that method. Sometimes it can be hard for this

method to find areas of high posterior probability if the posterior is very peaked; the Markov

chain responsible for the integration over the posterior may take a long time to “discover”

a posterior peak and spend much time sampling from big volumes under the prior. This

effect can often be seen if the estimated noise level is plotted as a function of the iteration

number. At first this noise estimate is relatively high and then suddenly jumps to a much

lower value, and seldom returns to the high values. I have tried to reduce this effect by

initially training the network with fixed values for the hyperparameters (as described in

section 3.7) in the hope that regions of high posterior probability could be located rapidly

under these conditions. Perhaps a more elaborate initialisation scheme would be advisable.

The different tasks exhibit very different behaviours. The performance on the kin-8nm task

improves strongly as the number of training cases increases. In contrast, the training set

size seems of much less importance for kin-8fh, except for the knn-cv-1 method which is
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Figure 5.6: Experimental performance comparisons using squared error loss function for the kin

tasks with 8 inputs, fairly linear relationships, and medium and high noise levels.
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Figure 5.7: Experimental performance comparisons using squared error loss function for the kin

tasks with 8 inputs, non-linear relationships, and medium and high noise-levels.
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Figure 5.8: Experimental performance comparisons using squared error loss function for the kin

tasks with 32 inputs, fairly linear relationships, and medium and high noise-levels.
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Figure 5.9: Experimental performance comparisons using squared error loss function for the kin

tasks with 32 inputs, non-linear relationships, and medium and high noise-levels.
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Figure 5.10: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 8 inputs, fairly linear relationships, and medium and high noise-levels.
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Figure 5.11: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 8 inputs, non-linear relationships, and medium and high noise-levels.
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Figure 5.12: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 32 inputs, fairly linear relationships, and medium and high noise-levels.
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Figure 5.13: Experimental performance comparisons using squared error loss function for the
pumadyn tasks with 32 inputs, non-linear relationships, and medium and high noise-levels.
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doing rather poorly. The non-linear high-dimensional version of kin seems very hard to

learn and the errors remain high until the very largest training sets, where the gp-map-1

and mlp-mc-1 methods are making some improvements.

The linear method usually does very well on the “fairly linear” tasks, although it only

beats the sophisticated methods gp-map-1, gp-mc-1 and mlp-mc-1 on a single occasion

(the kin-32fh task). Also, lin-1 has pronounced difficulties for the smallest instances of

the fairly linear high dimensional tasks. I suspect we are seeing effects of over-fitting —

this might be alleviated by introducing regularisation in the linear method. As expected,

lin-1 also does badly on the non-linear tasks, often having a performance close to that of

knn-cv-1.

The knn-cv-1 mostly does a very poor job. This is most noticeable for the fairly linear tasks

where the other methods perform well. This may well be the reason why nearest neighbor

methods are rarely used for regression (they are almost exclusively used for classification

tasks). However, a simple extension to the method by using local linear models in the

neighborhood, such as LOESS [Cleveland 1979] may help.

A spectacular difference in performances is seen for pumadyn-32nm (and to a lesser degree

in pumadyn-32nh), where the good methods perform very well with only small amounts

of training data, whereas lin-1 and knn-cv-1 never seem to catch on. The mlp-ese-1

method seems to be somewhat intermediate, improving when given 1024 training cases,

although still short of the performance of the GP methods given only 1/16 of the training

data. This enormous difference in performance coincides with which methods do some

kind of variable selection. The Automatic Relevance Determination (ARD) scheme of the

gp-map-1, gp-mc-1 and mlp-mc-1 is helping to focus on the relevant subset of the large

number of inputs. Examination of the hyperparameters for the GP methods reveal that

only 3–4 inputs are considered significant. The mlp-ese-1 method does not have any form

of variable selection, the result being that large amounts of training data are needed for

this method. MARS is also capable of ignoring inputs and this method does very well on

these two tasks.

In order to get a clear overview of the performance tendencies as a function of the charac-

teristics of the datasets, I have produced plots of average performances in fig. 5.14 – 5.17.

The data from the two families can be characterised by four binary characteristics: domain,

input-dimensionality, linearity and noise-level. In these figures, I separate tasks according

to one characteristic and average together performances over the other three characteristics.

Thus, each figure has two graphs displaying averages over eight tasks for the two values of
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Figure 5.14: Geometric average performances conditional on number of inputs. Approximate one
standard error error-bars are indicated by vertical line segments. The methods are grouped horizon-
tally according to training set size. Within a group, the order is: lin-1, knn-cv-1, mars3.6-bag-1,
mlp-ese-1, gp-map-1, gp-mc-1 and mlp-mc-1.

the chosen characteristic. The methods are grouped into five groups, one for each train-

ing set size. Within the groups, the ordering of the methods is the same as in the earlier

performance plots: lin-1, knn-cv-1, mars3.6-bag-1 and in the middle mlp-ese-1; then

follows gp-map-1, gp-mc-1 and mlp-mc-1.

In these plots, the geometric average was thought more sensible than the usual mean, since

the performances on different tasks differ substantially. The geometric average focuses

attention on relative differences rather than absolute ones. When looking at these plots,

one should not pay attention to the values of the performances, but rather focus on how the

performance of a particular method compares to “the field” in the two plots. The plots also

show approximate one standard error error-bars. The geometric average can be expressed

as a usual average in the log domain, exp( 1
n

∑

log yi). Assuming the performance estimates

for individual tasks, yi, to be Gaussian, and that their standard deviations are much smaller
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Figure 5.15: Geometric average performances conditional on degree of linearity.

than their means, then the distribution of log yi is also approximately Gaussian. We can

thus use standard tools for averaging the independent performance measures in the log

domain and use the same approximations to transform back to the original domain.

In fig 5.14 we note that mlp-ese-1 has difficulties for tasks with high-dimensional input.

It also appears that mlp-mc-1 has some difficulty for high dimensional inputs and small

training sets. In fig. 5.15 we similarly see that mlp-ese-1 does poorly on non-linear tasks.

This figure also confirms our expectations that lin-1 does not do well on non-linear tasks.

The plot in fig. 5.16 is interesting, because it may give an indication of how different the two

data families are. Results seem fairly similar, with two exceptions: mars3.6-bag-1 does

badly on the kin data and mlp-ese-1 does badly on pumadyn. Naturally, the extension of

DELVE to incorporate more data families is essential, such that these tendencies which will

bias our conclusions with respect to other effects can be reduced.

Finally, fig. 5.17 shows the difference between tasks with medium and high noise. The
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Figure 5.16: Geometric average performances conditional on data family.

strongest effect here is that knn-cv-1 seems to do much worse in cases where there is

smaller noise — I expect however, that in fact we are seeing the other methods doing

comparatively better in the case of less noise.

It is a fairly surprising finding in fig. 5.14 and 5.15 that the conventional neural network

method mlp-ese-1 seems less desirable for non-linear tasks and for high-dimensional tasks

than e.g. mars3.6-bag-1. The prevailing folklore about neural networks has for a long time

been that neural networks are especially suitable for high-dimensional tasks and non-linear

tasks. My experiments do not support this view. However, it should be noted that the

performance difference between mlp-ese-1 and mars3.6-bag-1 also correlates highly with

the identity of the data-family in fig. 5.16. This forces us to interpret the results with

caution — tests on more data-families are needed in order to enable more firm conclusions.

The cpu time consumed by the different methods are given in the table in fig. 5.18. The time

needed for the lin-1, knn-cv-1 and mars3.6-bag-1 methods is mainly determined by the
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Figure 5.17: Geometric average performances conditional on noise level.

size of training sets and depends only slightly on the input dimensionality. The remaining

four methods all have an iterative nature, and a limit on computation time must be given.

For the mlp-ese-1 method I used a linear scaling of time with the number of training cases

— allowing 1.875 seconds per training case. This linear scaling is chosen as a compromise

between the assumed requirements and practical limitations on compute time. Probably

the computational requirements grow roughly quadratically for mlp-ese-1; the time per

iteration scales quadratically, since the number of training cases and the number of network

weights grow. It is more difficult to guess the scaling behaviour of the required number

of iterations until early stopping sets in — possibly an increasing number of iterations is

required for larger training sets. For the times given here, the method always had enough

time (even for the largest tasks) to train at least 25 members for the predictive ensemble.

Consequently, it seems reasonable to suppose that we have reached the point of diminishing

returns in terms of ensemble size. For the smaller tasks, the linear scaling ensures that the

method has even more plentiful time.
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Figure 5.18: Approximate total (training and prediction) cpu time in minutes for combinations of
learning methods and training set sizes that were used for the experiments on the kin and pumadyn

data families.

For the methods which require large amounts of computation time, it is of interest to

investigate how the trade-off between time and accuracy behaves for the different methods

as a function of training set sizes. These results are presented in fig. 5.19 for the four most

computationally demanding methods. The approximate error-bars are computed using the

same approximation as in fig. 5.14 – 5.17.

For any particular method, performance gets better with more training time. However,

for a fixed time (proportional to the number of training cases) it is occasionally better to

use fewer training cases; for example the gp-mc-1 method for short run-times does worse

with 512 cases than with 256 cases. This is due to the super-linear time requirement of the

method, and the resulting lack of convergence for the large instances. For the longer runs,

the larger training sets again become advantageous. However, gp-mc-1 was not applied to

the largest instances, since it was fairly obvious that it would fail given the time constraints

considered here.

Note that the results for the mlp-mc-1 and gp-mc-1 methods reported earlier in this section

were all for 30 seconds per training case. For mlp-ese-1 only 1.875 seconds per training

case were allowed, but this is probably adequate to get most of the benefit from this method.

The time for the gp-map-1 method is dictated by the cubic time dependency of the training

set size, and is very limited for small training sets.

It is interesting to compare the times used by mlp-mc-1 with the times used for this method

by its inventor [Neal 1996]. In that study the run-times were selected on the basis of plots

of various quantities showing the possibility of equilibrium. The main simulations involved

a 10-way cross-test using the “Boston Housing” data, and used about 210 seconds per
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Figure 5.19: The geometric average squared test errors over the 16 prototasks in the kin and
pumadyn data families for different training set sizes as a function of the training time for four
computation intensive methods. The vertical line segments indicate approximate one standard error
error-bars. The mlp-ese-1 and gp-map-1 methods have only been run for a single amount of time;
for the mlp-mc-1 and gp-mc-1 methods predictions were made after several intervals. The gp-mc-1

method has not been run for the largest training set size. All the plots are to the same scale. Note
the log time-scale.
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training case for training sets of about 456 cases (on a marginally slower machine). The

current results use one or two orders of magnitude less computation time, but still show

that mlp-mc-1 is better than mlp-ese-1 even for very short times. This is a strong result;

if you have time enough to train mlp-ese-1, you would be better off using mlp-mc-1 even

though this method would not yet have converged. Obviously, if even shorter times are

required, other methods are more appropriate.

For mlp-mc-1 there seems to be a tendency for the smaller instances to benefit more from

longer runs than the larger instances, which may appear surprising, since one may reason-

ably assume that more than linear time is required for good results. There may be a variety

of reasons for this behaviour. Firstly, this observation may be an artifact of the limited

time scale, and the performance for the larger instances may improve for longer runs than

were allowed in the present study. Secondly, the bad results for the short runs for the small

datasets may be caused by failure to reach areas of high posterior probability; for small

training sets the likelihood is fairly weak, and the Markov chain may spend a lot of time

sampling from the vast areas under the vague prior before discovering the peaks in the

posterior. An indication of this behaviour can be found in fig. 5.13 where poor performance

and large error bars for all but the largest instances probably indicate a failure on single

instances. For large training sets the likelihood becomes strong enough to avoid this prob-

lem. A third reason may be that the posterior for the hyperparameters becomes broad or

multi-modal for small amounts of data, which can severely affect the time required to get a

good sample from the posterior.

The runs of gp-mc-1 and mlp-mc-1 for the smallest training set sizes were extended a

factor of 4 further than for the other sizes. Interestingly, the gp-mc-1 method seems to

have converged at about 30 seconds per training case whereas mlp-mc-1 improves further

given more time. One may wonder if it is possible to achieve convergence in gp-mc-1 for

even shorter times. At 30 seconds per training case, the Markov chain can perform roughly

20000 iterations for the smallest training sets. Given this large number of iterations, one

may suspect the “persistence” of 20 iterations to be much too low. Perhaps a scheme of

gradually increasing the persistence throughout the run may further decrease the required

run-time. If the long convergence times are due to high correlations in the posterior an

increase in the persistence should certainly help; if on the other hand the problems are

caused by the Markov chain only infrequently switching between multiple modes in the

posterior, such simple measures may not help.

From a theoretical point of view, one may conjecture that gp-mc-1 and mlp-mc-1 would

perform nearly equally well in the limit of large amounts of computation time, since they
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both use (at least approximately) Gaussian process priors and integrate out all the nui-

sance parameters. There are of course differences in the form of the covariance matrix and

the exact shape of the hyper-priors, but these differences may not be of great practical

importance. This conjecture cannot be proven by the present result, since it is not clear

that we have reached convergence in most cases. However, all the experimental evidence is

consistent with the conjecture. If we agree with this conjecture, then choosing between the

gp-mc-1 and mlp-mc-1 methods can be done solely on the basis of which method has the

most efficient implementation. For small datasets, the gp-mc-1 implementation seems more

efficient; above roughly 500 training examples, the standard implementation of gp-mc-1 be-

comes hard to manage.

The simple gp-map-1 method seems to have very desirable properties. For the large in-

stances it performs very well using reasonable amounts of computation time. For the small-

est instances it is very fast, but can be beaten by sampling methods that are given 2 or 3

orders of magnitude more computation time.

What are the overall conclusions from this performance study? Naturally, the trade-off

between accuracy and computational requirements depends on details of the individual

application. However, the current experiments allow for very strong conclusions. Within the

characteristics of data explored in these experiments, the methods implementing Gaussian

processes do very well regardless of the characteristics of the data; the choice of method

is determined primarily by the training set size. If the training set is very small it may

be worthwhile trying gp-mc-1 otherwise gp-map-1 is nearly as good and much faster. If

your dataset is large (around 1000 cases or more) you may be better off using mlp-mc-1,

although more efficient implementations of GP methods may become available.



Chapter 6

Conclusions

This thesis has provided a rigorous statistical framework for analysis of empirical perfor-

mance evaluations. In the neural network and statistics communities, empirical evaluations

of methods play a key role. It is therefore essential to base these experiments on solid statis-

tical theory. Hitherto, the field has been swamped by proposals for novel learning methods

without convincing empirical evidence. The future success of the field depends heavily on

improving the standards of empirical tests.

Two experimental designs were developed. The “2-way” design is suitable for datasets with

a limited number of cases, since only a single test set is needed. The “hierarchical” design

is simpler and enables the use of exact tests for method comparisons. This design requires

multiple test sets, and is therefore most suitable for simulated data where large numbers of

test cases may be generated.

Unfortunately, it is fairly cumbersome to make good comparisons. The development of

the publicly available DELVE software environment should ease this burden. DELVE in-

cludes results for previously tested methods and should provide a good basis for testing new

methods. The performance tests using DELVE are still somewhat laborious, since several

training instances must be tried before firm conclusions can be drawn. This is an inherent

property of the task. It does pose problems for testing compute-intensive methods. In

this thesis I have allowed a maximum of 8 hours of computation time per task instance,

which by many standards would be regarded as fairly modest. The total run-time for the

experiments presented in this thesis is however fairly large at about 6 months.

97
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Two methods relying on direct manipulation of Gaussian process priors over functions have

been defined. Although several authors have previously touched upon such ideas, they

have remained largely unknown. This is puzzling given their highly desirable properties.

The gp-map-1 method relies on simple optimisation and is very fast for small datasets.

Methods for small datasets have numerous applications in statistics. The direct applicability

of Automatic Relevance Determination (ARD) allows for easy interpretation of the trained

models. The more complicated gp-mc-1 implementation is very attractive from the Bayesian

point of view, since we are able to integrate out all the parameters of the model. For small

datasets this can be achieved in reasonable amounts of time.

Perhaps the reason for the neglect of these methods is that people have failed to notice that

modern computers can easily invert large matrices. Or maybe inherent skepticism towards

Bayesian methodology has played a role. I hope that thorough experimental evidence will

succeed in bringing these methods into wide use.

The experimental results on the boston dataset show very large error-bars on the per-

formance estimates. It is argued that it may be very difficult to design more sensitive

experiments on datasets of moderate size. If this trend carries to other datasets, this im-

plies that great caution should be exercised when interpreting much of the experimental

evidence given in the literature. It also presents us with the problem that many real datasets

that have been used for benchmarking may not really be suitable.

The solution to this problem may be to use data from realistic simulators for benchmark-

ing purposes. These datasets can be made adequately large, and as a further benefit,

datasets with controlled characteristics may be produced, enabling determination of how

the strengths and weaknesses of methods depend on the characteristics of the data. Such

experiments have failed to confirm the widely held beliefs in the community that traditional

neural network methods such as mlp-ese-1 are especially well-suited for tasks with a high

degree of non-linearity and tasks with high input dimensionality. Additional experiments

on other data-families would be helpful to corroborate these findings.

I also found that although a Bayesian treatment of neural networks mlp-mc-1 may take a

long time to converge, they perform better than the conventional method mlp-ese-1 even

when allowed fairly short times, i.e., run-time comparable to that of mlp-ese-1 correspond-

ing to 2 orders of magnitude less time than in the first published results for this method.

Again, this contrasts with the commonly held belief that Bayesian methods are “too slow”

to be of any practical importance. For many applications involving small amounts of data,

such methods are definitely tractable.
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It may be argued that my use of the single mlp-ese-1 method as representing “conventional

neural network methods” is too limited. It is certainly true that many other variants

are in common use including training with weight-decay, networks with multiple hidden

layers, networks with radial basis functions, networks trained using constructive or pruning-

based approaches, etc. Evaluation of methods relying on these principles would obviously

be of interest. Because of the existence of such a large number of algorithms and the

lack of specification of heuristics, it is impossible to make a benchmarking study that can

fend off attacks regarding the choice of methods and details of heuristics. Therefore it is

essential that authors of methods themselves precisely define their methods and test them

against other methods on publicly available datasets. DELVE has been designed to meet

these requirements. In conclusion, researchers should not be required to test everybody

else’s methods. Researchers whose methods have been rigorously tested will be making

constructive and convincing contributions.

From a theoretical point of view there may be reasons to expect the three methods gp-map-1,

gp-mc-1 and mlp-mc-1 to perform fairly similarly, since they all (at least approximately)

implement modeling with Gaussian process priors over functions. And indeed the perfor-

mance of these three methods is often quite close, and consistently better than the other

methods. The strength of these conclusions is somewhat limited by the use of only two

data-families. However, it should be noted that the methods implementing GP’s do well

regardless of the input dimensionality, the degree of non-linearity, the noise-level and the

identity of the data-family. Which method to choose depends mostly on the efficiency of

the methods for that particular training set size. For small datasets gp-mc-1 performs best,

for intermediate sizes gp-map-1 becomes more desirable because it is faster, and for large

sets mlp-mc-1 performs best.

The experimental results presented in this thesis allow for very strong conclusions about

which methods are preferable. This is not typical for earlier benchmarking studies [Prechelt

1995; Michie et al. 1994; Guérin-Dugué et al. 1995]. For example, Prechelt [1995] is not

able to draw general conclusions about the 6 methods he tried on 14 different problems.

There may be several reasons for this. Probably two of the most important reasons is that

I have tested 7 quite different methods, and that I have used large datasets.

The biggest weakness in the experimental study is the small number of data families. In

the near future, DELVE will be extended with many more datasets, thereby allowing more

confidence in the experimental conclusions.

The results of the empirical tests performed in this thesis are available through DELVE.
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These methods and results represent an important source for people interested in the per-

formance of learning methods. Hopefully, people will report their experimental results

to DELVE, forming a valuable source of experimental evidence. Time will show whether

Gaussian processes will be able to stand up to the competition.



Appendix A

Implementations

This appendix contains source listings of important parts of the implementations of each

of the methods described in the thesis, except the MARS and mlp-mc-1 methods. For the

sake of brevity, less interesting details, such as reading example files etc., are not included

but may be found at the DELVE web-site.

The source (in C) for the mlp-mc-1 has been made available by Radford Neal and can be

retrieved through his homepage at http://www.cs.toronto.edu/∼radford.

A.1 The linear model lin-1

The source for a straight forward implementation of the lin-1 method is given on the

following pages. The usage of the program is

lin-1 instance-number

The program reads training examples from the file train.n, test inputs from test.n and

test targets from targets.n, where n is the instance number. Point predictions are written

to cguess.n files. If there are an adequate number of training cases (if the number of

training cases exceeds the input dimension) then losses according to the negative log density

loss function are written to cldens.L.n.
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;
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c
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p
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;
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;
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;
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.
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]
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;
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]
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=
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;
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]
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;
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;
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p
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u
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;
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104 Implementations

A.2 k nearest neighbors for regression knn-cv-1

The source for the knn-cv-1 method is included in the following pages. The usage is

knn-cv-1 instance-number

The program reads training examples from the file train.n, test inputs from test.n and

test targets from targets.n, where n is the instance number. The outer loop of the program

does the “leave one out” for each training cases in turn. Inside the loop the remaining cases

are sorted according to distance from the input of the left out case, and the losses for the

three standard loss functions (squared error loss, absolute error loss and negative log density

loss) are accumulated for each value of k (the neighborhood size).

The optimal value of k for each loss is echoed to stderr and predictions are made using these

neighborhood sizes. The predictions are written to files named cguess.A.n, cguess.S.n

and cldens.L.n according to the loss type.
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n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

#
d
e
f
i
n
e
 
t
o
l
e
r
a
n
c
e
 
1
.
0
e
-
6

#
d
e
f
i
n
e
 
t
w
o
_
p
i
 
6
.
2
8
3
1
8
5
3
0
7
1
7
9
5
9

#
d
e
f
i
n
e
 
S
W
A
P
(
a
,
 
b
)
 
t
e
m
p
 
=
 
(
a
)
;
 
(
a
)
 
=
 
(
b
)
;
 
(
b
)
 
=
 
t
e
m
p
;

e
x
t
e
r
n
 
r
e
a
l
 
m
e
d
i
a
n
(
r
e
a
l
 
*
a
,
 
i
n
t
 
k
)
;
 
 
/
*
 
f
i
n
d
 
m
e
d
i
a
n
 
o
f
 
f
i
r
s
t
 
k
 
e
l
e
m
e
n
t
s
 
i
n
 
a
 
*
/

s
t
a
t
i
c
 
i
n
t
 
 
c
o
m
p
(
c
o
n
s
t
 
v
o
i
d
 
*
x
,
 
c
o
n
s
t
 
v
o
i
d
 
*
y
)
;
 
 
 
 
/
*
 
f
u
n
c
t
i
o
n
 
u
s
e
d
 
b
y
 
q
s
o
r
t
 
*
/

s
t
a
t
i
c
 
v
o
i
d
 
s
o
r
t
_
d
i
s
t
(
i
n
t
 
k
,
 
r
e
a
l
 
*
i
n
p
)
;
 
 
 
 
 
 
/
*
 
s
o
r
t
 
k
 
e
x
a
m
p
l
e
s
 
b
y
 
d
i
s
t
a
n
c
e
 
*
/

s
t
a
t
i
c
 
v
o
i
d
 
f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
i
n
t
 
k
)
;
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
f
i
n
d
 
t
a
r
g
e
t
s
 
o
f
 
k
 
n
e
i
g
h
b
o
r
s
 
*
/

s
t
a
t
i
c
 
v
o
i
d
 
v
a
r
_
e
s
t
_
1
n
n
(
r
e
a
l
 
*
g
l
o
b
_
v
a
r
)
;
 
 
 
 
 
 
 
/
*
 
e
s
t
i
m
a
t
e
 
v
a
r
i
a
n
c
e
 
f
r
o
m
 
1
n
n
 
*
/

i
n
t
 
n
o
_
i
n
p
,
 
n
o
_
t
a
r
;

r
e
a
l
 
*
*
t
a
r
g
e
t
s
,
 
 
 
 
/
*
 
m
a
t
r
i
x
 
c
o
n
t
a
i
n
i
n
g
 
t
h
e
 
t
a
r
g
e
t
s
 
o
f
 
t
h
e
 
n
e
a
r
e
s
t
 
n
e
i
g
h
b
o
r
s
 
*
/

*
*
l
o
o
_
e
s
t
,
 
 
 
 
 
 
 
/
*
 
e
s
t
i
m
a
t
e
s
 
f
o
r
 
3
 
l
o
s
s
 
f
u
n
c
t
i
o
n
s
 
f
o
r
 
e
v
e
r
y
 
v
a
l
u
e
 
o
f
 
k
 
*
/

*
*
d
i
s
t
_
t
a
r
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
o
f
 
d
i
s
t
a
n
c
e
s
 
a
n
d
 
t
a
r
g
e
t
s
 
o
f
 
n
e
i
g
h
b
o
r
s
 
*
/

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
,
 
t
e
s
t
;

m
a
i
n
(
i
n
t
 
a
r
g
c
,
 
c
h
a
r
 
*
*
a
r
g
v
)

{
i
n
t
 
 
i
,
 
j
,
 
k
,
 
l
,
 
t
o
p
,
 
k
0
,
 
k
1
,
 
k
2
;

c
h
a
r
 
d
f
2
[
1
0
]
,
 
d
f
[
1
0
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
t
r
i
n
g
s
 
c
o
n
t
a
i
n
i
n
g
 
f
i
l
e
 
n
a
m
e
s
 
*
/

r
e
a
l
 
*
m
,
 
*
v
,
 
*
g
l
o
b
_
v
a
r
,
 
t
m
p
,
 
*
t
e
m
p
;

F
I
L
E
 
*
f
p
0
,
 
*
f
p
1
,
 
*
f
p
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
p
o
i
n
t
e
r
s
 
t
o
 
p
r
e
d
i
c
t
i
o
n
 
f
i
l
e
s
 
*
/

i
f
 
(
a
r
g
c
 
!
=
 
2
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
U
s
a
g
e
:
 
%
s
 
i
n
s
t
a
n
c
e
-
n
u
m
b
e
r
\
n
"
,
 
a
r
g
v
[
0
]
)
;
 
e
x
i
t
(
-
1
)
;

} t
r
a
i
n
.
n
u
m
 
=
 
t
e
s
t
.
n
u
m
 
=
 
n
o
_
i
n
p
 
=
 
n
o
_
t
a
r
 
=
 
-
1
;
 
 
 
 
 
 
/
*
 
d
e
f
a
u
l
t
 
f
o
r
 
"
u
n
k
n
o
w
n
"
 
*
/

s
p
r
i
n
t
f
(
d
f
,
 
"
t
e
s
t
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
a
m
e
 
o
f
 
t
e
s
t
 
f
i
l
e
 
*
/

s
p
r
i
n
t
f
(
d
f
2
,
 
"
t
a
r
g
e
t
s
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
a
m
e
 
o
f
 
t
a
r
g
e
t
s
 
f
i
l
e
 
*
/

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
e
s
t
,
 
&
n
o
_
i
n
p
,
 
&
n
o
_
t
a
r
,
 
d
f
,
 
d
f
2
)
;

s
p
r
i
n
t
f
(
d
f
,
 
"
t
r
a
i
n
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
a
m
e
 
o
f
 
t
r
a
i
n
i
n
g
 
f
i
l
e
 
*
/

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
r
a
i
n
,
 
&
n
o
_
i
n
p
,
 
&
n
o
_
t
a
r
,
 
d
f
,
 
N
U
L
L
)
;

t
o
p
 
=
 
t
r
a
i
n
.
n
u
m
-
1
;

d
i
s
t
_
t
a
r
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
+
2
,
1
+
n
o
_
t
a
r
)
;

d
i
s
t
_
t
a
r
+
+
;
 
d
i
s
t
_
t
a
r
[
-
1
]
[
0
]
 
=
 
-
M
A
X
F
L
O
A
T
;
 
 
/
*
 
p
l
a
c
e
 
a
 
s
e
n
t
i
n
e
l
 
b
e
f
o
r
e
 
a
r
r
a
y
 
*
/

d
i
s
t
_
t
a
r
[
t
o
p
]
[
0
]
 
=
 
M
A
X
F
L
O
A
T
;
 
 
/
*
 
a
n
d
 
t
w
o
 
a
f
t
e
r
;
 
u
s
e
f
u
l
 
i
n
 
f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
)
 
*
/

d
i
s
t
_
t
a
r
[
t
r
a
i
n
.
n
u
m
]
[
0
]
 
=
 
M
A
X
F
L
O
A
T
;
 
 
/
*
 
a
v
o
i
d
i
n
g
 
c
h
e
c
k
 
f
o
r
 
a
r
r
a
y
 
b
o
u
n
d
a
r
i
e
s
 
*
/

/
*
 
w
h
e
n
 
l
o
o
k
i
n
g
 
f
o
r
 
t
i
e
s
 
*
/

l
o
o
_
e
s
t
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
3
)
;

f
o
r
 
(
k
=
0
;
 
k
<
3
;
 
k
+
+
)
 
f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
l
o
o
_
e
s
t
[
i
]
[
k
]
 
=
 
0
.
0
;

t
a
r
g
e
t
s
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
n
o
_
t
a
r
)
;

m
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
t
a
r
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

v
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
t
a
r
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

g
l
o
b
_
v
a
r
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
t
a
r
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

/
*
 
D
o
 
"
l
e
a
v
e
 
o
n
e
 
o
u
t
"
 
b
y
 
s
w
a
p
p
i
n
g
 
c
a
s
e
s
 
w
i
t
h
 
t
h
e
 
l
a
s
t
 
e
x
a
m
p
l
e
,
 
a
n
d
 
d
o
i
n
g
 
k
n
n
 
o
n

*
 
t
h
e
 
f
i
r
s
t
 
"
t
o
p
"
 
c
a
s
e
s
,
 
f
o
r
 
e
a
c
h
 
v
a
l
u
e
 
o
f
 
k
.
 
A
c
c
u
m
u
l
a
t
e
 
t
h
e
 
"
l
e
a
v
e
 
o
n
e
 
o
u
t
"

*
 
e
s
t
i
m
a
t
e
s
 
f
o
r
 
e
a
c
h
 
l
o
s
s
 
t
y
p
e
 
i
n
 
t
h
e
 
c
o
l
u
m
n
s
 
o
f
 
"
l
o
o
_
e
s
t
"
.
 
*
/

v
a
r
_
e
s
t
_
1
n
n
(
g
l
o
b
_
v
a
r
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
e
s
t
i
m
a
t
e
 
v
a
r
i
a
n
c
e
 
b
a
s
e
d
 
o
n
 
1
n
n
 
*
/

f
o
r
 
(
i
=
t
o
p
;
 
i
>
=
0
;
 
i
-
-
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
l
e
a
v
e
 
o
u
t
 
e
x
a
m
p
l
e
 
i
 
*
/

S
W
A
P
(
t
r
a
i
n
.
i
n
p
[
i
]
,
 
t
r
a
i
n
.
i
n
p
[
t
o
p
]
)
;
 
S
W
A
P
(
t
r
a
i
n
.
t
a
r
[
i
]
,
 
t
r
a
i
n
.
t
a
r
[
t
o
p
]
)
;
 

s
o
r
t
_
d
i
s
t
(
t
o
p
,
 
t
r
a
i
n
.
i
n
p
[
t
o
p
]
)
;

f
o
r
 
(
k
=
1
;
 
k
<
t
r
a
i
n
.
n
u
m
;
 
k
+
+
)
 
{
 
 
 
 
 
 
/
*
 
n
o
w
 
d
o
 
"
l
e
a
v
e
 
o
n
e
 
o
u
t
"
 
f
o
r
 
e
v
e
r
y
 
k
 
*
/

f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
k
)
;

f
o
r
 
(
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)
 
{
 
 
 
/
*
 
f
i
n
d
 
m
e
a
n
 
a
n
d
 
v
a
r
i
a
n
c
e
 
f
o
r
 
e
a
c
h
 
t
a
r
g
e
t
 
*
/

f
o
r
 
(
m
[
l
]
=
0
.
0
,
 
v
[
l
]
=
g
l
o
b
_
v
a
r
[
l
]
,
 
j
=
0
;
 
j
<
k
;
 
j
+
+
)

{
 
m
[
l
]
 
+
=
 
t
a
r
g
e
t
s
[
l
]
[
j
]
;
 
v
[
l
]
 
+
=
 
s
q
(
t
a
r
g
e
t
s
[
l
]
[
j
]
)
;
 
}

m
[
l
]
 
/
=
 
k
;
 
v
[
l
]
 
=
 
v
[
l
]
/
k
-
s
q
(
m
[
l
]
)
;
 
m
[
l
]
 
=
 
s
q
(
m
[
l
]
-
t
r
a
i
n
.
t
a
r
[
t
o
p
]
[
l
]
)
;

} f
o
r
 
(
t
m
p
=
0
.
0
,
 
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)
 
t
m
p
 
+
=
 
m
[
l
]
;
 

l
o
o
_
e
s
t
[
k
]
[
0
]
 
+
=
 
t
m
p
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f
o
r
 
(
t
m
p
=
0
.
0
,
 
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)

t
m
p
 
+
=
 
f
a
b
s
(
m
e
d
i
a
n
(
t
a
r
g
e
t
s
[
l
]
,
 
k
)
-
t
r
a
i
n
.
t
a
r
[
t
o
p
]
[
l
]
)
;
 
 
 

l
o
o
_
e
s
t
[
k
]
[
1
]
 
+
=
 
t
m
p
;
 

f
o
r
 
(
t
m
p
=
0
.
0
,
 
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)
 
t
m
p
 
+
=
 
l
o
g
(
t
w
o
_
p
i
*
v
[
l
]
)
+
m
[
l
]
/
v
[
l
]
;
 

l
o
o
_
e
s
t
[
k
]
[
2
]
 
+
=
 
t
m
p
;

}
} f
o
r
 
(
k
0
=
k
1
=
k
2
=
i
=
1
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
/
*
 
f
i
n
d
 
k
’
s
 
w
i
t
h
 
m
i
n
i
m
u
m
 
l
o
s
s
 
*
/

i
f
 
(
l
o
o
_
e
s
t
[
i
]
[
0
]
 
<
 
l
o
o
_
e
s
t
[
k
0
]
[
0
]
)
 
k
0
 
=
 
i
;

i
f
 
(
l
o
o
_
e
s
t
[
i
]
[
1
]
 
<
 
l
o
o
_
e
s
t
[
k
1
]
[
1
]
)
 
k
1
 
=
 
i
;

i
f
 
(
l
o
o
_
e
s
t
[
i
]
[
2
]
 
<
 
l
o
o
_
e
s
t
[
k
2
]
[
2
]
)
 
k
2
 
=
 
i
;

} p
r
i
n
t
f
(
"
L
o
s
s
 
t
y
p
e
s
 
a
n
d
 
l
o
o
 
k
-
v
a
l
u
e
s
:
 
S
:
 
%
d
,
 
A
:
 
%
d
 
a
n
d
 
L
:
 
%
d
\
n
"
,
 
k
0
,
 
k
1
,
 
k
2
)
;

/
*
 
U
s
e
 
t
h
e
 
e
s
t
i
m
a
t
e
d
 
k
 
v
a
l
u
e
s
 
t
o
 
m
a
k
e
 
p
r
e
d
i
c
t
i
o
n
s
,
 
a
n
d
 
w
r
i
t
e
 
t
h
e
m
 
t
o
 
t
h
e

*
 
a
p
r
o
p
r
i
a
t
e
 
f
i
l
e
s
.
 
*
/

f
p
0
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
g
u
e
s
s
.
S
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;

f
p
1
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
g
u
e
s
s
.
A
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;

f
p
2
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
l
d
e
n
s
.
L
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
/
*
 
m
a
k
e
 
p
r
e
d
i
c
t
i
o
n
s
 
f
o
r
 
a
l
l
 
t
e
s
t
 
c
a
s
e
s
 
*
/

s
o
r
t
_
d
i
s
t
(
t
r
a
i
n
.
n
u
m
,
 
t
e
s
t
.
i
n
p
[
i
]
)
;

f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
k
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
f
i
r
s
t
 
f
o
r
 
s
q
u
a
r
e
d
 
e
r
r
o
r
 
l
o
s
s
 
*
/

f
o
r
 
(
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)
 
{

f
o
r
 
(
t
m
p
=
0
.
0
,
 
j
=
0
;
 
j
<
k
0
;
 
j
+
+
)
 
t
m
p
 
+
=
 
t
a
r
g
e
t
s
[
l
]
[
j
]
;

f
p
r
i
n
t
f
(
f
p
0
,
 
"
%
f
 
"
,
 
t
m
p
/
k
0
)
;

} f
p
r
i
n
t
f
(
f
p
0
,
 
"
\
n
"
)
;

f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
k
1
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
h
e
n
 
a
b
s
o
l
u
t
e
 
e
r
r
o
r
 
l
o
s
s
 
*
/

f
o
r
 
(
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)

f
p
r
i
n
t
f
(
f
p
1
,
 
"
%
f
 
"
,
 
m
e
d
i
a
n
(
t
a
r
g
e
t
s
[
l
]
,
 
k
1
)
)
;

f
p
r
i
n
t
f
(
f
p
1
,
 
"
\
n
"
)
;

f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
k
2
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
n
d
 
l
a
s
t
l
y
 
n
e
g
a
t
i
v
e
 
l
o
g
 
d
e
n
s
i
t
y
 
l
o
s
s
 
*
/

f
o
r
 
(
t
m
p
=
0
.
0
,
 
l
=
0
;
 
l
<
n
o
_
t
a
r
;
 
l
+
+
)
 
{

f
o
r
 
(
m
[
l
]
=
0
.
0
,
 
v
[
l
]
=
g
l
o
b
_
v
a
r
[
l
]
,
 
j
=
0
;
 
j
<
k
2
;
 
j
+
+
)
 

{
 
m
[
l
]
 
+
=
 
t
a
r
g
e
t
s
[
l
]
[
j
]
;
 
v
[
l
]
 
+
=
 
s
q
(
t
a
r
g
e
t
s
[
l
]
[
j
]
)
;
 
}

m
[
l
]
 
/
=
 
k
2
;
 
v
[
l
]
 
=
 
v
[
l
]
/
k
2
-
s
q
(
m
[
l
]
)
;
 
m
[
l
]
 
=
 
s
q
(
m
[
l
]
-
t
e
s
t
.
t
a
r
[
i
]
[
l
]
)
;

t
m
p
 
+
=
 
l
o
g
(
t
w
o
_
p
i
*
v
[
l
]
)
+
m
[
l
]
/
v
[
l
]
;

}
 
 
 
 

f
p
r
i
n
t
f
(
f
p
2
,
 
"
%
f
\
n
"
,
 
-
0
.
5
*
t
m
p
)
;

} f
c
l
o
s
e
(
f
p
0
)
;
 
f
c
l
o
s
e
(
f
p
1
)
;
 
f
c
l
o
s
e
(
f
p
2
)
;

f
r
e
e
(
d
i
s
t
_
t
a
r
[
-
1
]
)
;
 
f
r
e
e
(
-
-
d
i
s
t
_
t
a
r
)
;
 
f
r
e
e
(
l
o
o
_
e
s
t
[
0
]
)
;
 
f
r
e
e
(
l
o
o
_
e
s
t
)
;

f
r
e
e
(
t
a
r
g
e
t
s
[
0
]
)
;
 
f
r
e
e
(
t
a
r
g
e
t
s
)
;
 
f
r
e
e
(
m
)
;
 
f
r
e
e
(
v
)
;
 
f
r
e
e
(
g
l
o
b
_
v
a
r
)
;

}
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/
*
 
F
i
l
l
 
i
n
 
t
h
e
 
d
i
s
t
_
t
a
r
 
a
r
r
a
y
 
a
n
d
 
s
o
r
t
 
i
t
 
b
y
 
t
h
e
 
f
i
r
s
t
 
c
o
l
u
m
n
.
 
T
h
e
 
f
i
r
s
t
 
c
o
l
u
m
n

*
 
c
o
n
t
a
i
n
s
 
t
h
e
 
s
q
a
r
e
d
 
E
u
c
l
i
d
i
a
n
 
d
i
s
t
a
n
c
e
 
i
n
 
i
n
p
u
t
 
s
p
a
c
e
 
b
e
t
w
e
e
n
 
t
h
e
 
l
o
o
 
c
a
s
e

*
 
a
n
d
 
t
h
e
 
r
e
m
a
i
n
i
n
g
 
t
r
a
i
n
i
n
g
 
c
a
s
e
s
;
 
t
h
e
 
r
e
m
a
i
n
i
n
g
 
"
n
o
_
t
a
r
"
 
c
o
l
u
m
n
s
 
c
o
n
t
a
i
n
 
t
h
e

*
 
t
a
r
g
e
t
s
 
f
o
r
 
t
h
o
s
e
 
c
a
s
e
s
.
 
*
/

s
t
a
t
i
c
 
v
o
i
d
 
s
o
r
t
_
d
i
s
t
(
i
n
t
 
k
,
 
r
e
a
l
 
*
i
n
p
)

{
i
n
t
 
 
i
,
 
j
;

r
e
a
l
 
d
i
s
t
;

f
o
r
 
(
i
=
0
;
 
i
<
k
;
 
i
+
+
)
 
{

f
o
r
 
(
d
i
s
t
=
0
.
0
,
 
j
=
0
;
 
j
<
n
o
_
i
n
p
;
 
j
+
+
)
 
d
i
s
t
 
+
=
 
s
q
(
t
r
a
i
n
.
i
n
p
[
i
]
[
j
]
-
i
n
p
[
j
]
)
;

d
i
s
t
_
t
a
r
[
i
]
[
0
]
 
=
 
d
i
s
t
;
 

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
t
a
r
;
 
j
+
+
)
 
d
i
s
t
_
t
a
r
[
i
]
[
j
+
1
]
 
=
 
t
r
a
i
n
.
t
a
r
[
i
]
[
j
]
;

} q
s
o
r
t
(
d
i
s
t
_
t
a
r
,
 
k
,
 
s
i
z
e
o
f
(
r
e
a
l
 
*
)
,
 
c
o
m
p
)
;

}
 

/
*
 
F
i
n
d
 
n
e
i
g
h
b
o
r
s
 
a
n
d
 
w
r
i
t
e
 
t
h
e
i
r
 
t
a
r
g
e
t
s
 
i
n
t
o
 
t
h
e
 
"
t
a
r
g
e
t
s
"
 
a
r
r
a
y
.
 
M
o
s
t
l
y

*
 
t
h
i
s
 
c
a
n
 
b
e
 
d
o
n
e
 
b
y
 
c
o
p
y
i
n
g
 
f
r
o
m
 
t
h
e
 
s
o
r
t
e
d
 
"
d
i
s
t
_
t
a
r
"
 
a
r
r
a
y
,
 
b
u
t
 
w
e
 
n
e
e
d

*
 
t
o
 
t
a
k
e
 
c
a
r
e
 
w
h
e
n
 
t
h
e
r
e
 
a
r
e
 
t
i
e
s
;
 
i
n
 
t
h
i
s
 
c
a
s
e
 
w
e
 
u
s
e
 
t
h
e
 
a
v
e
r
a
g
e
 
o
f
 
t
h
e

*
 
t
a
r
g
e
t
s
 
o
f
 
t
h
e
 
t
i
e
d
 
c
a
s
e
s
.
 
*
/

s
t
a
t
i
c
 
v
o
i
d
 
f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
i
n
t
 
k
)

{
s
t
a
t
i
c
 
i
n
t
 
 
i
,
 
j
,
 
k
1
 
=
 
2
,
 
k
2
 
=
 
0
;

s
t
a
t
i
c
 
r
e
a
l
 
t
m
p
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
t
a
r
;
 
j
+
+
)
 
f
o
r
 
(
i
=
0
;
 
i
<
k
;
 
i
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
p
y
 
t
a
r
g
e
t
s
 
*
/

t
a
r
g
e
t
s
[
j
]
[
i
]
 
=
 
d
i
s
t
_
t
a
r
[
i
]
[
j
+
1
]
;
 
 
 
 
 
 
 
 
 
 

w
h
i
l
e
 
(
d
i
s
t
_
t
a
r
[
k
-
1
]
[
0
]
-
d
i
s
t
_
t
a
r
[
k
-
k
1
]
[
0
]
 
<
 
t
o
l
e
r
a
n
c
e
)
 
k
1
+
+
;

w
h
i
l
e
 
(
d
i
s
t
_
t
a
r
[
k
+
k
2
]
[
0
]
-
d
i
s
t
_
t
a
r
[
k
-
1
]
[
0
]
 
<
 
t
o
l
e
r
a
n
c
e
)
 
k
2
+
+
;

i
f
 
(
k
1
+
k
2
 
>
 
2
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
f
 
t
h
e
r
e
 
w
e
r
e
 
a
n
y
 
t
i
e
s
,
 
t
h
e
n
 
f
i
x
 
t
h
e
m
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
t
a
r
;
 
j
+
+
)
 
{

f
o
r
 
(
t
m
p
=
0
.
0
,
 
i
=
k
-
k
1
+
1
;
 
i
<
k
+
k
2
;
 
i
+
+
)
 
t
m
p
 
+
=
 
d
i
s
t
_
t
a
r
[
i
]
[
j
+
1
]
;

t
m
p
 
/
=
 
k
1
+
k
2
-
2
;

f
o
r
 
(
i
=
k
-
k
1
+
1
;
 
i
<
k
;
 
i
+
+
)
 
t
a
r
g
e
t
s
[
j
]
[
i
]
 
=
 
t
m
p
;

} k
1
 
=
 
2
;
 
k
2
 
=
 
0
;

}
} /
*
 
E
s
t
i
m
a
t
e
 
v
a
r
i
a
n
c
e
 
b
a
s
e
d
 
o
n
 
1
n
n
;
 
t
h
i
s
 
n
u
m
b
e
r
 
i
s
 
n
e
e
d
e
d
 
f
o
r
 
e
v
a
l
u
a
t
i
o
n
 
o
f
 
"
l
o
g

*
 
p
r
o
b
a
b
i
l
i
t
y
"
 
l
o
s
s
e
s
.
 
R
e
t
u
r
n
 
a
n
 
a
r
r
a
y
 
o
f
 
v
a
r
i
a
n
c
e
s
 
-
 
o
n
e
 
f
o
r
 
e
a
c
h
 
t
a
r
g
e
t
.
 
*
/

s
t
a
t
i
c
 
v
o
i
d
 
v
a
r
_
e
s
t
_
1
n
n
(
r
e
a
l
 
*
v
a
r
)

{
i
n
t
 
 
i
,
 
j
,
 
t
o
p
 
=
 
t
r
a
i
n
.
n
u
m
-
1
;

r
e
a
l
 
*
t
e
m
p
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
t
a
r
;
 
j
+
+
)
 
{

f
o
r
 
(
v
a
r
[
j
]
=
0
.
0
,
 
i
=
t
o
p
;
 
i
>
=
0
;
 
i
-
-
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
l
e
a
v
e
 
o
u
t
 
e
x
a
m
p
l
e
 
i
 
*
/

S
W
A
P
(
t
r
a
i
n
.
i
n
p
[
i
]
,
 
t
r
a
i
n
.
i
n
p
[
t
o
p
]
)
;
 
S
W
A
P
(
t
r
a
i
n
.
t
a
r
[
i
]
,
 
t
r
a
i
n
.
t
a
r
[
t
o
p
]
)
;
 

s
o
r
t
_
d
i
s
t
(
t
o
p
,
 
t
r
a
i
n
.
i
n
p
[
t
o
p
]
)
;

f
i
n
d
_
n
e
i
g
h
b
o
r
s
(
1
)
;
 
 
 
 
 

v
a
r
[
j
]
 
+
=
 
s
q
(
t
a
r
g
e
t
s
[
j
]
[
0
]
-
t
r
a
i
n
.
t
a
r
[
t
o
p
]
[
j
]
)
;

} v
a
r
[
j
]
 
/
=
 
t
r
a
i
n
.
n
u
m
;

}
} s
t
a
t
i
c
 
i
n
t
 
c
o
m
p
(
c
o
n
s
t
 
v
o
i
d
 
*
x
,
 
c
o
n
s
t
 
v
o
i
d
 
*
y
)
 
 
 
 
 
 
/
*
 
f
u
n
c
t
i
o
n
 
u
s
e
d
 
b
y
 
q
s
o
r
t
 
*
/

{

r
e
t
u
r
n
 
(
*
(
(
c
o
n
s
t
 
r
e
a
l
 
*
*
)
x
)
[
0
]
 
>
 
*
(
(
c
o
n
s
t
 
r
e
a
l
 
*
*
)
y
)
[
0
]
)
 
?
 
1
 
:
 
-
1
;

}
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A.3 Neural networks trained with early stopping mlp-ese-1

The main portions of the source for the mlp-ese-1 appears on the following pages. The

usage of the program has the form

mlp-ese-1 instance-number [[-] cpu-time] [seed]]

The program will read training and test sets from the files train.n and test.n and write

predictions to cpred.n where n is the instance-number. The allowed cpu-time may op-

tionally be specified (in seconds); negative values are interpreted as times per training case.

The default value is −1.875, i.e., 1.875 seconds per training case. A seed for the random

number generator may be specified — by default it is chosen according to time and date.

Each member of the ensemble is training using a different random partition into training

and validation sets. As the members of the ensemble are trained, their weights are dumped

to a file called wgts.n. When training terminates all the networks in this file are re-read in

order to produce the ensemble predictions. Running diagnostics is printed to stderr.

The main program uses the conjugate gradient minimization procedure described in ap-

pendix B. Functions implementing the neural network function and a function computing

partial derivatives of the cost function with respect to the weights of the network are also

given.

Finally, the randomizeNet function randomly initialises the network weights. The random

weights are drawn from a Gaussian distribution of zero mean and a standard deviation of

0.1
√

fin, where fin is the fan-in of the unit which the weight projects to.
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/
*
 
m
l
p
-
e
s
e
-
1
.
c
:
 
N
e
u
r
a
l
 
n
e
t
w
o
r
k
 
e
n
s
e
m
b
l
e
s
 
t
r
a
i
n
e
d
 
w
i
t
h
 
e
a
r
l
y
 
s
t
o
p
p
i
n
g
.

* *
 
A
n
 
e
n
s
e
m
b
l
e
 
o
f
 
n
e
u
r
a
l
 
n
e
t
w
o
r
k
s
 
i
s
 
t
r
a
i
n
e
d
 
u
s
i
n
g
 
e
a
r
l
y
 
s
t
o
p
p
i
n
g
.
 
E
a
c
h
 
m
e
m
b
e
r

*
 
o
f
 
t
h
e
 
e
n
s
e
m
b
l
e
 
i
s
 
v
a
l
i
d
a
t
e
d
 
o
n
 
a
 
v
a
l
i
d
a
t
i
o
n
 
s
e
t
 
p
i
c
k
e
d
 
a
t
 
r
a
n
d
o
m
.
 
W
e
i
g
h
t
s

*
 
o
f
 
t
h
e
 
t
r
a
i
n
e
d
 
n
e
t
s
 
a
r
e
 
d
u
m
p
e
d
 
t
o
 
a
 
l
o
g
-
f
i
l
e
,
 
w
h
i
c
h
 
i
s
 
r
e
-
r
e
a
d
 
a
t
 
t
h
e
 
e
n
d
 
o
f

*
 
t
r
a
i
n
i
n
g
 
t
o
 
p
r
o
d
u
c
e
 
p
r
e
d
i
c
t
i
o
n
s
 
f
r
o
m
 
t
h
e
 
e
n
s
e
m
b
l
e
.
 
T
h
e
 
d
e
f
a
u
l
t
 
r
u
n
n
i
n
g
 
t
i
m
e

*
 
i
s
 
1
.
8
7
5
 
s
e
c
o
n
d
s
 
p
e
r
 
t
r
a
i
n
i
n
g
 
e
x
a
m
p
l
e
.
 
R
u
n
n
i
n
g
 
d
i
a
g
n
o
s
t
i
c
s
 
i
s
 
p
r
i
n
t
e
d
 
t
o

*
 
s
t
d
e
r
r
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
e
n
.
 
*
/

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e
 
<
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e
 
<
s
y
s
/
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

#
d
e
f
i
n
e
 
M
i
n
E
n
s
e
m
b
l
e
S
i
z
e
 
 
 
3

#
d
e
f
i
n
e
 
M
a
x
E
n
s
e
m
b
l
e
S
i
z
e
 
 
5
0

#
d
e
f
i
n
e
 
V
a
l
i
d
a
t
e
F
r
a
c
t
i
o
n
 
 
3

#
d
e
f
i
n
e
 
E
a
r
l
y
S
t
o
p
M
a
r
g
i
n
 
 
 
1
.
5

#
d
e
f
i
n
e
 
M
i
n
I
t
e
r
a
t
i
o
n
 
 
 
 
2
5
0

#
d
e
f
i
n
e
 
m
i
n
(
a
,
b
)
 
(
(
(
a
)
<
(
b
)
)
?
(
a
)
:
(
b
)
)

v
o
i
d
 
c
r
e
a
t
e
N
e
t
(
)
;

v
o
i
d
 
d
e
s
t
r
o
y
N
e
t
(
)
;

v
o
i
d
 
r
a
n
d
o
m
i
z
e
N
e
t
(
r
e
a
l
 
m
a
g
n
i
t
u
d
e
)
;

r
e
a
l
 
p
r
i
o
r
(
r
e
a
l
 
*
d
w
)
 
{
 
r
e
t
u
r
n
 
0
.
0
;
 
}
 
 
 
 
 
 
 
 
/
*
 
w
e
 
d
o
 
n
o
t
 
h
a
v
e
 
a
 
w
e
i
g
h
t
 
p
r
i
o
r
 
*
/

e
x
t
e
r
n
 
v
o
i
d
 
i
n
i
t
T
i
m
e
r
(
s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
*
t
i
m
e
r
,
 
i
n
t
 
t
i
m
e
)
;

e
x
t
e
r
n
 
l
o
n
g
 
e
l
a
p
s
e
d
T
i
m
e
(
s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
*
t
i
m
e
r
)
;

r
e
a
l
 
c
o
s
t
(
s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
e
x
,
 
i
n
t
 
w
c
)
;

v
o
i
d
 
n
e
t
(
r
e
a
l
 
*
i
n
p
,
 
r
e
a
l
 
*
o
u
t
)
;

e
x
t
e
r
n
 
i
n
t
 
c
o
n
j
(
i
n
t
 
*
i
t
e
r
,
 
i
n
t
 
*
e
p
o
c
h
,
 
i
n
t
 
*
r
e
s
t
a
r
t
,
 
r
e
a
l
 
*
c
o
s
t
v
a
l
u
e
)
;

s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
t
i
m
e
r
;
 
 
 

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
h
e
 
t
r
a
i
n
i
n
g
 
e
x
a
m
p
l
e
s
 
*
/

r
e
a
l
 
*
w
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
[
n
o
_
w
t
s
]
 
o
f
 
a
l
l
 
n
e
t
w
o
r
k
 
w
e
i
g
h
t
s
 
*
/

*
*
w
i
,
 
 
 
/
*
 
a
r
r
a
y
 
[
n
o
_
h
i
d
]
 
o
f
 
a
r
r
a
y
s
 
[
n
o
_
i
n
p
]
 
o
f
 
i
n
p
u
t
-
t
o
-
h
i
d
d
e
n
 
w
e
i
g
h
t
s
 
*
/

*
*
w
d
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
o
f
 
d
i
r
e
c
t
 
i
n
p
u
t
-
t
o
-
o
u
t
p
u
t
 
w
e
i
g
h
t
s
 
*
/

*
*
w
o
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
o
f
 
h
i
d
d
e
n
-
t
o
-
o
u
t
p
u
t
 
w
e
i
g
h
t
s
 
*
/

*
o
u
t
p
u
t
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
o
f
 
n
e
t
w
o
r
k
 
o
u
t
p
u
t
s
 
*
/

i
n
t
 
 
n
o
_
h
i
d
,
 
n
o
_
i
n
p
,
 
n
o
_
t
a
r
,
 
 
 
 
 
 
 
 
/
*
 
n
o
.
 
o
f
 
h
i
d
d
e
n
,
 
i
n
p
u
t
 
a
n
d
 
t
a
r
g
e
t
 
u
n
i
t
s
 
*
/

n
o
_
w
t
s
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
o
t
a
l
 
n
o
.
 
o
f
 
w
e
i
g
h
t
s
 
*
/

m
a
i
n
(
i
n
t
 
a
r
g
c
,
 
c
h
a
r
 
*
*
a
r
g
v
)

{

c
h
a
r
 
d
f
[
5
0
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
f
i
l
e
 
n
a
m
e
 
*
/

l
o
n
g
 
s
e
e
d
,
 
 
 
 
 
 
 
 
 
 
 
 
 

l
e
n
g
t
h
,
 
u
s
e
d
_
t
i
m
e
 
=
 
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
i
m
e
s
 
a
r
e
 
i
n
 
m
i
l
l
i
s
e
c
o
n
d
s
 
*
/

i
n
t
 
 
r
e
s
t
a
r
t
,
 
 
 
 
/
*
 
u
s
e
d
 
w
i
t
h
 
c
o
n
j
(
)
;
 
i
f
 
1
 
t
h
e
n
 
c
o
n
j
 
u
s
e
s
 
s
t
e
e
p
e
s
t
 
d
e
s
c
e
n
t
 
*
/

i
,
 
j
,
 
k
,
 
l
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i
t
e
r
,
 
b
e
s
t
_
i
t
e
r
,
 
 
 
 
 
/
*
 
c
u
r
r
e
n
t
 
a
n
d
 
b
e
s
t
 
i
t
e
r
a
t
i
o
n
 
f
o
r
 
e
a
r
l
y
 
s
t
o
p
p
i
n
g
 
*
/

e
n
s
e
m
b
l
e
S
i
z
e
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
u
n
t
s
 
n
u
m
b
e
r
 
o
f
 
n
e
t
s
 
t
r
a
i
n
e
d
 
s
o
 
f
a
r
 
*
/

s
u
c
c
;
 

r
e
a
l
 
*
t
m
p
,

j
u
n
k
,

p
e
r
f
,
 
b
e
s
t
_
p
e
r
f
,
 
 
 
/
*
 
c
u
r
r
e
n
t
 
a
n
d
 
b
e
s
t
 
p
e
r
f
o
r
m
a
n
c
e
 
f
o
r
 
e
a
r
l
y
 
s
t
o
p
p
i
n
g
 
*
/

*
*
p
r
e
d
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
o
f
 
p
r
e
d
i
c
t
i
o
n
s
 
*
/

*
b
e
s
t
_
w
;
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
 
o
f
 
w
e
i
g
h
t
s
 
o
f
 
b
e
s
t
 
n
e
t
 
i
n
 
e
a
r
l
y
 
s
t
o
p
p
i
n
g
 
*
/

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
v
a
l
i
d
,
 
t
e
s
t
;
 

e
x
t
e
r
n
 
i
n
t
 
T
I
M
E
O
U
T
;
 
 
/
*
 
s
e
t
 
t
o
 
1
 
w
h
e
n
 
S
I
G
V
T
A
L
R
M
 
i
s
 
c
a
u
g
h
t
;
 
w
h
e
n
 
t
i
m
e
 
i
s
 
u
p
 
*
/

F
I
L
E
 
*
w
g
t
f
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
f
i
l
e
 
f
o
r
 
s
t
o
r
i
n
g
 
e
n
s
e
m
b
l
e
 
o
f
 
n
e
t
w
o
r
k
 
w
e
i
g
h
t
s
 
*
/

*
p
r
e
d
_
f
i
l
e
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
f
i
l
e
 
t
o
 
w
h
i
c
h
 
p
r
e
d
i
c
t
i
o
n
s
 
a
r
e
 
d
u
m
p
e
d
 
*
/

l
e
n
g
t
h
 
=
 
-
1
8
7
5
;
 
 
 
 
 
 
 
 
 
 
/
*
 
d
e
f
a
u
l
t
 
l
e
n
g
t
h
 
i
s
 
1
.
8
7
5
 
s
e
c
s
 
p
e
r
 
t
r
a
i
n
i
n
g
 
c
a
s
e
 
*
/

t
i
m
e
(
&
s
e
e
d
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
h
o
s
e
 
a
 
s
e
e
d
 
b
a
s
e
d
 
o
n
 
t
i
m
e
 
*
/

n
o
_
i
n
p
 
=
 
n
o
_
t
a
r
 
=
 
-
1
;
 
 
 
 
/
*
 
d
e
f
a
u
l
t
s
 
f
o
r
 
"
u
n
k
n
o
w
n
"
 
i
n
 
c
a
s
e
 
o
f
 
n
o
 
a
r
g
u
m
e
n
t
s
 
*
/

i
f
 
(
a
r
g
c
 
<
 
2
 
|
|
 
a
r
g
c
 
>
 
4
 
|
|

a
r
g
c
 
>
 
2
 
&
&
 
(
(
l
e
n
g
t
h
 
=
 
1
0
0
0
*
a
t
o
f
(
a
r
g
v
[
2
]
)
)
 
=
=
 
0
.
0
)
 
|
|
 
 
/
*
 
l
e
n
g
t
h
 
i
n
 
m
s
 
*
/

a
r
g
c
=
=
4
 
&
&
 
(
(
s
e
e
d
 
=
 
a
t
o
i
(
a
r
g
v
[
3
]
)
)
 
<
=
 
0
)
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
U
s
a
g
e
:
 
%
s
 
i
n
s
t
a
n
c
e
-
n
u
m
b
e
r
 
[
[
-
]
c
p
u
-
t
i
m
e
 
[
s
e
e
d
]
]
\
n
"
,
 
a
r
g
v
[
0
]
)
;

e
x
i
t
(
-
1
)
;

} s
r
a
n
d
4
8
(
s
e
e
d
)
;
 

s
p
r
i
n
t
f
(
d
f
,
 
"
t
e
s
t
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
e
a
d
 
t
e
s
t
 
i
n
p
u
t
s
 
*
/

t
e
s
t
.
n
u
m
 
=
 
t
r
a
i
n
.
n
u
m
 
=
 
n
o
_
i
n
p
 
=
 
n
o
_
t
a
r
 
=
 
-
1
;
 
 
 
 
 
 
/
*
 
d
e
f
a
u
l
t
 
f
o
r
 
"
u
n
k
n
o
w
n
"
 
*
/

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
e
s
t
,
 
&
n
o
_
i
n
p
,
 
(
i
=
0
,
 
&
i
)
,
 
d
f
,
 
N
U
L
L
)
;

s
p
r
i
n
t
f
(
d
f
,
 
"
t
r
a
i
n
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
r
a
i
n
,
 
&
n
o
_
i
n
p
,
 
&
n
o
_
t
a
r
,
 
d
f
,
 
N
U
L
L
)
;

i
f
 
(
l
e
n
g
t
h
 
<
 
0
)
 
l
e
n
g
t
h
 
*
=
 
-
t
r
a
i
n
.
n
u
m
;
 
 
/
*
 
t
r
a
i
n
i
n
g
 
t
i
m
e
 
w
a
s
 
g
i
v
e
n
 
p
e
r
 
c
a
s
e
 
*
/

v
a
l
i
d
.
n
u
m
 
=
 
t
r
a
i
n
.
n
u
m
/
V
a
l
i
d
a
t
e
F
r
a
c
t
i
o
n
;

t
r
a
i
n
.
n
u
m
 
-
=
 
v
a
l
i
d
.
n
u
m
;
 
 
 
 
 
 
 
 
 
/
*
 
n
o
w
 
t
r
a
i
n
 
o
n
 
o
n
l
y
 
t
h
e
 
t
r
a
i
n
i
n
g
 
f
r
a
c
t
i
o
n
 
*
/

v
a
l
i
d
.
i
n
p
 
=
 
&
t
r
a
i
n
.
i
n
p
[
t
r
a
i
n
.
n
u
m
]
;
 
v
a
l
i
d
.
t
a
r
 
=
 
&
t
r
a
i
n
.
t
a
r
[
t
r
a
i
n
.
n
u
m
]
;

s
p
r
i
n
t
f
(
d
f
,
 
"
w
g
t
s
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;
 

i
f
 
(
(
w
g
t
f
 
=
 
f
o
p
e
n
(
d
f
,
 
"
w
+
b
"
)
)
 
=
=
 
N
U
L
L
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
C
o
u
l
d
 
n
o
t
 
o
p
e
n
 
w
e
i
g
h
t
 
f
i
l
e
 
%
s
 
f
o
r
 
w
r
i
t
i
n
g
 
.
.
.
b
y
e
!
\
n
"
,
 
d
f
)
;

e
x
i
t
(
-
1
)
;

}
 

n
o
_
h
i
d
 
=
 
c
e
i
l
(
(
t
r
a
i
n
.
n
u
m
-
(
n
o
_
i
n
p
+
1
.
0
)
*
n
o
_
t
a
r
)
/
(
n
o
_
i
n
p
+
n
o
_
t
a
r
+
1
.
0
)
)
;

n
o
_
w
t
s
 
=
 
(
n
o
_
i
n
p
+
1
)
*
n
o
_
h
i
d
+
(
n
o
_
i
n
p
+
n
o
_
h
i
d
+
1
)
*
n
o
_
t
a
r
;

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
U
s
i
n
g
 
n
e
t
s
 
w
i
t
h
 
%
3
d
 
h
i
d
d
e
n
 
u
n
i
t
s
 
a
n
d
 
%
5
d
 
w
e
i
g
h
t
s
.
\
n
"
,

n
o
_
h
i
d
,
 
n
o
_
w
t
s
)
;

c
r
e
a
t
e
N
e
t
(
)
;

b
e
s
t
_
w
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;
 

e
n
s
e
m
b
l
e
S
i
z
e
 
=
 
0
;

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
n
e
t
 
 
t
r
a
i
n
-
e
r
r
 
v
a
l
i
d
-
e
r
r
 
 
b
e
s
t
-
i
t
e
r
 
 
m
a
x
-
i
t
e
r
\
n
"
)
;
 
 

w
h
i
l
e
 
(
u
s
e
d
_
t
i
m
e
 
<
 
l
e
n
g
t
h
 
&
&
 
e
n
s
e
m
b
l
e
S
i
z
e
 
<
 
M
a
x
E
n
s
e
m
b
l
e
S
i
z
e
)
 
{

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
+
v
a
l
i
d
.
n
u
m
;
 
i
+
+
)
 
{
 
 
 
 
 
 

j
 
=
 
d
r
a
n
d
4
8
(
)
*
t
r
a
i
n
.
n
u
m
;

t
m
p
 
=
 
t
r
a
i
n
.
i
n
p
[
j
]
;
 
t
r
a
i
n
.
i
n
p
[
j
]
 
=
 
t
r
a
i
n
.
i
n
p
[
i
]
;
 
t
r
a
i
n
.
i
n
p
[
i
]
 
=
 
t
m
p
;

t
m
p
 
=
 
t
r
a
i
n
.
t
a
r
[
j
]
;
 
t
r
a
i
n
.
t
a
r
[
j
]
 
=
 
t
r
a
i
n
.
t
a
r
[
i
]
;
 
t
r
a
i
n
.
t
a
r
[
i
]
 
=
 
t
m
p
;

}

r
a
n
d
o
m
i
z
e
N
e
t
(
0
.
1
)
;

i
n
i
t
T
i
m
e
r
(
&
t
i
m
e
r
,
 
m
i
n
(
l
e
n
g
t
h
/
M
i
n
E
n
s
e
m
b
l
e
S
i
z
e
,
 
l
e
n
g
t
h
-
u
s
e
d
_
t
i
m
e
)
)
;
 

b
e
s
t
_
p
e
r
f
 
=
 
c
o
s
t
(
v
a
l
i
d
,
 
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
i
t
i
a
l
i
z
e
 
b
e
s
t
_
p
e
r
f
 
a
n
d
.
.
.
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
b
e
s
t
_
w
[
i
]
 
=
 
w
[
i
]
;
 
 
 
/
*
 
b
e
s
t
_
w
 
t
o
 
t
h
e
 
r
a
n
d
o
m
 
n
e
t
 
*
/

i
t
e
r
 
=
 
b
e
s
t
_
i
t
e
r
 
=
 
0
;
 
r
e
s
t
a
r
t
 
=
 
1
;
 
 
 
/
*
 
c
o
n
j
(
)
 
s
h
o
u
l
d
 
r
e
s
t
a
r
t
 
i
t
s
 
s
e
a
r
c
h
 
*
/

d
o
 
{
s
u
c
c
 
=
 
c
o
n
j
(
(
i
=
1
,
 
&
i
)
,
 
(
j
=
0
,
 
&
j
)
,
 
&
r
e
s
t
a
r
t
,
 
&
j
u
n
k
)
;
 
i
t
e
r
+
+
;

i
f
 
(
(
p
e
r
f
=
c
o
s
t
(
v
a
l
i
d
,
 
0
)
)
 
<
 
b
e
s
t
_
p
e
r
f
)
 
{

b
e
s
t
_
i
t
e
r
 
=
 
i
t
e
r
;
 
b
e
s
t
_
p
e
r
f
 
=
 
p
e
r
f
;
 
 
 
 
 
 
 
 
 
 
/
*
 
u
p
d
a
t
e
 
"
b
e
s
t
"
 
v
a
l
u
e
s
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
b
e
s
t
_
w
[
i
]
 
=
 
w
[
i
]
;
 
 
 
 
 
 
 
 
 
 
/
*
 
s
a
v
e
 
t
h
i
s
 
n
e
t
 
*
/

}
 
 
 
 

}
 
w
h
i
l
e
 
(
(
s
u
c
c
)
 
&
&
 
(
!
T
I
M
E
O
U
T
)
 
&
&
 
(
(
i
t
e
r
 
<
 
E
a
r
l
y
S
t
o
p
M
a
r
g
i
n
*
b
e
s
t
_
i
t
e
r
)
 
|
|

(
i
t
e
r
 
<
 
M
i
n
I
t
e
r
a
t
i
o
n
)
 
|
|
 
(
M
a
x
E
n
s
e
m
b
l
e
S
i
z
e
*
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
 
<
 
l
e
n
g
t
h
)
)
)
;

u
s
e
d
_
t
i
m
e
 
+
=
 
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
;

f
w
r
i
t
e
(
b
e
s
t
_
w
,
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
,
 
1
,
 
w
g
t
f
)
;
 
 
 
 
 
 
/
*
 
a
p
p
e
n
d
 
n
e
t
 
t
o
 
w
g
t
f
 
*
/
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i
f
 
(
u
s
e
d
_
t
i
m
e
<
l
e
n
g
t
h
 
|
|
 
e
n
s
e
m
b
l
e
S
i
z
e
<
M
i
n
E
n
s
e
m
b
l
e
S
i
z
e
)
 
{
 
 
 
/
*
 
a
d
d
 
i
f
 
t
i
m
e
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
w
[
i
]
 
=
 
b
e
s
t
_
w
[
i
]
;

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
%
3
d
 
%
9
.
4
f
 
%
9
.
4
f
 
%
7
d
 
 
 
 
%
7
d
\
n
"
,
 
+
+
e
n
s
e
m
b
l
e
S
i
z
e
,

c
o
s
t
(
t
r
a
i
n
,
 
0
)
,
 
b
e
s
t
_
p
e
r
f
,
 
b
e
s
t
_
i
t
e
r
,
 
i
t
e
r
)
;

}
} r
e
w
i
n
d
(
w
g
t
f
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
e
n
s
e
m
b
l
e
 
p
r
e
d
i
c
t
i
o
n
s
 
*
/

p
r
e
d
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
n
o
_
t
a
r
,
 
t
e
s
t
.
n
u
m
)
;

f
o
r
 
(
k
=
0
;
 
k
<
n
o
_
t
a
r
;
 
k
+
+
)
 
f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
p
r
e
d
[
k
]
[
i
]
 
=
 
0
.
0
;

f
o
r
 
(
j
=
0
;
 
j
<
e
n
s
e
m
b
l
e
S
i
z
e
;
 
j
+
+
)
 
{

f
r
e
a
d
(
w
,
 
(
l
o
n
g
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
,
 
1
,
 
w
g
t
f
)
;
 

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{

n
e
t
(
t
e
s
t
.
i
n
p
[
i
]
,
 
o
u
t
p
u
t
)
;

f
o
r
 
(
k
=
0
;
 
k
<
n
o
_
t
a
r
;
 
k
+
+
)
 
p
r
e
d
[
k
]
[
i
]
 
+
=
 
o
u
t
p
u
t
[
k
]
;

}
} f
o
r
 
(
k
=
0
;
 
k
<
n
o
_
t
a
r
;
 
k
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
u
s
e
 
m
e
a
n
 
p
r
e
d
i
c
t
i
o
n
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
p
r
e
d
[
k
]
[
i
]
 
/
=
 
e
n
s
e
m
b
l
e
S
i
z
e
;

f
c
l
o
s
e
(
w
g
t
f
)
;
 

p
r
e
d
_
f
i
l
e
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
g
u
e
s
s
.
%
s
"
,
 
a
r
g
v
[
1
]
)
;
 
 
 
/
*
 
p
o
i
n
t
 
p
r
e
d
i
c
t
i
o
n
 
f
i
l
e
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
w
r
i
t
e
 
p
r
e
d
i
c
t
i
o
n
s
 
*
/

f
o
r
 
(
k
=
0
;
 
k
<
n
o
_
t
a
r
;
 
k
+
+
)
 
f
p
r
i
n
t
f
(
p
r
e
d
_
f
i
l
e
,
 
"
%
f
 
"
,
 
p
r
e
d
[
k
]
[
i
]
)
;

f
p
r
i
n
t
f
(
p
r
e
d
_
f
i
l
e
,
 
"
\
n
"
)
;

}
 

f
c
l
o
s
e
(
p
r
e
d
_
f
i
l
e
)
;
 
f
r
e
e
(
p
r
e
d
[
0
]
)
;
 
f
r
e
e
(
p
r
e
d
)
;

}
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*
 
f
e
v
a
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.
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e
 
o
u
t
p
u
t
s
 
g
i
v
e
n
 
t
h
e
 
i
n
p
u
t
s
 
f
o
r
 
a
 
f
u
l
l
y

*
 
c
o
n
n
e
c
t
e
d
 
f
e
e
d
 
f
o
r
w
a
r
d
 
n
e
t
 
w
i
t
h
 
a
 
s
i
n
g
l
e
 
h
i
d
d
e
n
 
l
a
y
e
r
 
o
f
 
t
a
n
h
 
u
n
i
t
s
.
 
T
h
e

*
 
f
u
n
c
t
i
o
n
 
"
c
o
s
t
"
 
r
e
t
u
r
n
s
 
t
h
e
 
s
q
u
a
r
e
d
 
e
r
r
o
r
 
c
o
s
t
 
f
o
r
 
a
l
l
 
e
x
a
m
p
l
e
s
 
i
n
 
a
 
s
e
t

*
 
w
i
t
h
 
o
r
 
w
i
t
h
o
u
t
 
w
e
i
g
h
t
 
p
a
n
e
l
a
t
y
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
e
n
.
 
*
/

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>

e
x
t
e
r
n
 
i
n
t
 
n
o
_
h
i
d
,
 
n
o
_
i
n
p
,
 
n
o
_
t
a
r
,
 
n
o
_
w
t
s
;

e
x
t
e
r
n
 
r
e
a
l
 
*
w
,
 
*
*
w
i
,
 
*
*
w
d
,
 
*
*
w
o
,
 
*
h
i
d
d
e
n
,
 
*
o
u
t
p
u
t
;

e
x
t
e
r
n
 
r
e
a
l
 
p
r
i
o
r
(
r
e
a
l
 
*
d
w
)
;

v
o
i
d
 
n
e
t
(
r
e
a
l
 
*
i
n
,
 
r
e
a
l
 
*
o
u
t
)
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
n
e
t
w
o
r
k
 
o
u
t
p
u
t
 
g
i
v
e
n
 
i
n
p
u
t
 
*
/

{
i
n
t
 
 
i
,
 
j
;

r
e
a
l
 
x
,
 
*
t
m
p
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
h
i
d
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
a
c
t
i
v
i
t
y
 
o
f
 
h
i
d
d
e
n
 
u
n
i
t
s
 
*
/

t
m
p
 
=
 
w
i
[
i
]
;

x
 
=
 
t
m
p
[
n
o
_
i
n
p
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
i
d
d
e
n
 
b
i
a
s
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
i
n
p
;
 
j
+
+
)
 
x
 
+
=
 
i
n
[
j
]
*
t
m
p
[
j
]
;

h
i
d
d
e
n
[
i
]
 
=
 
t
a
n
h
(
x
)
;

} f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
t
a
r
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
a
c
t
i
v
i
t
i
e
s
 
o
f
 
o
u
t
p
u
t
 
u
n
i
t
s
 
*
/

t
m
p
 
=
 
w
o
[
i
]
;

x
 
=
 
t
m
p
[
n
o
_
h
i
d
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
o
u
t
p
u
t
 
b
i
a
s
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
h
i
d
;
 
j
+
+
)
 
x
 
+
=
 
h
i
d
d
e
n
[
j
]
*
t
m
p
[
j
]
;

t
m
p
 
=
 
w
d
[
i
]
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
i
n
p
;
 
j
+
+
)
 
x
 
+
=
 
i
n
[
j
]
*
t
m
p
[
j
]
;
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
i
r
e
c
t
 
w
e
i
g
h
t
s
 
*
/

o
u
t
[
i
]
 
=
 
x
;

}
}
 
 
 
 
 

r
e
a
l
 
c
o
s
t
(
e
x
,
 
w
c
)
 
 
 
 
 
/
*
 
c
a
l
c
.
 
e
r
r
o
r
 
o
n
 
e
x
a
m
p
l
e
s
,
 
i
n
c
l
u
d
i
n
g
 
p
e
n
a
l
t
y
 
i
f
f
 
w
c
=
1
 
*
/

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
e
x
;

i
n
t
 
 
 
 
w
c
;

{
i
n
t
 
 
i
,
 
j
;

r
e
a
l
 
x
,
 
*
t
m
p
,
 
e
 
=
 
0
.
0
;

f
o
r
 
(
i
=
0
;
 
i
<
e
x
.
n
u
m
;
 
i
+
+
)
 
{

n
e
t
(
e
x
.
i
n
p
[
i
]
,
 
o
u
t
p
u
t
)
;

t
m
p
 
=
 
e
x
.
t
a
r
[
i
]
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
t
a
r
;
 
j
+
+
)
 
{

x
 
=
 
o
u
t
p
u
t
[
j
]
 
-
 
t
m
p
[
j
]
;

e
 
+
=
 
x
*
x
;

}
} x
 
=
 
0
.
0
;
 
i
f
 
(
w
c
 
=
=
 
1
)
 
x
 
=
 
p
r
i
o
r
(
N
U
L
L
)
;

r
e
t
u
r
n
 
(
e
+
x
)
/
e
x
.
n
u
m
;

}



110 Implementations

/
*
 
f
g
e
v
a
l
.
c
:
 
E
v
a
l
u
a
t
e
 
c
o
s
t
 
a
n
d
 
g
r
a
d
i
e
n
t
s
 
o
v
e
r
 
t
r
a
i
n
i
n
g
 
s
e
t
 
f
o
r
 
n
e
u
r
a
l
 
n
e
t
.
 

* *
 
T
h
e
 
f
u
n
c
t
i
o
n
 
r
e
t
u
r
n
s
 
t
h
e
 
(
b
a
t
c
h
)
 
c
o
s
t
 
o
v
e
r
 
t
h
e
 
t
r
a
i
n
n
g
 
s
e
t
,
 
a
n
d
 
r
e
t
u
r
n
s
 
a
n

*
 
a
r
r
a
y
 
o
f
 
p
a
r
t
i
a
l
 
d
e
r
i
v
a
t
i
v
e
s
 
w
i
t
h
 
r
e
p
e
c
t
 
t
o
 
a
l
l
 
t
h
e
 
w
e
i
g
h
t
s
 
i
n
 
a
 
f
u
l
l
y

*
 
c
o
n
n
e
c
t
e
d
 
f
e
e
d
-
f
o
r
w
a
r
d
 
n
e
u
r
a
l
 
n
e
t
 
w
i
t
h
 
a
 
s
i
n
g
l
e
 
h
i
d
d
e
n
 
l
a
y
e
r
 
o
f
 
t
a
n
h
 
u
n
i
t
s
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
e
n
.
 
*
/

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

e
x
t
e
r
n
 
i
n
t
 
n
o
_
i
n
p
,
 
n
o
_
h
i
d
,
 
n
o
_
t
a
r
,
 
n
o
_
w
t
s
,
 
n
f
g
e
v
a
l
;

e
x
t
e
r
n
 
r
e
a
l
 
*
w
,
 
*
*
w
i
,
 
*
*
w
d
,
 
*
*
w
o
,
 
*
o
u
t
p
u
t
;

e
x
t
e
r
n
 
s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
;

r
e
a
l
 
*
h
i
d
d
e
n
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
c
t
i
v
i
t
y
 
o
f
 
h
i
d
d
e
n
 
u
n
i
t
s
 
*
/

e
x
t
e
r
n
 
r
e
a
l
 
p
r
i
o
r
(
r
e
a
l
 
*
d
w
)
;

r
e
a
l
 
f
g
e
v
a
l
(
d
w
)

r
e
a
l
 
*
d
w
;

{
i
n
t
 
 
i
,
 
j
,
 
k
,
 
l
,
 
m
;

r
e
a
l
 
e
 
=
 
0
.
0
,
 
x
,
 
y
,
 
*
t
m
p
,
 
*
p
a
t
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
d
w
[
i
]
 
=
 
0
.
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
z
e
r
o
 
d
e
r
i
v
a
t
i
v
e
s
 
*
/

f
o
r
 
(
k
=
0
;
 
k
<
t
r
a
i
n
.
n
u
m
;
 
k
+
+
)
 
{

p
a
t
=
t
r
a
i
n
.
i
n
p
[
k
]
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
h
i
d
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
h
i
d
d
e
n
 
a
c
t
i
v
i
t
i
e
s
 
*
/

t
m
p
 
=
 
w
i
[
i
]
;

x
 
=
 
t
m
p
[
n
o
_
i
n
p
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
i
d
d
e
n
 
b
i
a
s
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
i
n
p
;
 
j
+
+
)
 

x
 
+
=
 
p
a
t
[
j
]
*
t
m
p
[
j
]
;

h
i
d
d
e
n
[
i
]
 
=
 
t
a
n
h
(
x
)
;

} m
 
=
 
0
;
 

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
t
a
r
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
o
u
t
p
u
t
 
a
c
t
i
v
i
t
i
e
s
 
*
/

t
m
p
 
=
 
w
o
[
i
]
;

x
 
=
 
t
m
p
[
n
o
_
h
i
d
]
-
t
r
a
i
n
.
t
a
r
[
k
]
[
i
]
;
 
 
 
 
 
 
 
 
 
 
 
/
*
 
o
u
t
p
u
t
 
b
i
a
s
 
m
i
n
u
s
 
t
a
r
g
e
t
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
h
i
d
;
 
j
+
+
)
 
x
 
+
=
 
h
i
d
d
e
n
[
j
]
*
t
m
p
[
j
]
;

t
m
p
 
=
 
w
d
[
i
]
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
i
n
p
;
 
j
+
+
)
 
x
 
+
=
 
p
a
t
[
j
]
*
t
m
p
[
j
]
;
 
 
 
 
 
 
 
 
 
/
*
 
d
i
r
e
c
t
 
w
e
i
g
h
t
s
 
*
/

o
u
t
p
u
t
[
i
]
 
=
 
x
;

e
 
+
=
 
x
*
x
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
c
c
u
m
u
l
a
t
e
 
s
q
u
a
r
e
d
 
e
r
r
o
r
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
=
n
o
_
h
i
d
;
 
j
+
+
)
 
d
w
[
m
+
+
]
 
+
=
 
x
*
h
i
d
d
e
n
[
j
]
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
i
n
p
;
 
j
+
+
)
 
d
w
[
m
+
+
]
 
+
=
 
x
*
p
a
t
[
j
]
;

}
 

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
h
i
d
;
 
j
+
+
)
 
{

y
=
h
i
d
d
e
n
[
j
]
;

x
 
=
 
0
.
0
;
 
f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
t
a
r
;
 
i
+
+
)
 
x
 
+
=
 
o
u
t
p
u
t
[
i
]
*
w
o
[
i
]
[
j
]
;

y
=
x
*
(
1
.
0
-
y
*
y
)
;

f
o
r
 
(
l
=
0
;
 
l
<
n
o
_
i
n
p
;
 
l
+
+
)

d
w
[
m
+
+
]
 
+
=
 
y
*
p
a
t
[
l
]
;

d
w
[
m
+
+
]
 
+
=
 
y
;

}
 
 

} n
f
g
e
v
a
l
+
+
;

r
e
t
u
r
n
 
0
.
5
*
(
e
+
p
r
i
o
r
(
d
w
)
)
;

}

/
*
 
i
n
i
t
.
c
:
 
F
u
n
c
t
i
o
n
s
 
t
o
 
c
r
e
a
t
e
,
 
d
e
s
t
r
o
y
 
a
n
d
 
r
a
n
d
o
m
l
y
 
i
n
i
t
i
a
l
i
z
e
 
n
e
u
r
a
l
 
n
e
t
s
.

* *
 
F
u
n
c
t
i
o
n
s
 
a
l
l
o
c
a
t
e
 
a
n
d
 
f
r
e
e
 
t
h
e
 
m
e
m
o
r
y
 
f
o
r
 
f
u
l
l
y
 
c
o
n
n
e
c
t
e
d
 
n
e
u
r
a
l
 
n
e
t
w
o
r
k
s

*
 
w
i
t
h
 
a
 
s
i
n
g
l
e
 
h
i
d
d
e
n
 
l
a
y
e
r
 
o
f
 
t
a
n
h
 
u
n
i
t
s
,
 
w
h
o
s
e
 
s
i
z
e
 
a
r
e
 
g
i
v
e
n
 
b
y
 
g
l
o
b
a
l

*
 
v
a
r
i
a
b
l
e
s
.
 
T
h
e
 
"
r
a
n
d
o
m
i
z
e
N
e
t
"
 
f
u
n
c
t
i
o
n
 
s
e
t
s
 
t
h
e
 
w
e
i
g
h
t
s
 
t
o
 
r
a
n
d
o
m
 
v
a
l
u
e
s

*
 
d
r
a
w
n
 
f
r
o
m
 
a
 
z
e
r
o
 
m
e
a
n
 
G
a
u
s
s
i
a
n
 
w
i
t
h
 
s
 
s
t
a
n
d
a
r
d
 
d
e
v
i
a
t
i
o
n
 
g
i
v
e
n
 
b
y
 
t
h
e
 

*
 
"
m
a
g
n
i
t
u
d
e
"
 
p
a
r
a
m
e
t
e
r
,
 
s
c
a
l
e
d
 
d
o
w
n
 
b
y
 
t
h
e
 
s
q
a
r
e
 
r
o
o
t
 
o
f
 
t
h
e
 
f
a
n
-
i
n
 
f
o
 
t
h
e

*
 
u
n
i
t
s
 
t
h
e
y
 
p
r
o
j
e
c
t
 
t
o
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
e
n
.
 
*
/

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

e
x
t
e
r
n
 
i
n
t
 
 
n
o
_
i
n
p
,
 
n
o
_
t
a
r
,
 
n
o
_
h
i
d
,
 
n
o
_
w
t
s
;

e
x
t
e
r
n
 
r
e
a
l
 
*
w
,
 
*
*
w
i
,
 
*
*
w
d
,
 
*
*
w
o
,
 
*
d
w
1
,
 
*
d
w
2
,
 
*
s
,
 
*
h
i
d
d
e
n
,
 
*
o
u
t
p
u
t
;

v
o
i
d
 
c
r
e
a
t
e
N
e
t
(
)

{
i
n
t
 
i
;

w
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
4
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

w
o
 
=
 
(
r
e
a
l
 
*
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
t
a
r
*
s
i
z
e
o
f
(
r
e
a
l
*
)
)
;

w
d
 
=
 
(
r
e
a
l
 
*
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
t
a
r
*
s
i
z
e
o
f
(
r
e
a
l
*
)
)
;

w
o
[
0
]
 
=
 
&
w
[
0
]
;
 
w
d
[
0
]
 
=
 
&
w
[
n
o
_
h
i
d
+
1
]
;

f
o
r
 
(
i
=
1
;
 
i
<
n
o
_
t
a
r
;
 
i
+
+
)
 
{
 
w
o
[
i
]
 
=
 
w
o
[
i
-
1
]
+
n
o
_
h
i
d
+
1
;
 
w
d
[
i
]
 
=
 
w
o
[
i
]
+
n
o
_
i
n
p
;
 
}

w
i
 
=
 
(
r
e
a
l
 
*
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
h
i
d
*
s
i
z
e
o
f
(
r
e
a
l
*
)
)
;

w
i
[
0
]
 
=
 
&
w
[
(
n
o
_
h
i
d
+
n
o
_
i
n
p
+
1
)
*
n
o
_
t
a
r
]
;

f
o
r
 
(
i
=
1
;
 
i
<
n
o
_
h
i
d
;
 
i
+
+
)
 
w
i
[
i
]
 
=
 
w
i
[
i
-
1
]
+
n
o
_
i
n
p
+
1
;

d
w
1
 
=
 
&
w
[
n
o
_
w
t
s
]
;
 
d
w
2
 
=
 
&
w
[
n
o
_
w
t
s
*
2
]
;
 
s
 
=
 
&
w
[
n
o
_
w
t
s
*
3
]
;

h
i
d
d
e
n
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
(
n
o
_
h
i
d
+
n
o
_
i
n
p
+
1
)
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

h
i
d
d
e
n
[
n
o
_
h
i
d
]
 
=
 
1
.
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
t
h
e
 
o
u
t
p
u
t
 
b
i
a
s
 
*
/

o
u
t
p
u
t
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
t
a
r
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

} v
o
i
d
 
d
e
s
t
r
o
y
N
e
t
(
)
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The source for this method was written by Radford Neal and is publicly available on the Web

through http://www.cs.toronto.edu/∼radford. The software used for the experiments

in this thesis is the release dated 26 August 1996. Since it is quite long I will not reproduce

it here. Instead I will supply the script (written for the csh shell) which I used to run the

simulations for this method. For a more detailed description of the options available refer

to the documentation of the software.

net-spec log.$1 8 6 1 / - x0.2:0.5:1 0.1:0.5 - x0.05:0.5 x0.2:0.5:1 1
model-spec log.$1 real 0.05:0.5
data-spec log.$1 8 1 / train.$1 .

rand-seed log.$1 $1
net-gen log.$1 fix 0.1 0.5
mc-spec log.$1 repeat 10 sample-noise heatbath hybrid 100:10 0.15
net-mc log.$1 1
mc-spec log.$1 sample-sigmas heatbath 0.95 hybrid 100:10 0.15 negate
net-mc log.$1 @32 58

net-pred bn log.$1 @10.7:32+100 / test.$1 > cguess.S.$1
net-pred bd log.$1 @10.7:32+100 / test.$1 > cguess.A.$1
net-pred bp log.$1 @10.7:32+100 / test.$1 targets.$1 > clptarg.L.$1

The argument to the script $1 contains the instance number. In this example a network

with 8 inputs and a single layer of 6 hidden units is trained for 32 minutes of cpu-time. The

number of hidden units should be selected according to the heuristic rules given in section

3.7. The net-spec command specifies the architecture of the network and the weight priors

as discussed in section 3.7. The following lines specify the noise model and tells the program

where to get the data files. After setting the seed for the random number generator the

hyperparameters are initialized. Then the Markov chain is set up to perform 10 iterations

each of 100 leapfrog steps with a step size of 0.15 for fixed values of the hyperparameters.

These iterations are performed in the following call to net-mc and should allow the weights

to attain somewhat reasonable values.

In the following line the Markov chain is set up for the remainder of the run. The

sample-sigmas command updates the hyperparameters and the heatbath 0.95 command

updates momenta with a persistance of 0.95; the remainder of the line specifies Hybrid

Monte Carlo for the weights with leaprog trajectories of length 100, window size 10 and

step size 0.15. The call to net-mc allows for 32 minutes of cpu time and saves every 58th

iteration to the log file — an interval which by experimentation was determined appropriate

for the desired number of samples in 32 minutes. The last three lines of the script generate

predictions from 100 samples from the last 2/3 of the run for the three standard loss types.
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A.5 Gaussian Processes

This section contains the source code of the porgrams used for the Gaussian Process methods

in the thesis. However, I am currently rewriting the software to be more portable and more

flexible by allowing specification of the desired covariance function and noise models via the

command line. This new software will be made available to the public domain via DELVE.

The source for the two methods gp-map-1 and gp-mc-1 is given in the following. The code

that is specific to the covariance function is located in the cov-1.c file. Then follows the

generic programs for the two methods in gp-map.c and gp-mc.c. The optimization for

the MAP method is done using the conjugate gradient method described in appendix B.

The leapfrog method for the Hybrid Monte Carlo algorithm follows in the leapfrog.c file.

Lastly the generic prediction program gp-pred.c is listed followed by the matrix inversion

code in invspd.c and a routine to find medians in median.c.

The programs gp-map-1 and gp-mc-1 store the values of the hyperparameters (and mo-

mentum variables) at regular intervals in so-called log files. The gp-pred-1 program makes

predictions for test cases based on the information in the log files. For problems containing

many training cases, this design is wasteful, since the prediction program has to invert the

same matrices as have already been inverted by the training program.

The script (using the csh shell) used to run the gp-map-1 method on the instance given by

$1 using log files named log for a total cpu time of 120 seconds consists of the two following

lines:

gp-map-1 log $1 @120
gp-pred-1 log $1 ‘grep -c ^ log.$1‘

Here the grep command simply returns the number of records written to the log file, causing

only the last record to be used for the predictions.

Similarly, the script used for the gp-mc-1 method on instance number $1 for 32 minutes of

cpu time (1920 seconds), saving 39 log records and using the 26 records of the last 2/3 of

the run for predictions is:

gp-mc-1 log $1 @1920+39
gp-pred-1 log $1 @640:1920+26

Note that the implementation supports continuation of a run on a specific log file by simply

re-calling gp-mc-1 with a longer time specification; this feature was used when generating

data for fig. 5.19.
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i
n
.
n
u
m
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
 
=
 
l
o
g
 
d
e
t
 
K
;
 
K
2
 
=
 
i
n
v
 
K
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
q
[
]
 
a
n
d
 
r
 
*
/

f
o
r
 
(
r
r
=
0
.
0
,
 
j
=
0
;
 
j
<
i
;
 
j
+
+
)
 
r
r
 
+
=
 
t
r
a
i
n
.
t
a
r
[
j
]
[
0
]
*
K
2
[
j
]
[
i
]
;

f
o
r
 
(
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
r
r
 
+
=
 
t
r
a
i
n
.
t
a
r
[
j
]
[
0
]
*
K
2
[
i
]
[
j
]
;

q
[
i
]
 
=
 
r
r
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
q
 
=
 
t
 
*
 
i
n
v
(
K
)
 
*
/

r
 
+
=
 
t
r
a
i
n
.
t
a
r
[
i
]
[
0
]
*
r
r
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
 
=
 
t
 
*
 
i
n
v
(
K
)
 
*
 
t
 
*
/

} r
 
*
=
 
0
.
5
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
 
=
 
0
.
5
 
*
 
l
o
g
 
d
e
t
 
K
 
+
 
0
.
5
 
*
 
t
 
*
 
i
n
v
(
K
)
 
*
 
t
 
*
/

/
*
 
W
o
r
k
 
o
u
t
 
d
e
r
i
v
a
t
i
v
e
s
 
o
f
 
-
l
o
g
 
p
o
s
t
e
r
i
o
r
 
w
i
t
h
 
r
e
s
p
e
c
t
 
t
o
 
t
h
e
 
h
p
.
 
F
i
r
s
t
 
f
o
r
 
t
h
e

*
 
s
c
a
l
e
s
 
p
a
r
a
m
e
t
e
r
s
 
w
[
0
,
.
.
.
,
n
o
_
i
n
p
-
1
]
,
 
t
h
e
 
s
i
g
n
a
l
 
s
c
a
l
e
 
w
[
n
o
_
i
n
p
]
,
 
t
h
e
 
s
c
a
l
e

*
 
f
o
r
 
t
h
e
 
b
i
a
s
 
w
[
n
o
_
i
n
p
+
1
]
,
 
t
h
e
 
s
c
a
l
e
 
f
o
r
 
t
h
e
 
l
i
n
e
a
r
 
p
a
r
t
 
o
f
 
t
h
e
 
m
o
d
e
l

*
 
w
[
n
o
_
i
n
p
+
2
]
 
a
n
d
 
l
a
s
t
l
y
 
t
h
e
 
n
o
i
s
e
 
s
c
a
l
e
 
w
[
n
o
_
i
n
p
+
3
]
.

*
/ d
w
[
n
o
_
i
n
p
]
 
=
 
t
r
a
c
e
_
p
r
o
d
(
K
1
,
 
K
2
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
T
r
[
i
n
v
(
K
)
*
d
K
/
d
v
]
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
r
r
=
0
.
0
,
 
j
=
0
;
 
j
<
i
;
 
j
+
+
)
 
r
r
 
+
=
 
q
[
j
]
*
K
1
[
j
]
[
i
]
;

f
o
r
 
(
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
r
r
 
+
=
 
q
[
j
]
*
K
1
[
i
]
[
j
]
;

d
w
[
n
o
_
i
n
p
]
 
-
=
 
r
r
*
q
[
i
]
;
 

} d
w
[
n
o
_
i
n
p
]
 
*
=
 
0
.
5
;

f
o
r
 
(
k
=
0
;
 
k
<
n
o
_
i
n
p
;
 
k
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
p
u
t
 
s
c
a
l
e
s
 
*
/
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f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
f
o
r
 
(
j
=
i
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)

K
[
i
]
[
j
]
 
=
 
-
K
1
[
i
]
[
j
]
*
0
.
5
*
e
w
[
k
]
*
s
q
(
t
r
a
i
n
.
i
n
p
[
i
]
[
k
]
-
t
r
a
i
n
.
i
n
p
[
j
]
[
k
]
)
;

d
w
[
k
]
 
=
 
t
r
a
c
e
_
p
r
o
d
(
K
,
 
K
2
)
;

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
r
r
=
0
.
0
,
 
j
=
0
;
 
j
<
i
;
 
j
+
+
)
 
r
r
 
+
=
 
q
[
j
]
*
K
[
j
]
[
i
]
;

f
o
r
 
(
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
r
r
 
+
=
 
q
[
j
]
*
K
[
i
]
[
j
]
;

d
w
[
k
]
 
-
=
 
r
r
*
q
[
i
]
;
 

} d
w
[
k
]
 
*
=
 
0
.
5
;

}
 

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
K
1
 
=
 
d
K
/
d
u
_
1
 
*
/

f
o
r
 
(
j
=
i
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
{

f
o
r
 
(
r
r
=
0
.
0
,
 
k
=
0
;
 
k
<
n
o
_
i
n
p
;
 
k
+
+
)
 
r
r
 
+
=
 
t
r
a
i
n
.
i
n
p
[
i
]
[
k
]
*
t
r
a
i
n
.
i
n
p
[
j
]
[
k
]
;

K
1
[
i
]
[
j
]
 
=
 
e
w
[
n
o
_
i
n
p
+
2
]
*
r
r
;

}
d
w
[
n
o
_
i
n
p
+
2
]
 
=
 
t
r
a
c
e
_
p
r
o
d
(
K
1
,
 
K
2
)
;

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
r
r
=
0
.
0
,
 
j
=
0
;
 
j
<
i
;
 
j
+
+
)
 
r
r
 
+
=
 
q
[
j
]
*
K
1
[
j
]
[
i
]
;

f
o
r
 
(
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
r
r
 
+
=
 
q
[
j
]
*
K
1
[
i
]
[
j
]
;

d
w
[
n
o
_
i
n
p
+
2
]
 
-
=
 
r
r
*
q
[
i
]
;
 

} d
w
[
n
o
_
i
n
p
+
2
]
 
*
=
 
0
.
5
;

f
o
r
 
(
r
r
=
0
.
0
,
 
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
b
i
a
s
 
*
/

f
o
r
 
(
j
=
i
+
1
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
r
r
 
+
=
 
K
2
[
i
]
[
j
]
;

r
r
 
*
=
 
2
.
0
;
 
f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
r
r
 
+
=
 
K
2
[
i
]
[
i
]
;
 
d
w
[
n
o
_
i
n
p
+
1
]
 
=
 
r
r
;

f
o
r
 
(
r
r
=
0
.
0
,
 
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
r
r
 
+
=
 
q
[
i
]
;

d
w
[
n
o
_
i
n
p
+
1
]
 
-
=
 
r
r
*
r
r
;
 
d
w
[
n
o
_
i
n
p
+
1
]
 
*
=
 
0
.
5
*
e
w
[
n
o
_
i
n
p
+
1
]
;

f
o
r
 
(
r
r
=
0
.
0
,
 
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
r
r
 
+
=
 
K
2
[
i
]
[
i
]
-
q
[
i
]
*
q
[
i
]
;
 
 
 
 
 
/
*
 
n
o
i
s
e
 
*
/

d
w
[
n
o
_
i
n
p
+
3
]
 
=
 
0
.
5
*
r
r
*
e
w
[
n
o
_
i
n
p
+
3
]
;
 

r
 
+
=
 
p
r
i
o
r
(
d
w
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
u
g
m
e
n
t
 
b
y
 
p
r
i
o
r
 
*
/

n
f
g
e
v
a
l
+
+
;

r
e
t
u
r
n
 
r
;

}
 
 
 
 
 

/
*
 
T
h
i
s
 
f
u
n
c
t
i
o
n
 
r
e
t
u
r
n
s
 
m
e
a
n
 
a
n
d
 
v
a
r
i
a
n
c
e
 
f
o
r
 
p
r
e
d
i
c
t
i
o
n
s
 
f
o
r
 
a
 
s
e
t
 
o
f
 
t
e
s
t

*
 
c
a
s
e
s
,
 
g
i
v
e
n
 
v
a
l
u
e
s
 
f
o
 
t
h
e
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
.
 
I
t
 
u
s
e
s
 
g
l
o
b
a
l
s
:
 
w
,
 
e
w
,
 
n
o
_
w
t
s
,

*
 
t
,
 
t
r
a
i
n
 
a
n
d
 
K
.

*
/

v
o
i
d
 
p
r
e
d
(
r
e
a
l
 
*
y
,
 
r
e
a
l
 
*
s
2
,
 
s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
e
s
t
)

{
i
n
t
 
 
i
,
 
j
,
 
k
;

r
e
a
l
 
r
,
 
r
r
,
 
*
g
,
 
*
h
;

h
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
t
r
a
i
n
.
n
u
m
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

g
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
t
r
a
i
n
.
n
u
m
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
e
w
[
i
]
 
=
 
e
x
p
(
w
[
i
]
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
e
w
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
r
a
i
n
.
n
u
m
;
 
i
+
+
)
 
{
 
/
*
 
s
e
t
 
u
p
p
e
r
 
t
r
i
a
n
g
l
e
 
o
f
 
K
[
]
[
]
 
t
o
 
c
o
v
a
r
i
a
n
c
e
 
*
/

f
o
r
 
(
j
=
i
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
{

f
o
r
 
(
r
=
r
r
=
0
.
0
,
 
k
=
0
;
 
k
<
n
o
_
i
n
p
;
 
k
+
+
)
 
{

r
 
+
=
 
e
w
[
k
]
*
s
q
(
t
r
a
i
n
.
i
n
p
[
i
]
[
k
]
-
t
r
a
i
n
.
i
n
p
[
j
]
[
k
]
)
;

r
r
 
+
=
 
t
r
a
i
n
.
i
n
p
[
i
]
[
k
]
*
t
r
a
i
n
.
i
n
p
[
j
]
[
k
]
;

} K
[
i
]
[
j
]
 
=
 
e
w
[
n
o
_
i
n
p
]
*
e
x
p
(
-
0
.
5
*
r
)
+
e
w
[
n
o
_
i
n
p
+
2
]
*
r
r
+
e
w
[
n
o
_
i
n
p
+
1
]
;

} K
[
i
]
[
i
]
 
+
=
 
e
w
[
n
o
_
i
n
p
+
3
]
;

}
 

i
n
v
s
p
d
(
K
,
 
t
r
a
i
n
.
n
u
m
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
v
e
r
t
 
c
o
v
a
r
i
a
n
c
e
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
j
=
0
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
{

f
o
r
 
(
r
=
r
r
=
0
.
0
,
 
k
=
0
;
 
k
<
n
o
_
i
n
p
;
 
k
+
+
)
 
{

r
 
+
=
 
e
w
[
k
]
*
s
q
(
t
e
s
t
.
i
n
p
[
i
]
[
k
]
-
t
r
a
i
n
.
i
n
p
[
j
]
[
k
]
)
;

r
r
 
+
=
 
t
e
s
t
.
i
n
p
[
i
]
[
k
]
*
t
r
a
i
n
.
i
n
p
[
j
]
[
k
]
;

} g
[
j
]
 
=
 
e
w
[
n
o
_
i
n
p
]
*
e
x
p
(
-
0
.
5
*
r
)
+
e
w
[
n
o
_
i
n
p
+
1
]
+
e
w
[
n
o
_
i
n
p
+
2
]
*
r
r
;

} f
o
r
 
(
j
=
0
;
 
j
<
t
r
a
i
n
.
n
u
m
;
 
j
+
+
)
 
{
 
 

f
o
r
 
(
r
=
0
.
0
,
 
k
=
0
;
 
k
<
j
;
 
k
+
+
)
 
r
 
+
=
 
g
[
k
]
*
K
[
k
]
[
j
]
;

f
o
r
 
(
;
 
k
<
t
r
a
i
n
.
n
u
m
;
 
k
+
+
)
 
r
 
+
=
 
g
[
k
]
*
K
[
j
]
[
k
]
;
 

h
[
j
]
 
=
 
r
;

}
 
r
 
=
 
0
.
0
;
 
f
o
r
 
(
k
=
0
;
 
k
<
t
r
a
i
n
.
n
u
m
;
 
k
+
+
)
 
r
 
+
=
 
h
[
k
]
*
t
r
a
i
n
.
t
a
r
[
k
]
[
0
]
;
 
y
[
i
]
 
=
 
r
;

r
 
=
 
0
.
0
;
 
f
o
r
 
(
k
=
0
;
 
k
<
t
r
a
i
n
.
n
u
m
;
 
k
+
+
)
 
r
 
+
=
 
h
[
k
]
*
g
[
k
]
;

r
r
 
=
 
0
.
0
;
 
f
o
r
 
(
k
=
0
;
 
k
<
n
o
_
i
n
p
;
 
k
+
+
)
 
r
r
 
+
=
 
t
e
s
t
.
i
n
p
[
i
]
[
k
]
*
t
e
s
t
.
i
n
p
[
i
]
[
k
]
;

s
2
[
i
]
 
=
 
e
w
[
n
o
_
i
n
p
]
+
e
w
[
n
o
_
i
n
p
+
1
]
+
e
w
[
n
o
_
i
n
p
+
2
]
*
r
r
+
e
w
[
n
o
_
i
n
p
+
3
]
-
r
;

}
 
 
 
 
 
 
 
 
 
 

f
r
e
e
(
g
)
;
 
f
r
e
e
(
h
)
;

}
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/
*
 
g
p
-
m
l
.
c
:
 
G
e
n
e
r
i
c
 
p
r
o
g
r
a
m
 
f
o
r
 
d
o
i
n
g
 
m
a
x
i
m
u
m
 
l
i
k
e
l
i
h
o
o
d
 
w
i
t
h
 
G
a
u
s
s
i
a
n

*
 
P
r
o
c
e
s
s
e
s

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
s
e
n
.
 
*
/
 

#
i
n
c
l
u
d
e
 
<
s
t
r
i
n
g
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
<
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e
 
<
s
y
s
/
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

r
e
a
l
 
*
w
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
 
*
/

*
q
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
e
l
p
 
v
a
r
i
a
b
l
e
 
-
 
u
s
e
d
 
b
y
 
f
g
e
v
a
l
(
)
 
*
/

*
*
K
,
 
*
*
K
1
,
 
*
*
K
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
a
i
n
 
m
a
t
r
i
c
e
s
 
*
/

i
n
t
 
 
n
o
_
w
t
s
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
 
*
/

n
o
_
i
n
p
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
p
u
t
 
d
i
m
e
n
s
i
o
n
 
*
/

n
o
_
t
a
r
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
t
a
r
g
e
t
s
 
*
/

s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
t
i
m
e
r
;

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
;

e
x
t
e
r
n
 
r
e
a
l
 
*
d
w
1
,
 
*
d
w
2
,
 
*
s
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
a
r
r
a
y
s
 
f
o
r
 
t
h
e
 
c
o
n
j
(
)
 
f
u
n
c
t
i
o
n
 
*
/

e
x
t
e
r
n
 
v
o
i
d
 
i
n
i
t
(
)
;

e
x
t
e
r
n
 
i
n
t
 
c
o
n
j
(
i
n
t
 
*
i
t
e
r
,
 
i
n
t
 
*
e
p
o
c
h
,
 
i
n
t
 
*
r
e
s
t
a
r
t
,
 
r
e
a
l
 
*
c
o
s
t
v
a
l
u
e
)
;

e
x
t
e
r
n
 
v
o
i
d
 
i
n
i
t
T
i
m
e
r
(
s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
*
t
i
m
e
r
,
 
i
n
t
 
t
i
m
e
)
;

e
x
t
e
r
n
 
l
o
n
g
 
e
l
a
p
s
e
d
T
i
m
e
(
s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
*
t
i
m
e
r
)
;

m
a
i
n
(
a
r
g
c
,
 
a
r
g
v
)

i
n
t
 
 
a
r
g
c
;

c
h
a
r
 
*
*
a
r
g
v
;

{
i
n
t
 
 
j
,
 
k
,
 
r
e
s
t
a
r
t
,
 
s
u
c
c
,
 
l
e
n
g
t
h
,
 
m
o
d
,
 
i
t
e
r
;

r
e
a
l
 
c
o
s
t
v
a
l
u
e
;

e
x
t
e
r
n
 
i
n
t
 
T
I
M
E
O
U
T
;

l
o
n
g
 
n
e
x
t
t
i
m
e
;

c
h
a
r
 
 
 
t
r
a
i
n
f
i
l
e
[
5
0
]
,
 
l
o
g
f
i
l
e
[
5
0
]
;

F
I
L
E
 
 
 
*
l
o
g
f
;

i
f
 
(
a
r
g
c
<
3
 
|
|
 
a
r
g
c
>
4
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
U
s
a
g
e
:
 
%
s
 
l
o
g
-
f
i
l
e
 
i
n
s
t
a
n
c
e
-
n
u
m
b
e
r
 
[
@
]
l
e
n
g
t
h
[
{
%
%
|
+
}
l
o
g
I
n
t
e
r
v
a
l
]
\
n
"
,

a
r
g
v
[
0
]
)
;
 
e
x
i
t
(
-
1
)
;
 
}

p
a
r
s
e
_
l
e
n
g
t
h
(
a
r
g
v
[
3
]
,
 
&
l
e
n
g
t
h
,
 
&
m
o
d
)
;

i
f
 
(
l
e
n
g
t
h
<
0
)

i
n
i
t
T
i
m
e
r
(
&
t
i
m
e
r
,
 
-
l
e
n
g
t
h
*
1
0
0
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
l
i
m
i
t
 
b
y
 
c
o
m
p
u
t
e
 
t
i
m
e
 
*
/

e
l
s
e
i
n
i
t
T
i
m
e
r
(
&
t
i
m
e
r
,
 
6
0
4
8
0
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
h
i
s
 
i
s
 
a
 
w
e
e
k
 
o
f
 
c
p
u
 
t
i
m
e
 
*
/

s
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,
 
"
t
o
u
c
h
 
%
s
.
%
s
"
,
 
a
r
g
v
[
1
]
,
 
a
r
g
v
[
2
]
)
;
 
s
y
s
t
e
m
(
l
o
g
f
i
l
e
)
;

s
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,
 
"
%
s
.
%
s
"
,
 
a
r
g
v
[
1
]
,
 
a
r
g
v
[
2
]
)
;

i
f
 
(
(
l
o
g
f
 
=
 
f
o
p
e
n
(
l
o
g
f
i
l
e
,
 
"
r
+
"
)
)
 
=
=
 
N
U
L
L
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
C
o
u
l
d
 
n
o
t
 
o
p
e
n
 
l
o
g
-
f
i
l
e
 
%
s
 
f
o
r
 
w
r
i
t
i
n
g
 
.
.
.
b
y
e
!
\
n
"
,

l
o
g
f
i
l
e
)
;
 
e
x
i
t
(
-
1
)
;
 
}

s
p
r
i
n
t
f
(
t
r
a
i
n
f
i
l
e
,
 
"
t
r
a
i
n
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;

t
r
a
i
n
.
n
u
m
 
=
 
-
1
;
 
n
o
_
i
n
p
 
=
 
-
1
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
e
f
a
u
l
t
 
f
o
r
 
"
d
o
n
’
t
 
k
n
o
w
"
 
*
/

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
r
a
i
n
,
 
&
n
o
_
i
n
p
,
 
(
n
o
_
t
a
r
 
=
 
1
,
 
&
n
o
_
t
a
r
)
,
 
t
r
a
i
n
f
i
l
e
,
 
N
U
L
L
)
;

i
n
i
t
(
)
;

K
 
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

K
1
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

K
2
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

d
w
1
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

d
w
2
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

s
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

q
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
t
r
a
i
n
.
n
u
m
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

r
e
s
t
a
r
t
 
=
 
1
;
 
i
t
e
r
 
=
 
0
;
 
n
e
x
t
t
i
m
e
 
=
 
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
;

d
o
 
{

s
u
c
c
 
=
 
c
o
n
j
(
(
j
=
1
,
 
&
j
)
,
 
(
k
=
0
,
 
&
k
)
,
 
&
r
e
s
t
a
r
t
,
 
&
c
o
s
t
v
a
l
u
e
)
;
 
i
t
e
r
+
+
;

i
f
 
(
(
(
m
o
d
>
0
)
 
&
&
 
!
(
i
t
e
r
 
%
 
m
o
d
)
)
 
|
|

(
(
m
o
d
<
0
)
 
&
&
 
(
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
>
n
e
x
t
t
i
m
e
)
)
)
 
{
 

f
p
r
i
n
t
f
(
l
o
g
f
,
 
"
%
6
d
 
%
8
d
 
%
1
0
.
6
f
 
%
1
0
.
6
f
 
%
1
0
.
6
f
"
,
 
i
t
e
r
,
 
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
,

c
o
s
t
v
a
l
u
e
,
 
0
.
0
,
 
0
.
0
)
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
f
p
r
i
n
t
f
(
l
o
g
f
,
 
"
 
%
1
0
.
6
f
"
,
 
w
[
j
]
)
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
f
p
r
i
n
t
f
(
l
o
g
f
,
 
"
 
%
1
0
.
6
f
"
,
 
0
.
0
)
;

f
p
r
i
n
t
f
(
l
o
g
f
,
 
"
\
n
"
)
;
 
f
f
l
u
s
h
(
l
o
g
f
)
;

n
e
x
t
t
i
m
e
 
-
=
 
1
0
0
0
*
a
b
s
(
l
e
n
g
t
h
)
/
m
o
d
;
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
n
e
x
t
 
t
i
m
e
 
t
o
 
s
a
v
e
 
*
/

}
}
 
w
h
i
l
e
 
(
(
s
u
c
c
)
 
&
&
 
!
(
T
I
M
E
O
U
T
)
 
&
&
 
(
i
t
e
r
<
l
e
n
g
t
h
 
|
|
 
l
e
n
g
t
h
<
0
)
)
;

}



116 Implementations

/
*
 
g
p
-
m
c
.
c
:
 
G
e
n
e
r
i
c
 
p
r
o
g
r
a
m
 
f
o
r
 
d
o
i
n
g
 
M
o
n
t
e
 
C
a
r
l
o
 
w
i
t
h
 
G
a
u
s
s
i
a
n
 
P
r
o
c
e
s
s
e
s

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
s
e
n
.
 
*
/
 

#
i
n
c
l
u
d
e
 
<
s
t
r
i
n
g
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
<
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e
 
<
s
y
s
/
t
i
m
e
.
h
>

#
i
n
c
l
u
d
e
 
"
r
a
n
d
.
h
"

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

r
e
a
l
 
*
w
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
 
*
/

*
d
w
1
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
 
d
e
r
i
v
a
t
i
v
e
s
 
*
/

*
z
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
o
m
e
n
t
u
m
 
t
e
r
m
s
 
*
/

*
q
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
e
l
p
 
v
a
r
i
a
b
l
e
 
-
 
u
s
e
d
 
b
y
 
f
g
e
v
a
l
(
)
 
*
/

*
*
K
,
 
*
*
K
1
,
 
*
*
K
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
a
i
n
 
m
a
t
r
i
c
e
s
 
*
/

i
n
t
 
 
n
f
g
e
v
a
l
,
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
f
u
n
c
/
g
r
a
d
 
e
v
a
l
s
.
 
s
o
 
f
a
r
;
 
i
n
c
r
e
m
e
n
t
e
d
 
b
y
 
f
g
e
v
a
l
(
)
 
*
/

n
o
_
w
t
s
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
 
*
/

n
o
_
i
n
p
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
p
u
t
 
d
i
m
e
n
s
i
o
n
 
*
/

n
o
_
t
a
r
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
t
a
r
g
e
t
s
 
*
/

s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
t
i
m
e
r
;

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
;

e
x
t
e
r
n
 
v
o
i
d
 
i
n
i
t
(
)
;

e
x
t
e
r
n
 
v
o
i
d
 
l
e
a
p
f
r
o
g
(
F
I
L
E
 
*
d
f
,
 
r
e
a
l
 
R
H
O
,
 
r
e
a
l
 
E
P
S
I
L
O
N
,

i
n
t
 
n
u
m
,
 
i
n
t
 
m
o
d
,
 
i
n
t
 
s
t
a
r
t
)
;

s
e
t
T
i
m
e
(
s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
*
t
i
m
e
r
,
 
l
o
n
g
 
c
u
r
r
e
n
t
)

{
t
i
m
e
r
-
>
i
t
_
v
a
l
u
e
.
t
v
_
s
e
c
 
-
=
 
c
u
r
r
e
n
t
/
1
0
0
0
;
 
 

s
e
t
i
t
i
m
e
r
(
I
T
I
M
E
R
_
V
I
R
T
U
A
L
,
 
t
i
m
e
r
,
 
t
i
m
e
r
)
;

} m
a
i
n
(
i
n
t
 
a
r
g
c
,
 
c
h
a
r
 
*
*
a
r
g
v
)

{
d
o
u
b
l
e
 
r
;

c
h
a
r
 
 
 
t
r
a
i
n
f
i
l
e
[
5
0
]
,
 
l
o
g
f
i
l
e
[
5
0
]
;

i
n
t
 
 
 
 
i
,
 
l
e
n
g
t
h
,
 
m
o
d
,
 
c
u
r
r
e
n
t
 
=
 
1
;

l
o
n
g
 
 
 
s
e
e
d
,
 
t
m
 
=
 
0
;

F
I
L
E
 
 
 
*
l
o
g
f
;

t
i
m
e
(
&
s
e
e
d
)
;
 
 
 
 
 
 
 
 
 
 
 
/
*
 
g
e
t
 
a
 
s
e
e
d
 
b
a
s
e
d
 
o
n
 
t
h
e
 
t
i
m
e
 
i
f
 
n
o
n
e
 
i
s
 
p
r
o
v
i
d
e
d
 
*
/

i
f
 
(
a
r
g
c
<
4
 
|
|
 
a
r
g
c
>
5
 
|
|
 
a
r
g
c
=
=
5
 
&
&
 
(
(
s
e
e
d
 
=
 
a
t
o
i
(
a
r
g
v
[
4
]
)
)
 
<
=
 
0
)
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
U
s
a
g
e
:
 
%
s
 
l
o
g
-
f
i
l
e
 
i
n
s
t
a
n
c
e
-
n
u
m
b
e
r
 
[
@
]
l
e
n
g
t
h
[
{
%
%
|
+
}
l
o
g
I
n
t
e
r
v
a
l
]
 
[
s
e
e
d
]
\
n
"
,

a
r
g
v
[
0
]
)
;
 
e
x
i
t
(
-
1
)
;
 
}

r
a
n
d
_
s
e
e
d
(
(
i
n
t
)
 
s
e
e
d
)
;

p
a
r
s
e
_
l
e
n
g
t
h
(
a
r
g
v
[
3
]
,
 
&
l
e
n
g
t
h
,
 
&
m
o
d
)
;

i
f
 
(
l
e
n
g
t
h
<
0
)

i
n
i
t
T
i
m
e
r
(
&
t
i
m
e
r
,
 
-
l
e
n
g
t
h
*
1
0
0
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
l
i
m
i
t
 
b
y
 
c
o
m
p
u
t
e
 
t
i
m
e
 
*
/

e
l
s
e
i
n
i
t
T
i
m
e
r
(
&
t
i
m
e
r
,
 
6
0
4
8
0
0
0
0
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
h
i
s
 
i
s
 
a
 
w
e
e
k
 
o
f
 
c
p
u
 
t
i
m
e
 
*
/

s
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,
 
"
t
o
u
c
h
 
%
s
.
%
s
"
,
 
a
r
g
v
[
1
]
,
 
a
r
g
v
[
2
]
)
;
 
s
y
s
t
e
m
(
l
o
g
f
i
l
e
)
;

s
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,
 
"
%
s
.
%
s
"
,
 
a
r
g
v
[
1
]
,
 
a
r
g
v
[
2
]
)
;

i
f
 
(
(
l
o
g
f
 
=
 
f
o
p
e
n
(
l
o
g
f
i
l
e
,
 
"
r
+
"
)
)
 
=
=
 
N
U
L
L
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
C
o
u
l
d
 
n
o
t
 
o
p
e
n
 
l
o
g
-
f
i
l
e
 
%
s
 
f
o
r
 
w
r
i
t
i
n
g
 
.
.
.
b
y
e
!
\
n
"
,

l
o
g
f
i
l
e
)
;
 
e
x
i
t
(
-
1
)
;
 
}

s
p
r
i
n
t
f
(
t
r
a
i
n
f
i
l
e
,
"
t
r
a
i
n
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;

t
r
a
i
n
.
n
u
m
 
=
 
-
1
;
 
n
o
_
i
n
p
 
=
 
-
1
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
e
f
a
u
l
t
 
f
o
r
 
"
d
o
n
’
t
 
k
n
o
w
"
 
*
/

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
r
a
i
n
,
 
&
n
o
_
i
n
p
,
 
(
n
o
_
t
a
r
 
=
 
1
,
 
&
n
o
_
t
a
r
)
,
 
t
r
a
i
n
f
i
l
e
,
 
N
U
L
L
)
;

i
n
i
t
(
)
;

K
 
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

K
1
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

K
2
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

z
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
z
[
i
]
 
=
 
0
.
0
;

d
w
1
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

q
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
t
r
a
i
n
.
n
u
m
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

w
h
i
l
e
 
(
f
s
c
a
n
f
(
l
o
g
f
,
 
"
%
d
 
%
l
d
 
%
l
f
 
%
l
f
 
%
l
f
"
,
 
&
c
u
r
r
e
n
t
,
 
&
t
m
,
 
&
r
,
 
&
r
,
 
&
r
)
 
=
=
 
5
)
 
{

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
{
 
f
s
c
a
n
f
(
l
o
g
f
,
 
"
%
l
f
"
,
 
&
r
)
;
 
w
[
i
]
 
=
 
r
;
 
}

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
{
 
f
s
c
a
n
f
(
l
o
g
f
,
 
"
%
l
f
"
,
 
&
r
)
;
 
z
[
i
]
 
=
 
r
;
 
}

}
 
 
 
 

f
s
e
e
k
(
l
o
g
f
,
 
(
l
o
n
g
)
 
0
,
 
S
E
E
K
_
E
N
D
)
;
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
p
r
e
p
a
r
e
 
l
o
g
f
i
l
e
 
f
o
r
 
w
r
i
t
i
n
g
 
*
/

i
f
 
(
t
m
<
-
1
0
0
0
*
l
e
n
g
t
h
)
 
{

s
e
t
T
i
m
e
(
&
t
i
m
e
r
,
 
t
m
)
;

l
e
a
p
f
r
o
g
(
l
o
g
f
,
 
0
.
9
5
,
 
0
.
5
,
 
l
e
n
g
t
h
,
 
m
o
d
,
 
c
u
r
r
e
n
t
)
;

}
}
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/
*
 
l
e
a
p
f
r
o
g
.
c
:
 
P
e
r
f
o
r
m
 
l
e
a
p
f
r
o
g
 
i
t
e
r
a
t
i
o
n
s
 
f
o
r
 
a
 
s
e
t
 
o
f
 
d
i
f
f
e
r
e
n
t
i
a
l
 
e
q
.

*
 

*
 
D
o
 
’
n
u
m
’
 
l
e
a
p
f
r
o
g
 
i
t
e
r
a
t
i
o
n
s
 
a
n
d
 
s
a
v
e
 
e
v
e
r
y
 
’
m
o
d
’
 
o
n
e
 
t
o
 
t
h
e
 
l
o
g
-
f
i
l
e
 
’
d
f
’
.

*
 
I
f
 
’
n
u
m
’
 
i
s
 
n
e
g
a
t
i
v
e
 
t
h
e
n
 
j
u
s
t
 
k
e
e
p
 
g
o
i
n
g
 
u
n
t
i
l
 
T
I
M
E
O
U
T
 
i
s
 
s
e
t
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
s
e
n
 
*
/

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

#
i
n
c
l
u
d
e
 
"
r
a
n
d
.
h
"

e
x
t
e
r
n
 
i
n
t
 
 
n
o
_
w
t
s
,
 
T
I
M
E
O
U
T
;

e
x
t
e
r
n
 
r
e
a
l
 
*
d
w
1
,
 
*
z
,
 
*
w
;

e
x
t
e
r
n
 
s
t
r
u
c
t
 
i
t
i
m
e
r
v
a
l
 
t
i
m
e
r
;

e
x
t
e
r
n
 
s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
;

e
x
t
e
r
n
 
r
e
a
l
 
p
r
i
o
r
(
r
e
a
l
 
*
d
w
)
;

e
x
t
e
r
n
 
r
e
a
l
 
f
g
e
v
a
l
(
r
e
a
l
 
*
d
w
,
 
r
e
a
l
 
(
*
p
r
i
o
r
)
(
r
e
a
l
 
*
d
w
)
)
;

v
o
i
d
 
l
e
a
p
f
r
o
g
(
F
I
L
E
 
*
d
f
,
 
r
e
a
l
 
R
H
O
,
 
r
e
a
l
 
E
P
S
I
L
O
N
,
 
i
n
t
 
n
u
m
,
 
i
n
t
 
m
o
d
,
 
i
n
t
 
s
t
a
r
t
)

{
i
n
t
 
 
i
,
 
j
,
 
k
 
=
 
0
,
 
r
e
j
e
c
t
 
=
 
0
;

l
o
n
g
 
n
e
x
t
t
i
m
e
 
=
 
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
;

r
e
a
l
 
E
_
o
l
d
,
 
E
_
k
i
n
,
 
E
_
p
o
t
,
 
E
_
p
o
t
_
o
l
d
,
 
*
o
z
,
 
*
o
w
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
o
l
d
 
s
t
a
t
e
 
*
/

E
P
S
I
L
O
N
 
/
=
 
s
q
r
t
(
(
r
e
a
l
)
 
t
r
a
i
n
.
n
u
m
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
c
a
l
e
 
s
t
e
p
s
i
z
e
 
*
/

o
z
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

o
w
 
=
 
(
r
e
a
l
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
o
_
w
t
s
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;

E
_
p
o
t
 
=
 
f
g
e
v
a
l
(
d
w
1
,
 
p
r
i
o
r
)
;

E
_
k
i
n
 
=
 
0
;
 
f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
E
_
k
i
n
 
+
=
 
z
[
j
]
*
z
[
j
]
;
 
E
_
k
i
n
 
*
=
 
0
.
5
;

E
_
o
l
d
 
=
 
E
_
p
o
t
+
E
_
k
i
n
;

f
o
r
 
(
i
=
s
t
a
r
t
;
 
i
<
=
n
u
m
 
|
|
 
n
u
m
<
0
;
 
i
+
+
)
 
{

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)

{
 
o
z
[
j
]
 
=
 
z
[
j
]
;
 
o
w
[
j
]
 
=
 
w
[
j
]
;
 
}
 
E
_
p
o
t
_
o
l
d
 
=
 
E
_
p
o
t
;
 
 
 
/
*
 
s
a
v
e
 
o
l
d
 
s
t
a
t
e
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
i
t
i
a
l
 
2
/
3
 
l
e
a
p
f
r
o
g
 
s
t
e
p
 
*
/

{
 
z
[
j
]
 
-
=
 
0
.
5
*
E
P
S
I
L
O
N
*
d
w
1
[
j
]
;
 
w
[
j
]
 
+
=
 
E
P
S
I
L
O
N
*
z
[
j
]
;
 
}

E
_
p
o
t
 
=
 
f
g
e
v
a
l
(
d
w
1
,
 
p
r
i
o
r
)
;
 
 
 
 

E
_
k
i
n
 
=
 
0
.
0
;
 
f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
 
 
 
 
/
*
 
r
e
m
a
i
n
i
n
g
 
1
/
3
 
l
e
a
p
f
r
o
g
 
s
t
e
p
 
*
/

{
 
z
[
j
]
 
-
=
 
0
.
5
*
E
P
S
I
L
O
N
*
d
w
1
[
j
]
;
 
E
_
k
i
n
 
+
=
 
z
[
j
]
*
z
[
j
]
;
 
}
 

E
_
k
i
n
 
*
=
 
0
.
5
;

i
f
 
(
e
x
p
(
E
_
o
l
d
-
E
_
p
o
t
-
E
_
k
i
n
)
 
<
 
r
a
n
d
_
u
n
i
f
o
r
m
(
)
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
e
j
e
c
t
 
*
/

r
e
j
e
c
t
+
+
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
 
 
 
 
 
 
/
*
 
r
e
s
t
o
r
e
 
o
l
d
 
s
t
a
t
e
 
a
n
d
 
n
e
g
a
t
e
 
m
o
m
e
n
t
a
 
*
/

{
 
z
[
j
]
 
=
 
-
o
z
[
j
]
;
 
w
[
j
]
 
=
 
o
w
[
j
]
;
 
}
 
E
_
p
o
t
 
=
 
E
_
p
o
t
_
o
l
d
;

} f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
e
p
l
a
c
e
 
m
o
m
e
n
t
a
 
*
/

z
[
j
]
 
=
 
R
H
O
*
z
[
j
]
+
s
q
r
t
(
1
.
0
-
R
H
O
*
R
H
O
)
*
r
a
n
d
_
g
a
u
s
s
i
a
n
(
)
;

E
_
k
i
n
 
=
 
0
.
0
;
 
f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
E
_
k
i
n
 
+
=
 
z
[
j
]
*
z
[
j
]
;
 
E
_
k
i
n
 
*
=
 
0
.
5
;

E
_
o
l
d
 
=
 
E
_
p
o
t
+
E
_
k
i
n
;

k
+
+
;

i
f
 
(
(
(
m
o
d
>
0
)
 
&
&
 
!
(
i
 
%
 
m
o
d
)
)
 
|
|

(
(
m
o
d
<
0
)
 
&
&
 
(
e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
>
n
e
x
t
t
i
m
e
)
)
)
 
{
 

f
p
r
i
n
t
f
(
d
f
,
 
"
%
6
d
 
%
8
d
 
%
1
0
.
6
f
 
%
1
0
.
6
f
 
%
1
0
.
6
f
"
,
 
i
,

e
l
a
p
s
e
d
T
i
m
e
(
&
t
i
m
e
r
)
,

E
_
p
o
t
,
 
E
_
k
i
n
,
 
(
r
e
a
l
)
 
r
e
j
e
c
t
/
k
)
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
f
p
r
i
n
t
f
(
d
f
,
 
"
 
%
1
0
.
6
f
"
,
 
w
[
j
]
)
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
f
p
r
i
n
t
f
(
d
f
,
 
"
 
%
1
0
.
6
f
"
,
 
z
[
j
]
)
;

f
p
r
i
n
t
f
(
d
f
,
 
"
\
n
"
)
;
 
f
f
l
u
s
h
(
d
f
)
;

n
e
x
t
t
i
m
e
 
-
=
 
1
0
0
0
*
a
b
s
(
n
u
m
)
/
m
o
d
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
n
e
x
t
 
t
i
m
e
 
t
o
 
s
a
v
e
 
*
/

k
 
=
 
r
e
j
e
c
t
 
=
 
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
e
s
e
t
 
i
t
e
r
a
t
i
o
n
 
a
n
d
 
r
e
j
e
c
t
 
c
o
u
n
t
e
r
 
*
/

} i
f
 
(
T
I
M
E
O
U
T
)
 
e
x
i
t
(
0
)
;
 
 
/
*
 
T
I
M
E
O
U
T
 
w
i
l
l
 
b
e
 
s
e
t
 
w
h
e
n
 
a
 
S
I
G
V
T
A
L
R
M
 
i
s
 
c
a
u
g
h
t
 
*
/

} f
r
e
e
(
o
z
)
;
 
f
r
e
e
(
o
w
)
;

}
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/
*
 
g
p
-
p
r
e
d
.
c
:
 
G
e
n
e
r
i
c
 
p
r
o
g
r
a
m
 
f
o
r
 
d
o
i
n
g
 
p
r
e
d
i
c
t
i
o
n
s
 
w
i
t
h
 
G
a
u
s
s
i
a
n
 
P
r
o
c
e
s
s
e
s
.

* *
 
L
o
g
 
r
e
c
o
r
d
 
f
r
o
m
 
a
 
s
p
e
c
i
f
i
e
d
 
l
o
g
 
f
i
l
e
 
w
i
t
h
i
n
 
a
 
s
p
e
c
i
f
i
e
d
 
i
n
t
e
r
v
a
l
 
a
r
e
 
u
s
e
d
 
t
o

*
 
m
a
k
e
 
p
r
e
d
i
c
t
i
o
n
s
 
f
o
r
 
s
q
u
a
r
e
d
 
e
r
r
o
r
 
l
o
s
s
,
 
a
b
s
o
l
u
t
e
 
e
r
r
o
r
 
l
o
s
s
 
a
n
d
 
n
e
g
a
t
i
v
e

*
 
l
o
g
 
p
r
o
b
a
b
i
l
i
t
y
 
l
o
s
s
.
 
F
o
r
 
s
q
u
a
r
e
d
 
e
r
r
o
r
 
l
o
s
s
,
 
t
h
e
 
m
e
a
n
 
o
f
 
t
h
e
 
p
r
e
d
i
c
t
i
v
e

*
 
d
i
s
t
r
i
b
u
t
o
n
 
i
s
 
u
s
e
d
.
 
F
o
r
 
a
b
s
o
l
u
t
e
 
e
r
r
o
r
 
l
o
s
s
,
 
t
h
e
 
m
e
a
d
i
a
n
 
i
s
 
a
p
p
r
o
x
i
m
a
t
e
d
 
b
y

*
 
M
E
D
I
A
N
S
S
I
Z
E
 
s
a
m
p
l
e
s
 
f
r
o
m
 
e
a
c
h
 
r
e
c
o
r
d
.
 
F
o
r
 
n
e
g
a
t
i
v
e
 
l
o
g
 
p
r
e
d
i
c
t
i
v
e
 
l
o
s
s
 
t
h
e

*
 
w
i
d
t
h
 
o
f
 
t
h
e
 
p
r
e
d
i
c
t
i
v
e
 
d
i
s
t
r
i
b
u
t
i
o
n
 
i
s
 
e
n
l
a
r
g
e
d
 
i
f
 
t
h
e
 
s
u
m
 
o
f
 
t
h
e
 
w
i
d
t
h
s

*
 
o
f
 
t
h
e
 
p
r
e
d
i
c
t
i
v
e
 
G
a
u
s
s
i
a
n
s
 
i
s
 
l
e
s
s
 
t
h
a
n
 
t
h
e
 
s
p
r
e
a
d
 
o
f
 
t
h
e
 
c
e
n
t
r
a
l
 
2
/
3
 
o
f

*
 
o
f
 
t
h
e
 
m
e
a
n
s
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
b
y
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
s
e
n
.
 
*
/
 

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
"
u
t
i
l
.
h
"

#
i
n
c
l
u
d
e
 
"
r
a
n
d
.
h
"

#
d
e
f
i
n
e
 
M
E
D
I
A
N
S
S
I
Z
E
 
1
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
a
m
p
l
e
 
s
i
z
e
 
f
o
r
 
m
e
d
i
a
n
 
p
r
e
d
i
c
t
i
o
n
s
 
*
/

#
d
e
f
i
n
e
 
t
w
o
_
p
i
 
6
.
2
8
3
1
8
5
3
0
7
1
7
9
5
9

r
e
a
l
 
*
w
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
 
*
/

*
*
K
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
a
i
n
 
m
a
t
r
i
c
e
s
 
*
/

*
*
K
1
,
 
*
*
K
2
,
 
*
q
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
u
n
u
s
e
d
 
*
/

i
n
t
 
 
n
o
_
w
t
s
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
h
y
p
e
r
p
a
r
a
m
e
t
e
r
s
 
*
/

n
o
_
i
n
p
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
n
p
u
t
 
d
i
m
e
n
s
i
o
n
 
*
/

n
o
_
t
a
r
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
n
u
m
b
e
r
 
o
f
 
t
a
r
g
e
t
s
 
*
/

n
f
g
e
v
a
l
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
u
n
u
s
e
d
 
*
/

s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
r
a
i
n
,
 
t
e
s
t
;
 

e
x
t
e
r
n
 
v
o
i
d
 
p
r
e
d
(
r
e
a
l
 
*
y
,
 
r
e
a
l
 
*
s
2
,
 
s
t
r
u
c
t
 
e
x
a
m
p
l
e
s
e
t
 
t
e
s
t
)
;

e
x
t
e
r
n
 
v
o
i
d
 
i
n
i
t
(
)
;

e
x
t
e
r
n
 
r
e
a
l
 
m
e
d
i
a
n
(
r
e
a
l
 
*
,
 
i
n
t
)
;

e
x
t
e
r
n
 
r
e
a
l
 
s
e
l
e
c
t
(
r
e
a
l
 
*
,
 
i
n
t
,
 
i
n
t
)
;

m
a
i
n
(
a
r
g
c
,
 
a
r
g
v
)

i
n
t
 
 
a
r
g
c
;

c
h
a
r
 
*
*
a
r
g
v
;

{
d
o
u
b
l
e
 
r
;

r
e
a
l
 
 
 
*
*
s
2
,
 
*
*
m
e
a
n
s
,
 
*
*
m
e
d
s
,
 
*
h
l
p
,
 
t
m
p
;
 

i
n
t
 
 
 
 
i
,
 
j
,
 
k
,
 
l
,
 
h
,
 
m
m
,
 
l
o
w
,
 
h
i
g
h
,
 
m
o
d
;

l
o
n
g
 
 
 
t
m
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
i
m
e
 
*
/

c
h
a
r
 
 
 
t
r
a
i
n
f
i
l
e
[
5
0
]
,
 
t
e
s
t
f
i
l
e
[
5
0
]
,
 
t
a
r
g
e
t
f
i
l
e
[
5
0
]
,
 
l
o
g
f
i
l
e
[
5
0
]
,
 
o
u
t
f
i
l
e
[
5
0
]
;

F
I
L
E
 
 
 
*
f
p
;

i
f
 
(
a
r
g
c
 
!
=
 
4
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
U
s
a
g
e
:
 
%
s
 
l
o
g
-
f
i
l
e
 
i
n
s
t
a
n
c
e
-
n
u
m
b
e
r
 
[
@
]
[
m
i
n
]
:
[
m
a
x
]
[
{
%
%
|
+
}
I
n
t
e
r
v
a
l
]
\
n
"
,

a
r
g
v
[
0
]
)
;
 
e
x
i
t
(
-
1
)
;
 
}

p
a
r
s
e
_
r
a
n
g
e
(
a
r
g
v
[
3
]
,
 
&
l
o
w
,
 
&
h
i
g
h
,
 
&
m
o
d
)
;

s
p
r
i
n
t
f
(
t
r
a
i
n
f
i
l
e
,
 
"
t
r
a
i
n
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;

t
r
a
i
n
.
n
u
m
 
=
 
t
e
s
t
.
n
u
m
 
=
 
n
o
_
i
n
p
 
=
 
-
1
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
e
f
a
u
l
t
 
f
o
r
 
"
u
n
k
n
o
w
n
"
 
*
/

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
r
a
i
n
,
 
&
n
o
_
i
n
p
,
 
(
n
o
_
t
a
r
=
1
,
 
&
n
o
_
t
a
r
)
,
 
t
r
a
i
n
f
i
l
e
,
 
N
U
L
L
)
;

s
p
r
i
n
t
f
(
t
e
s
t
f
i
l
e
,
 
"
t
e
s
t
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;

s
p
r
i
n
t
f
(
t
a
r
g
e
t
f
i
l
e
,
 
"
t
a
r
g
e
t
s
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;

l
o
a
d
E
x
a
m
p
l
e
s
(
&
t
e
s
t
,
 
&
n
o
_
i
n
p
,
 
&
n
o
_
t
a
r
,
 
t
e
s
t
f
i
l
e
,
 
t
a
r
g
e
t
f
i
l
e
)
;

s
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,
 
"
%
s
.
%
s
"
,
 
a
r
g
v
[
1
]
,
 
a
r
g
v
[
2
]
)
;

i
f
 
(
(
f
p
=
f
o
p
e
n
(
l
o
g
f
i
l
e
,
 
"
r
"
)
)
 
=
=
 
N
U
L
L
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
 
"
C
o
u
l
d
 
n
o
t
 
o
p
e
n
 
l
o
g
 
f
i
l
e
 
%
s
 
f
o
r
 
r
e
a
d
i
n
g
.
.
.
 
b
y
e
!
\
n
"
,

l
o
g
f
i
l
e
)
;
 
e
x
i
t
(
-
1
)
;
 
}

i
n
i
t
(
)
;

i
f
 
(
l
o
w
<
0
 
|
|
 
h
i
g
h
=
=
-
1
)
 
{
 
 
 
 
 
 
 
/
*
 
r
a
n
g
e
 
i
s
 
g
i
v
e
n
 
i
n
 
t
i
m
e
 
o
r
 
n
o
 
u
p
p
e
r
 
l
i
m
i
t
 
*
/

w
h
i
l
e
 
(
f
s
c
a
n
f
(
f
p
,
 
"
%
d
 
%
l
d
 
%
l
f
 
%
l
f
 
%
l
f
"
,
 
&
j
,
 
&
t
m
,
 
&
r
,
 
&
r
,
 
&
r
)
 
=
=
 
5
)
 
{

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
{
 
f
s
c
a
n
f
(
f
p
,
 
"
%
l
f
"
,
 
&
r
)
;
 
w
[
i
]
 
=
 
r
;
 
}

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
f
s
c
a
n
f
(
f
p
,
 
"
%
l
f
"
,
 
&
r
)
;

i
f
 
(
l
o
w
<
0
 
&
&
 
t
m
/
1
0
0
0
>
=
-
l
o
w
)
 
l
o
w
 
=
 
j
;

i
f
 
(
t
m
/
1
0
0
0
<
h
i
g
h
 
|
|
 
h
i
g
h
=
=
-
1
)
 
k
 
=
 
j
;

} i
f
 
(
h
i
g
h
 
!
=
 
-
2
)
 
h
i
g
h
 
=
 
k
;

r
e
w
i
n
d
(
f
p
)
;

} i
f
 
(
h
i
g
h
=
=
-
2
)
 
h
i
g
h
 
=
 
l
o
w
;

i
f
 
(
m
o
d
=
=
0
)
 
m
o
d
 
=
 
h
i
g
h
-
l
o
w
+
1
;

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
U
s
i
n
g
 
u
p
 
t
o
 
%
d
 
s
a
m
p
l
e
s
 
w
i
t
h
 
i
n
d
e
x
e
s
 
b
e
t
w
e
e
n
 
%
d
 
a
n
d
 
%
d
 
f
o
r
 
p
r
e
d
i
c
t
i
n
g
.
.
.
\
n
"
,

m
o
d
,
 
l
o
w
,
 
h
i
g
h
)
;
 
f
f
l
u
s
h
(
s
t
d
e
r
r
)
;

K
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
t
r
a
i
n
.
n
u
m
,
 
t
r
a
i
n
.
n
u
m
)
;

s
2
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
m
o
d
,
 
t
e
s
t
.
n
u
m
)
;

m
e
a
n
s
 
 
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
m
o
d
,
 
t
e
s
t
.
n
u
m
)
;

f
o
r
 
(
k
=
j
=
l
=
0
;
 
l
<
m
o
d
;
 
l
+
+
)
 
{
 

i
f
 
(
m
o
d
=
=
1
)
 
h
=
l
o
w
;
 
e
l
s
e
 
h
=
l
o
w
+
(
l
*
(
h
i
g
h
-
l
o
w
)
)
/
(
m
o
d
-
1
)
;

d
o
 
{
f
s
c
a
n
f
(
f
p
,
 
"
%
d
 
%
l
d
 
%
l
f
 
%
l
f
 
%
l
f
"
,
 
&
j
,
 
&
t
m
,
 
&
r
,
 
&
r
,
 
&
r
)
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
{
 
f
s
c
a
n
f
(
f
p
,
 
"
%
l
f
"
,
 
&
r
)
;
 
w
[
i
]
 
=
 
r
;
 
}

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
f
s
c
a
n
f
(
f
p
,
 
"
%
l
f
"
,
 
&
r
)
;

}
 
w
h
i
l
e
 
(
h
>
j
)
;

i
f
 
(
j
>
h
i
g
h
)
 
b
r
e
a
k
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
h
e
r
e
 
a
r
e
 
n
o
 
m
o
r
e
 
s
a
m
p
l
e
s
 
*
/

p
r
e
d
(
m
e
a
n
s
[
l
]
,
 
s
2
[
l
]
,
 
t
e
s
t
)
;

k
+
+
;

i
f
 
(
j
=
=
h
i
g
h
)
 
b
r
e
a
k
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
h
e
r
e
 
a
r
e
 
n
o
 
m
o
r
e
 
s
a
m
p
l
e
s
 
*
/

} f
c
l
o
s
e
(
f
p
)
;

f
p
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
g
u
e
s
s
.
S
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;
 
/
*
 
w
r
i
t
e
 
p
r
e
d
i
c
t
i
o
n
s
 
f
o
r
 
S
 
l
o
s
s
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
t
m
p
=
0
.
0
,
j
=
0
;
 
j
<
k
;
 
j
+
+
)
 
t
m
p
 
+
=
 
m
e
a
n
s
[
j
]
[
i
]
;

f
p
r
i
n
t
f
(
f
p
,
 
"
%
1
0
.
6
f
\
n
"
,
 
t
m
p
/
k
)
;

} f
c
l
o
s
e
(
f
p
)
;

f
p
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
g
u
e
s
s
.
A
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;
 
/
*
 
w
r
i
t
e
 
p
r
e
d
i
c
t
i
o
n
s
 
f
o
r
 
A
 
l
o
s
s
 
*
/

m
e
d
s
 
=
 
c
r
e
a
t
e
M
a
t
r
i
x
(
k
,
 
M
E
D
I
A
N
S
S
I
Z
E
)
;

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
j
=
0
;
 
j
<
k
;
 
j
+
+
)

f
o
r
 
(
l
=
0
;
 
l
<
M
E
D
I
A
N
S
S
I
Z
E
;
 
l
+
+
)

m
e
d
s
[
j
]
[
l
]
 
=
 
m
e
a
n
s
[
j
]
[
i
]
+
s
q
r
t
(
s
2
[
j
]
[
i
]
)
*
r
a
n
d
_
g
a
u
s
s
i
a
n
(
)
;

f
p
r
i
n
t
f
(
f
p
,
 
"
%
1
0
.
6
f
\
n
"
,
 
m
e
d
i
a
n
(
m
e
d
s
[
0
]
,
 
M
E
D
I
A
N
S
S
I
Z
E
*
k
)
)
;

} f
c
l
o
s
e
(
f
p
)
;

f
p
 
=
 
o
p
e
n
P
r
e
d
F
i
l
e
(
"
c
l
p
t
a
r
g
.
L
.
%
s
"
,
 
a
r
g
v
[
2
]
)
;
 
 
 
 
 
 
/
*
 
w
r
i
t
e
 
p
r
e
d
s
 
f
o
r
 
L
 
l
o
s
s
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
t
e
s
t
.
n
u
m
;
 
i
+
+
)
 
{

f
o
r
 
(
t
m
p
=
0
.
0
,
j
=
0
;
 
j
<
k
;
 
j
+
+
)
 
{
 

t
m
p
 
+
=
 
s
q
r
t
(
s
2
[
j
]
[
i
]
)
;

m
e
d
s
[
0
]
[
j
]
 
=
 
m
e
a
n
s
[
j
]
[
i
]
;

} t
m
p
 
/
=
 
s
e
l
e
c
t
(
m
e
d
s
[
0
]
,
 
k
,
 
k
*
5
/
6
)
 
-
 
s
e
l
e
c
t
(
m
e
d
s
[
0
]
,
 
k
,
 
k
/
6
)
;

i
f
 
(
t
m
p
 
<
 
1
.
0
)
 
f
o
r
 
(
t
m
p
=
s
q
(
t
m
p
)
,
j
=
0
;
 
j
<
k
;
 
j
+
+
)
 
s
2
[
j
]
[
i
]
 
/
=
 
t
m
p
;
 
 
 

f
o
r
 
(
t
m
p
=
0
.
0
,
j
=
0
;
 
j
<
k
;
 
j
+
+
)

t
m
p
 
+
=
 
1
/
s
q
r
t
(
t
w
o
_
p
i
*
s
2
[
j
]
[
i
]
)
*

e
x
p
(
-
0
.
5
*
s
q
(
t
e
s
t
.
t
a
r
[
i
]
[
0
]
-
m
e
a
n
s
[
j
]
[
i
]
)
/
s
2
[
j
]
[
i
]
)
;

f
p
r
i
n
t
f
(
f
p
,
 
"
%
1
0
.
6
f
\
n
"
,
 
l
o
g
(
t
m
p
/
k
)
)
;
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} f
c
l
o
s
e
(
f
p
)
;

f
r
e
e
(
m
e
d
s
[
0
]
)
;
 
f
r
e
e
(
m
e
d
s
)
;
 
f
r
e
e
(
m
e
a
n
s
[
0
]
)
;
 
f
r
e
e
(
m
e
a
n
s
)
;
 
f
r
e
e
(
s
2
[
0
]
)
;

f
r
e
e
(
s
2
)
;

}

/
*
 
i
n
v
s
p
d
.
c
:
 
D
o
 
a
n
 
"
i
n
 
p
l
a
c
e
"
 
i
n
v
e
r
s
i
o
n
 
o
f
 
a
 
r
e
a
l
 
s
q
u
a
r
e
 
s
y
m
m
e
t
r
i
c
 
p
o
s
i
t
i
v
e

*
 
d
e
f
i
n
i
t
e
 
m
a
t
r
i
x
 
"
a
"
 
o
f
 
s
i
z
e
 
"
n
"
 
b
y
 
"
n
"
 
a
n
d
 
r
e
t
u
r
n
 
l
o
g
 
o
f
 
i
t
’
s
 
d
e
t
e
r
m
i
n
a
n
t
.

* *
 
T
h
e
 
f
u
n
c
t
i
o
n
 
o
n
l
y
 
l
o
o
k
s
 
a
t
 
e
l
e
m
e
n
t
s
 
o
n
 
o
r
 
a
b
o
v
e
 
t
h
e
 
d
i
a
g
o
n
a
l
.
 
C
o
m
p
u
t
e
s
 
a
n
d

*
 
s
t
o
r
e
s
 
t
h
e
 
l
o
w
e
r
 
t
r
i
a
n
g
u
l
a
r
 
C
h
o
l
e
s
k
y
 
f
a
c
t
o
r
 
i
n
 
"
a
"
 
(
1
/
6
n
^
3
 
f
l
o
p
s
)
 
a
n
d
 
d
o
e
s

*
 
i
n
v
e
r
s
i
o
n
 
u
s
i
n
g
 
f
o
r
w
a
r
d
 
(
1
/
2
n
^
3
 
f
l
o
p
s
)
 
a
n
d
 
b
a
c
k
w
a
r
d
 
(
1
/
6
n
^
3
 
f
l
o
p
s
)

*
 
s
u
b
s
t
i
t
u
t
i
o
n
.
 
O
n
 
r
e
t
u
r
n
,
 
t
h
e
 
u
p
p
e
r
 
d
i
a
g
o
n
a
l
 
m
a
t
r
i
x
 
c
o
n
t
a
i
n
s
 
t
h
e
 
i
n
v
e
r
s
e
 
o
f

*
 
"
a
"
.
 
S
e
e
:
 
G
o
l
u
b
 
a
n
d
 
V
a
n
 
L
o
a
n
,
 
"
M
a
t
r
i
x
 
c
o
m
p
u
t
a
t
i
o
n
s
"
,
 
2
n
d
 
e
d
i
t
i
o
n
,
 
J
o
h
n
s

*
 
H
o
p
k
i
n
s
 
U
n
i
v
e
r
s
i
t
y
 
P
r
e
s
s
,
 
1
9
8
9
.

* *
 
(
c
)
 
C
o
p
y
r
i
g
h
t
 
1
9
9
6
 
C
a
r
l
 
E
d
w
a
r
d
 
R
a
s
m
u
s
s
e
n
 
*
/

#
i
n
c
l
u
d
e
 
<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e
 
<
s
t
d
i
o
.
h
>

#
d
e
f
i
n
e
 
r
e
a
l
 
d
o
u
b
l
e

r
e
a
l
 
i
n
v
s
p
d
(
r
e
a
l
 
*
*
a
,
 
i
n
t
 
n
)
 

{
i
n
t
 
 
i
,
 
j
 
,
k
;

r
e
a
l
 
s
,
 
*
d
,
 
*
x
;

d
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;
 

x
 
=
 
(
r
e
a
l
 
*
)
 
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
 
n
*
s
i
z
e
o
f
(
r
e
a
l
)
)
;
 

f
o
r
 
(
i
=
0
;
 
i
<
n
;
 
i
+
+
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
o
 
C
h
o
l
e
s
k
y
 
d
e
c
o
m
p
o
s
i
t
i
o
n
 
*
/

f
o
r
 
(
j
=
i
;
 
j
<
n
;
 
j
+
+
)
 
{

s
 
=
 
a
[
i
]
[
j
]
;

f
o
r
 
(
k
=
i
-
1
;
 
k
>
=
0
;
 
k
-
-
)
 
s
 
-
=
 
a
[
i
]
[
k
]
*
a
[
j
]
[
k
]
;

i
f
 
(
i
 
=
=
 
j
)
 
{

i
f
 
(
s
 
<
=
 
0
.
0
)
 
{

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
E
r
r
o
r
:
 
M
a
t
r
i
x
 
f
o
r
 
i
n
v
e
r
s
i
o
n
 
i
s
 
n
o
t
 
p
o
s
i
t
i
v
e
 
d
e
f
i
n
i
t
e
.
.
.
 
b
y
e
!
\
n
"
)
;

e
x
i
t
(
-
1
)
;

} d
[
i
]
 
=
 
s
q
r
t
(
s
)
;

}
 
e
l
s
e
 
a
[
j
]
[
i
]
 
=
 
s
/
d
[
i
]
;

}

f
o
r
 
(
i
=
0
;
 
i
<
n
;
 
i
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
f
o
r
 
e
a
c
h
 
c
o
l
u
m
 
*
/

f
o
r
 
(
j
=
0
;
 
j
<
n
;
 
j
+
+
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
o
 
f
o
r
w
a
r
d
 
s
u
b
s
t
i
t
u
t
i
o
n
 
*
/

s
 
=
 
(
i
 
=
=
 
j
)
 
?
 
1
.
0
 
:
 
0
.
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
o
f
 
u
n
i
t
 
m
a
t
r
i
x
 
*
/

f
o
r
 
(
k
=
j
-
1
;
 
k
>
=
0
;
 
k
-
-
)
 
s
 
-
=
 
a
[
j
]
[
k
]
*
x
[
k
]
;

x
[
j
]
 
=
 
s
/
d
[
j
]
;

} f
o
r
 
(
j
=
n
-
1
;
 
j
>
=
i
;
 
j
-
-
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
d
o
 
b
a
c
k
w
a
r
d
 
s
u
b
s
t
i
t
u
t
i
o
n
 
*
/

s
 
=
 
x
[
j
]
;
 

f
o
r
 
(
k
=
j
+
1
;
 
k
<
n
;
 
k
+
+
)
 
s
 
-
=
 
a
[
k
]
[
j
]
*
x
[
k
]
;

a
[
i
]
[
j
]
 
=
 
x
[
j
]
 
=
 
s
/
d
[
j
]
;

}
}
 

s
 
=
 
0
.
0
;
 
f
o
r
 
(
i
=
0
;
 
i
<
n
;
 
i
+
+
)
 
s
 
+
=
 
l
o
g
(
d
[
i
]
)
;
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
m
p
u
t
e
 
l
o
g
 
d
e
t
 
a
 
*
/

f
r
e
e
(
x
)
;
 
f
r
e
e
(
d
)
;

r
e
t
u
r
n
 
2
.
0
*
s
;

}
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/
*
 
m
e
d
i
a
n
.
c
:
 
R
e
t
u
r
n
 
t
h
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Appendix B

Conjugate gradients

This appendix describes the utility function conj which optimizes network weights using a

conjugate gradient method. The function has a private function lns for doing line-searches.

The conjugate gradient method for minimizing a function of many variables works by it-

eratively computing search directions, along which a line search procedure minimizes the

function, producing a new approximation to the (local) minimum of the objective function.

An iteration is defined as a computation of a search direction and the following line search.

An epoch is defined as the computation of the function value and gradient, f(x) and g(x) =

∇f(x). The function and gradients are always computed as a pair. An iteration might

involve many epochs (because of the line search). The number of epochs is thus indicative

of the computational effort.

B.1 Conjugate Gradients

At iteration number i the position in weight space is xi, the value of the objective function

is f(xi) and the gradient (vector of partial derivatives) is gi = ∇f(xi). I use what is known

as the Polack-Ribiere version of conjugate gradients [Fletcher 1987], which computes the

new search direction si from the old direction si−1 and the current and old gradients gi and

gi−1:

si = −gi +
(gi − gi−1)

Tgi

(gi−1)Tgi−1
si−1, i = 1, 2, 3, . . . with s0 = g0 = 0. (B.1)
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The slope of f(x) in the search direction is denoted by f ′(x). It may happen that the

function has a positive slope (i.e. there is no guarantee that the slope is negative), in which

case I use the direction of steepest descent (i.e. si = −gi) for that single iteration. The

gradient of the cost function is computed using the back-propagation rule.

The conjugate gradient method can be shown to have quadratic convergence properties,

which is much better than the originally proposed method of steepest descent. Also, a

quadratic optimisation problem can be solved in n (the dimensionality of the problem)

iterations if the line searches are exact. However, the cost function of a neural network is

typically not quadratic in the weights, so the procedure will not converge in n steps. Rather,

it will be used in an iterative manner. Sometimes, the algorithm is used with restarts

(i.e. starting again with steepest descent) every n iterations, however this is not done in

the present implementation, since typically n is very large and the Polack-Ribiere version

which is used here, has a natural tendency to automatically restart whenever progress is

slow, since in that case gi−1 ≈ gi and consequently si ≈ −gi in eq. (B.1).

B.2 Line search

The object of the line search is to minimize the objective function along the direction s. One

dimensional minimization problems are more tractable than multidimensional ones, but it is

still not in general possible to find the global minimum and many epochs may be necessary

to achieve close approximations to the minimum. Since in our case the optimisation problem

is usually non-quadratic, it is not sensible to expend huge computational resources in doing

very accurate line searches (remember that one function evaluation requires a full sweep

through the entire training set). Consequently, the goal of the line search will merely be:

to get significantly closer to a local minimum.

I use the two sided Wolfe-Powell conditions [Fletcher 1987] to determine whether a new

point is significantly better than the current point. The Wolfe-Powell conditions consists

of 2 inequalities. The first inequality requires that the absolute slope at the new point is

smaller (in a absolute sense) than some fraction of the magnitude of the slope at the current

point. This will in general guarantee that we have moved closer to a local extremum by

a non-vanishing amount. The condition is |f ′(xi)| ≤ σ|f ′(xi−1)|, where I use σ = 0.5. In

fig. B.1 this condition implies that acceptable points must lie between the intersections of

lines a1 and a2 with f . The second inequality requires that a substantial fraction of the

decrease expected from the current slope is being achieved, thus guaranteeing a decrease in
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Figure B.1: Illustration of the Wolfe-Powell conditions. The current point is marked by ’+’ at
x = 0.25. The cost function is f and a tangent t is drawn at the current point. The intersections of
the lines a1, a2 and b with the function f defines the region r of acceptable points.

the function value and avoiding huge steps with negligible function decrease. The condition

is f(xi) ≤ f(xi−1) + ρ(xi − xi−1)f
′(xi−1), where I use ρ = 0.25. In fig. B.1, only smaller

values of x than where the line labeled b intersects with f are acceptable. In the figure, the

final region of acceptable points is marked by r. It can be shown that acceptable points

always exist for a continuous f , which is bounded from below, when 0 < ρ < σ < 1.

The line search iteratively improves on the guesses for the minimum until an acceptable

point is found. The pre-conditions (which are guaranteed to be satisfied by the conjugate

gradient routine) are: the current point is x0, f(x0) and g(x0) are computed, f′(x0) ≤ 0 is

guaranteed, and max is undefined. Fig. B.2 represents this algorithm in pseudo-code.

An additional constraint is added to the code in fig. B.2, that a maximum of 20 epochs

are allowed, to avoid infinite loops because of numerical inaccuracies; in this case the line

search fails and the best approximation so far is returned. The notation a2(x2), refers

to the condition implied by the line a2 in fig. B.1, at the point x2, and it returns either

violated or satisfied. The solution is always bracketed between x1 and max (whenever

max is defined).

The initial step-size guess for the current iteration is computed in the step size from the
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x1 := x0 and x2 := initial guess
compute f(x2) and g(x2)
loop {

while { a2(x2) or b(x2) are violated } do {
max := x2
x2 := interpolate(x1,x2)
compute f(x2) and g(x2)

}
if { a1(x2) is satisfied } do { return x2 } [SUCCESS!]
x3 := extrapolate(x1, x2, max)
x1 := x2 and x2 := x3
compute f(x2) and g(x2)

}

Figure B.2: Pseudo-code for line search algorithm

previous iteration using the slope ratio method. The length of the previous step, δi−1, is

multiplied by the ratio of previous and current slopes (but a maximum of 100):

δi = min(
f ′(xi−1)

f ′(xi)
, 100)δi−1 x2 = x0 + δi with δ0 = 1/(1 + |f ′(x0)|). (B.2)

The limit of a factor of 100 for the relative step size is introduced to avoid errors when

f ′(xi) is numerically close to zero. This simple heuristic slope ratio method seems to work

very well in practice. Typically only about 1.3 epochs per iteration are needed, indicating

that the initial guess often lies in the region of acceptable points.

Interpolation between x1 and x2 is done by finding the minimum of a quadratic or cubic

polynomial, fit at f(x1), f(x2), f′(x1) and f′(x2). A cubic is used unless f(x2) > f(x0),

in which case f′(x2) is ignored and a quadratic is used, since in this case x2 can be very

far from the minimizer, and it is feared that the derivative out there may be misleading. If

the interpolating polynomial does not have a (local) minimum inside the interval, bisection

is used. In addition, if the point is within 10% of the interval length from an interval

endpoint, then the new guess is moved to this distance in order to ensure exploration and

avoid stagnation by repeated evaluation at essentially identical points.

Extrapolation from the x1 to x2 interval is done using a cubic, fit at f(x1), f(x2), f′(x1)

and f′(x2). If the cubic does not have a minimum, if the minimum does not correspond to

an extrapolation or if the extrapolation is further than 3 times the interval length, then this

point at 3 times the interval length is used is order to prevent uncontrolled extrapolation.

If the new point is too close to the current point (within 10% of the interval length), this

10% length is used, to ensure exploration.

The conjugate gradient algorithm calls the above line search procedure for each of the
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directions that are computed. The entire minimization procedure terminates when a pre-

specified number of function evaluations have been performed, or when two subsequent line

searches have failed (this will usually happen for reasons of numerical inaccuracies when

we are very close to a local minimum). All computations are done using double precision

arithmetic.

B.3 Discussion

Other implementations of conjugate gradient methods have been proposed. Unfortunately

it is quite rare that implementational details are given or discussed. It is also extremely

rare to see good empirical evidence of the performance of optimisation procedures.

One paper which does address some of these issues is [Møller 1990]. He presents an imple-

mentation called Scaled Conjugate Gradients (SCG), which avoids the line search by using

a finite differences approximation to the Hessian and computing a step size with a Newton

like method. The SCG always uses 2 epochs per iteration, since the function and gradients

are needed at the current point, and the gradient (which cannot be computed without first

computing the function value) somewhere in the vicinity of the current point is needed for

the finite differences approximation to the Hessian. The SCG method is thus very like a

version of the present method modified to require at least one interpolation. The advantages

of the present method are:

• a good guess (by the slope ratio algorithm) is used for the extra point needing evalu-

ation, instead of a very local point for the finite differences method, thus giving more

relevant information about the function.

• the SCG method ignores half of the function values which are computed, thus dis-

carding useful information.

• the initial guess may be accepted, thus avoiding extra epochs (although it is conceiv-

able that SCG might benefit from perhaps more accurate new points). Typically only

1.3 epochs per iteration are needed as opposed to CGS’s 2.0.

• interpolation is (typically) done using a cubic (rather than SCG’s quadratic) polyno-

mial.

• rigorous criteria are used to ensure progress at each iteration.
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For these reasons I prefer the present implementation, but it is conceivable that there are

no significant differences between the methods in practice.
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t
e
n
 
t
h
e
 
b
r
a
c
k
e
t
 
*
/

i
f
 
(
f
2
 
>
 
*
f
1
)
 
z
2
=
z
3
-
(
0
.
5
*
d
3
*
z
3
*
z
3
)
/
(
d
3
*
z
3
+
f
2
-
f
3
)
;
 
 
 
 
 
/
*
 
q
u
a
d
r
a
t
i
c
 
f
i
t
 
*
/

e
l
s
e
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
u
b
i
c
 
f
i
t
 
*
/

A
 
=
 
6
.
0
*
(
f
2
-
f
3
)
/
z
3
+
3
.
0
*
(
d
2
+
d
3
)
;

B
 
=
 
3
.
0
*
(
f
3
-
f
2
)
-
z
3
*
(
d
3
+
2
.
0
*
d
2
)
;

z
2
 
=
 
(
s
q
r
t
(
B
*
B
-
A
*
d
2
*
z
3
*
z
3
)
-
B
)
/
A
;
 
 
 
/
*
 
n
u
m
e
r
i
c
a
l
 
e
r
r
o
r
 
p
o
s
s
i
b
l
e
 
-
 
o
k
!
 
*
/

} i
f
 
(
z
2
 
!
=
 
z
2
)
 
z
2
 
=
 
z
3
/
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
f
 
z
2
 
i
s
 
N
a
N
 
t
h
e
n
 
b
i
s
e
c
t
i
o
n
 
*
/

i
f
 
(
z
2
 
>
 
I
N
T
*
z
3
)
 
z
2
 
=
 
I
N
T
*
z
3
;
 
 
 
 
 
 
/
*
 
b
o
u
n
d
 
s
o
l
u
t
i
o
n
 
a
w
a
y
 
f
r
o
m
 
c
u
r
r
e
n
t
 
*
/

i
f
 
(
z
2
 
<
 
(
1
.
0
-
I
N
T
)
*
z
3
)
 
z
2
 
=
 
(
1
.
0
-
I
N
T
)
*
z
3
;
 
 
 
 
 
 
 
 
/
*
 
b
o
u
n
d
 
a
w
a
y
 
f
r
o
m
 
z
3
 
*
/

*
z
 
+
=
 
z
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
u
p
d
a
t
e
 
a
b
s
o
l
u
t
e
 
s
t
e
p
s
i
z
e
 
*
/

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
w
[
i
]
 
+
=
 
z
2
*
s
[
i
]
;
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
u
p
d
a
t
e
 
w
e
i
g
h
t
s
 
*
/

f
2
 
=
 
f
g
e
v
a
l
(
d
w
2
)
;

d
2
 
=
 
0
.
0
;
 
f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
d
2
 
+
=
 
d
w
2
[
i
]
*
s
[
i
]
;

z
3
 
-
=
 
z
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
z
3
 
i
s
 
n
o
w
 
r
e
l
a
t
i
v
e
 
t
o
 
t
h
e
 
l
o
c
a
t
i
o
n
 
o
f
 
z
2
 
*
/

} i
f
 
(
d
2
 
>
 
S
I
G
*
d
1
)
 
{
 
*
f
1
 
=
 
f
2
;
 
r
e
t
u
r
n
 
1
;
 
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
S
U
C
C
E
S
S
 
*
/

A
 
=
 
6
.
0
*
(
f
2
-
f
3
)
/
z
3
+
3
.
0
*
(
d
2
+
d
3
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
a
k
e
 
c
u
b
i
c
 
e
x
t
r
a
p
o
l
a
t
i
o
n
 
*
/

B
 
=
 
3
.
0
*
(
f
3
-
f
2
)
-
z
3
*
(
d
3
+
2
.
0
*
d
2
)
;

z
2
 
=
 
-
d
2
*
z
3
*
z
3
/
(
B
+
s
q
r
t
(
B
*
B
-
A
*
d
2
*
z
3
*
z
3
)
)
;
 
 
 
 
/
*
 
n
u
m
.
 
e
r
r
o
r
 
p
o
s
s
i
b
l
e
 
-
 
o
k
!
 
*
/

i
f
 
(
z
2
 
!
=
 
z
2
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
z
2
 
i
s
 
N
a
N
?
 
*
/

z
2
 
=
 
(
m
a
x
 
<
 
-
0
.
5
)
 
?
 
*
z
*
(
E
X
T
-
1
.
0
)
 
:
 
0
.
5
*
(
m
a
x
-
*
z
)
;
 
 
 
 
 
 
 
 
 
 
/
*
 
b
i
s
e
c
t
i
o
n
 
*
/

e
l
s
e
 
i
f
 
(
z
2
 
<
 
0
.
0
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
i
n
i
m
u
m
 
i
s
 
t
o
 
t
h
e
 
l
e
f
t
 
o
f
 
c
u
r
r
e
n
t
?
 
*
/

z
2
 
=
 
(
m
a
x
 
<
 
-
0
.
5
)
 
?
 
*
z
*
(
E
X
T
-
1
.
0
)
 
:
 
0
.
5
*
(
m
a
x
-
*
z
)
;
 
 
 
 
 
 
 
 
 
 
/
*
 
b
i
s
e
c
t
i
o
n
 
*
/

e
l
s
e
 
i
f
 
(
(
m
a
x
 
>
 
-
0
.
5
)
 
&
&
 
(
z
2
+
*
z
 
>
 
m
a
x
)
)
 
 
 
 
 
 
 
 
 
 
 
/
*
 
e
x
t
r
a
p
.
 
b
e
y
o
n
d
 
m
a
x
?
 
*
/

z
2
 
=
 
0
.
5
*
(
m
a
x
-
*
z
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
b
i
s
e
c
t
i
o
n
 
*
/

e
l
s
e
 
i
f
 
(
(
m
a
x
 
<
 
-
0
.
5
)
 
&
&
 
(
z
2
+
*
z
 
>
 
*
z
*
E
X
T
)
)
 
 
 
 
 
 
 
 
/
*
 
e
x
t
r
a
p
.
 
b
e
y
o
n
d
 
E
X
T
?
 
*
/

z
2
 
=
 
*
z
*
(
E
X
T
-
1
.
0
)
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
t
o
 
e
x
t
r
a
p
.
 
l
i
m
i
t
 
*
/

e
l
s
e
 
i
f
 
(
z
2
<
-
z
3
*
I
N
T
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
t
o
o
 
c
l
o
s
e
 
t
o
 
c
u
r
r
e
n
t
 
p
o
i
n
t
?
 
*
/

z
2
 
=
 
-
z
3
*
I
N
T
;

e
l
s
e
 
i
f
 
(
(
m
a
x
 
>
 
-
0
.
5
)
 
&
&
 
(
z
2
 
<
 
(
m
a
x
-
*
z
)
*
(
1
.
0
-
I
N
T
)
)
)
 
/
*
 
t
o
o
 
c
l
o
s
e
 
t
o
 
m
a
x
?
 
*
/

z
2
 
=
 
(
m
a
x
-
*
z
)
*
(
1
.
0
-
I
N
T
)
;

f
3
=
f
2
;
 
d
3
=
d
2
;
 
z
3
=
-
z
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
w
a
p
 
p
o
i
n
t
 
2
 
a
n
d
 
3
 
*
/

*
z
 
+
=
 
z
2
;

f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
w
[
i
]
 
+
=
 
z
2
*
s
[
i
]
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
u
p
d
a
t
e
 
w
e
i
g
h
t
s
 
*
/

f
2
 
=
 
f
g
e
v
a
l
(
d
w
2
)
;

d
2
 
=
 
0
.
0
;
 
f
o
r
 
(
i
=
0
;
 
i
<
n
o
_
w
t
s
;
 
i
+
+
)
 
d
2
 
+
=
 
d
w
2
[
i
]
*
s
[
i
]
;

} *
f
1
 
=
 
f
2
;

r
e
t
u
r
n
 
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
l
i
n
e
s
e
a
r
c
h
 
f
a
i
l
e
d
 
*
/

} i
n
t
 
c
o
n
j
(
i
t
e
r
,
 
e
p
o
c
h
,
 
r
e
s
t
a
r
t
,
 
c
o
s
t
v
a
l
u
e
)

i
n
t
 
 
*
i
t
e
r
,
 
 
 
 
 
 
 
/
*
 
"
i
t
e
r
"
 
a
n
d
 
"
e
p
o
c
h
"
 
i
n
d
i
c
a
t
e
s
 
t
h
e
 
m
a
x
i
m
u
m
 
n
u
m
b
e
r
 
o
f
.
.
.
 
*
/

*
e
p
o
c
h
,
 
 
/
*
 
i
t
e
r
a
t
i
o
n
s
 
o
r
 
e
p
o
c
h
s
 
a
l
l
o
w
e
d
.
 
A
c
t
u
a
l
 
n
u
m
b
e
r
s
 
a
r
e
 
r
e
t
u
r
n
e
d
 
*
/

*
r
e
s
t
a
r
t
;
 
 
 
 
 
 
/
*
 
i
f
 
(
*
r
e
s
t
a
r
t
)
 
t
h
e
n
 
r
e
s
t
a
r
t
 
C
G
 
w
i
t
h
 
s
t
e
e
p
e
s
t
 
d
e
s
c
e
n
t
 
*
/

r
e
a
l
 
*
c
o
s
t
v
a
l
u
e
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
r
e
t
u
r
n
 
t
h
e
 
v
a
l
u
e
 
o
f
 
t
h
e
 
c
o
s
t
f
u
n
c
t
i
o
n
 
*
/

{
s
t
a
t
i
c
 
i
n
t
 
 
l
s
_
f
a
i
l
e
d
 
=
 
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
t
o
 
1
 
i
f
 
l
i
n
e
 
s
e
a
r
c
h
 
f
a
i
l
e
d
 
*
/

i
n
t
 
 
 
 
 
 
 
 
 
j
,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
m
i
s
c
e
l
l
a
n
e
o
u
s
 
c
o
u
n
t
e
r
 
*
/

c
u
r
_
i
t
e
r
 
=
 
0
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
c
o
u
n
t
s
 
c
u
r
r
e
n
t
 
i
t
e
r
a
t
i
o
n
 
*
/

s
t
a
t
i
c
 
r
e
a
l
 
f
u
n
,
 
s
l
o
p
e
1
,
 
s
t
e
p
;

r
e
a
l
 
 
 
 
 
 
 
 
*
t
m
p
,
 
y
,
 
z
,
 
q
,
 
s
l
o
p
e
2
;

e
x
t
e
r
n
 
i
n
t
 
 
T
I
M
E
O
U
T
;
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
s
 
s
e
t
 
t
o
 
o
n
e
 
w
h
e
n
 
S
I
G
V
T
A
L
R
M
 
i
s
 
c
a
u
g
h
t
 
*
/

n
f
g
e
v
a
l
 
=
 
0
;
 
 
 
/
*
 
g
l
o
b
a
l
 
i
n
t
 
"
n
u
m
b
e
r
 
o
f
 
f
u
n
c
t
i
o
n
 
a
n
d
 
g
r
a
d
i
e
n
t
 
e
v
a
l
u
a
t
i
o
n
s
"
 
*
/

i
f
 
(
*
r
e
s
t
a
r
t
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
t
a
r
t
 
b
y
 
u
s
i
n
g
 
d
i
r
e
c
t
i
o
n
 
o
f
 
s
t
e
e
p
e
s
t
 
d
e
s
c
e
n
t
 
*
/

f
u
n
 
=
 
f
g
e
v
a
l
(
d
w
1
)
;

s
l
o
p
e
1
 
=
 
0
.
0
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
{
 
s
[
j
]
 
=
 
-
d
w
1
[
j
]
;
 
s
l
o
p
e
1
 
-
=
 
s
[
j
]
*
s
[
j
]
;
 
}

s
t
e
p
 
=
 
-
1
.
0
/
(
s
l
o
p
e
1
-
1
.
0
)
;
 
 
 
 
 
 
 
 
 
 
/
*
 
s
e
t
 
i
n
i
t
i
a
l
 
s
t
e
p
-
s
i
z
e
 
t
o
 
1
/
(
|
s
|
+
1
)
 
*
/

*
r
e
s
t
a
r
t
 
=
 
0
;
 
 
 
 
 
 
 
 
 
 
/
*
 
p
r
o
b
a
b
l
y
 
w
e
 
w
o
n
’
t
 
w
a
n
t
 
t
o
 
r
e
s
t
a
r
t
 
o
n
 
n
e
x
t
 
c
a
l
l
 
*
/

} w
h
i
l
e
 
(
(
!
T
I
M
E
O
U
T
)
 
&
&
 
(
(
*
e
p
o
c
h
 
=
=
 
0
)
 
|
|
 
(
n
f
g
e
v
a
l
 
<
 
*
e
p
o
c
h
)
)
 
&
&

(
(
*
i
t
e
r
 
=
=
 
0
)
 
|
|
 
(
c
u
r
_
i
t
e
r
 
<
 
*
i
t
e
r
)
)
)
 
{
 
 

c
u
r
_
i
t
e
r
+
+
;

i
f
 
(
l
n
s
(
&
f
u
n
,
 
&
s
t
e
p
,
 
s
l
o
p
e
1
)
)
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
i
f
 
l
i
n
e
 
s
e
a
r
c
h
 
s
u
c
c
e
e
d
e
d
 
*
/

y
 
=
 
z
 
=
 
q
 
=
 
0
.
0
;
 
f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)

{
 
y
 
+
=
 
d
w
2
[
j
]
 
*
 
d
w
2
[
j
]
;
 
z
 
+
=
 
d
w
1
[
j
]
 
*
 
d
w
2
[
j
]
;
 
q
 
+
=
 
d
w
1
[
j
]
 
*
 
d
w
1
[
j
]
;
 
}

y
 
=
 
(
y
-
z
)
/
q
;
 

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
s
[
j
]
 
=
 
y
*
s
[
j
]
-
d
w
2
[
j
]
;
 
 
 
 
 
 
 
 
/
*
 
n
e
w
 
d
i
r
e
c
t
i
o
n
 
*
/

t
m
p
 
=
 
d
w
2
;
 
d
w
2
 
=
 
d
w
1
;
 
d
w
1
 
=
 
t
m
p
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
w
a
p
 
d
e
r
i
v
a
t
i
v
e
s
 
*
/

s
l
o
p
e
2
 
=
 
0
.
0
;
 
f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
s
l
o
p
e
2
 
+
=
 
d
w
1
[
j
]
*
s
[
j
]
;

i
f
 
(
s
l
o
p
e
2
 
>
 
0
.
0
)
 
{
 
 
 
 
 
/
*
 
m
u
s
t
 
b
e
 
n
e
g
a
t
i
v
e
,
 
e
l
s
e
 
u
s
e
 
s
t
e
e
p
e
s
t
 
d
e
s
c
e
n
t
 
*
/

s
l
o
p
e
2
 
=
 
0
.
0
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
{
 
s
[
j
]
 
=
 
-
d
w
1
[
j
]
;
 
s
l
o
p
e
2
 
-
=
 
s
[
j
]
*
s
[
j
]
;
 
}

}
 
s
t
e
p
 
*
=
 
(
s
l
o
p
e
1
/
s
l
o
p
e
2
 
>
 
1
0
0
.
0
)
 
?
 
1
0
0
.
0
 
:
 
s
l
o
p
e
1
/
s
l
o
p
e
2
;
 
s
l
o
p
e
1
 
=
 
s
l
o
p
e
2
;

l
s
_
f
a
i
l
e
d
 
=
 
0
;
 

}
 
e
l
s
e
 
{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
l
i
n
e
 
s
e
a
r
c
h
 
f
a
i
l
e
d
 
*
/

i
f
 
(
l
s
_
f
a
i
l
e
d
)
 
 
 
 
 
 
 
 
 
 
/
*
 
b
r
e
a
k
 
i
f
 
p
r
e
v
i
o
u
s
 
f
a
i
l
e
d
,
 
e
l
s
e
 
t
r
y
 
s
t
e
e
p
e
s
t
 
*
/

{
 
*
e
p
o
c
h
 
=
 
n
f
g
e
v
a
l
;
 
*
i
t
e
r
 
=
 
c
u
r
_
i
t
e
r
;
 
*
c
o
s
t
v
a
l
u
e
 
=
 
f
u
n
;
 
r
e
t
u
r
n
 
0
;
 
}

d
w
1
 
=
 
d
w
2
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
s
w
a
p
 
d
e
r
i
v
a
t
i
v
e
s
 
*
/

s
l
o
p
e
1
 
=
 
0
.
0
;

f
o
r
 
(
j
=
0
;
 
j
<
n
o
_
w
t
s
;
 
j
+
+
)
 
{
 
s
[
j
]
 
=
 
-
d
w
1
[
j
]
;
 
s
l
o
p
e
1
 
-
=
 
s
[
j
]
*
s
[
j
]
;
 
}

s
t
e
p
 
=
 
-
1
.
0
/
(
s
l
o
p
e
1
-
1
.
0
)
;
 
 
 
 
 
/
*
 
s
e
t
 
n
e
w
 
s
t
e
p
-
s
i
z
e
 
g
u
e
s
s
 
t
o
 
1
/
(
|
s
|
+
1
)
 
*
/

l
s
_
f
a
i
l
e
d
 
=
 
1
;
 

}
} *
e
p
o
c
h
 
=
 
n
f
g
e
v
a
l
;
 
*
i
t
e
r
 
=
 
c
u
r
_
i
t
e
r
;
 
*
c
o
s
t
v
a
l
u
e
 
=
 
f
u
n
;
 
r
e
t
u
r
n
 
1
;
 

}
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