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Abstract. We provide a novel framework for very fast model-based rein-
forcement learning in continuous state and action spaces. The framework
requires probabilistic models that explicitly characterize their levels of
confidence. Within this framework, we use flexible, non-parametric mod-
els to describe the world based on previously collected experience. We
demonstrate learning on the cart-pole problem in a setting where we
provide very limited prior knowledge about the task. Learning progresses
rapidly, and a good policy is found after only a hand-full of iterations.

1 Introduction

Learning from experience is a key ingredient in the behavior of intelligent beings
and holds great potential for artificial systems. Algorithms for learning from
experience are studied in the areas of reinforcement learning (RL) and adaptive
control. A central issue for such algorithms is the speed of learning, that is, the
number of trials necessary to learn a task. Many learning algorithms require a
huge number of trials to succeed, whereas biological systems often learn quickly.

There are broadly two types of approaches to speed up learning of artificial
systems. One approach is to constrain the task in various ways to simplify learn-
ing. The issue with this approach is that it is highly problem dependent and relies
on an a priori understanding of the characteristics of the task. Alternatively, one
can speed up learning by extracting more useful information from available ex-
perience. This effect can be achieved by carefully modeling the observations. In a
practical application, one would typically combine these two approaches. In this
paper, we are concerned solely with the second approach: How can we learn as
fast as possible, given only very limited prior understanding of a task? Thus, we
are not looking for an engineering solution to a particular problem, but rather
we elicit a general algorithm for effective learning. The approach is general. For
purposes of illustration, we will apply it to the well-known cart-pole problem.

1.1 Related Work

Experience from real interactions can be used for two purposes. It can be used
either to update the current model of the world (indirect RL) or it can be used to
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improve the value function and/or policy directly (direct RL), or combinations
of the two. With a learned model, it is possible to get simulated experience to
perform a planning update resulting in a new (model-specific) policy and/or
value function. Real experience is used to build the model and not to directly
optimize the policy itself. This idea is described by Sutton’s Dyna architecture
introduced in [1].

Direct and indirect methods have different strengths and weaknesses. On the
one hand, model-free algorithms do not rely on a (possibly incorrect) model.
On the other hand, they require many interactions with the real system to find
a solution to the considered RL problem. In real-world problems, hundreds of
thousands or millions of interactions with the real system are often infeasible due
to time, physical, and monetary constraints. In contrast to model-free methods,
indirect (model-based) approaches can make more efficient use of limited expe-
rience. However, they may suffer if the model employed is not a sufficiently good
approximation to the real world. This problem was already recognized by Atke-
son and Santamaŕıa [2] and Atkeson and Schaal [3]. To overcome the problem
of policies for inaccurate models, Abbeel et al. add a heuristic bias term when
updating the model after gathering real experience, [4]. In [5], Poupart et al.
learn a probabilistic model for a finite state POMDP problem to incorporate
observations into prior knowledge. However, a principled and rigorous way of
building models that consistently quantify knowledge and uncertainty does not
exist in the RL literature to our best knowledge. In our approach, we use flexible
non-parametric probabilistic models to reap the benefit of the indirect approach
while minimizing any problems of model bias.

Traditionally, solving even relatively simple tasks from scratch have been
considered “daunting”, [6], in the absence of strong task-specific prior assump-
tions. In the context of robotics, one popular solution employs prior knowledge
provided by a human “teacher” to restrict the solution space [3,4,6,7,8]. The
teacher shows the robot what a possible solution looks like by demonstrating it.
Building a (local) model using data from this demonstration might also alleviate
model errors along a good trajectory.

In contrast to previous work, we propose a fast RL algorithm which is able
to learn a good policy without problem-specific prior knowledge. Similar to [9]
and [10], we consider model-based policy iteration using probabilistic dynamics
models. However, in [9,10], actions are considered as parameters to be optimized
in any state rather than modeling the policy as a function of the state. In contrast
to [9] and [10], we propose learning the policy explicitly.

2 Fast Reinforcement Learning Framework

For fast reinforcement learning, we propose an adaptive probabilistic world
model learned on previous experience. Due to limited experience, a probabilis-
tic model is required to appropriately model what is known and what not. The
model is used in a planning step to determine a good (model-optimized) policy.
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Algorithm 1 Fast reinforcement learning
1: initial exploration . interaction phase
2: loop
3: collect observations
4: update probabilistic dynamics model
5: optimize policy through simulation . planning phase
6: apply (model-optimized) policy to real system . interaction phase
7: end loop

A high-level description of the general framework is given in Algorithm 1. We
distinguish between the phase of real interaction and simulation in the planning
phase. The algorithm is initialized by an arbitrary policy and some notion about
the current state of the world. In the interaction phase, we take this information
and apply a single action to the real world according to our current policy. We
observe a new state and employ the policy again. Subsequently, the probabilistic
world model is updated using new and historical experience collected during
the interaction phases. During the planning phase, we take a state distribution
and simulate the world with the corresponding distribution over actions. The
probabilistic world model determines a distribution over successor states. The
controller computes the corresponding distribution over costs and the system is
being simulated by applying the policy to the entire state distribution.

During learning, the policy will be optimized in the planning phase based on
the evidence so far. However, it may be that because of limited experience the
simulations do not correspond to the real world. When this situation occurs and
we apply the model-optimized policy to the real system, the model will discover
the discrepancy between the model’s predictions and the world. This new insight
will be incorporated into the subsequent model update.

Crucially, in order for the internal simulations to reflect the real world as
accurately as possible, the dynamics models must faithfully represent their fi-
delities of how accurate they are. For example, if a state is visited on a simulated
trajectory about which not much knowledge has been acquired, the model must
be able to quantify this uncertainty, and not simply assume that its best guess is
close to the truth. A probabilistic model quantifies knowledge and can be consid-
ered as a model that captures all plausible models in a distribution over models.
The use of probabilistic models for the dynamics allows us to keep track of the
uncertainties in the simulations used for planning. Typically, in early stages of
learning, the uncertainty in the states will grow with increasing prediction hori-
zon. When applying a good real-world policy on the other hand, we expect the
uncertainty to collapse because the system is being controlled. With increasing
experience, the probabilistic model will tend to a deterministic one.

Modeling a dynamic system is generally fairly easy for short time horizons,
but gets progressively more challenging as the horizon increases. Therefore, we
are forced to learn the dynamics model on relatively short time scales. However,
good control strategies often require the consideration of long-term effects of
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immediate actions. To bridge this gap, we need to cascade many short-term
predictions to assess long-term behavior during the planning phase.

Our approach explicitly requires a probabilistic world model in the planning
step although the framework resembles Sutton’s Dyna architecture introduced
in [1]. However, we believe that utilizing a deterministic model is inconsistent
when uncertainties are involved.

Cost Function Let us revisit Algorithm 1. In the planning stage, the policy
is optimized to minimize the expected long-term cost starting from an initial
state distribution. The expected immediate cost is a function of the state. Tra-
ditionally, the squared error cost function has been extensively used. However,
because of its convexity and unboundedness, the cumulative cost will be highly
dependent on the worst state along a trajectory. Initially, when the dynamics
model is uncertain, the uncertainty may grow rapidly with the time horizon, so
that the expected cost will be highly sensitive to details of a distribution which
essentially encodes that the model has “lost track of the state”. To avoid the
extreme dependence on these essentially arbitrary details, we use instead an im-
mediate cost function which is locally quadratic, but which saturates for large
deviations from the desired goal.

Stochastic Simulation Although the policy is a deterministic function of the
state, the simulation of trajectories involves distributions over trajectories. The
states are uncertain since the learned dynamics model is probabilistic. Intuitively
speaking, as the probabilistic model is a distribution over all plausible models,
a deterministic state is being mapped through all plausible transition functions
resulting in a distribution over successors states. In the simulation phase, the
distribution over states thus implies a distribution over actions, even when the
policy is deterministic. When the policy is applied to the real system where the
current state has just been measured, a single action is applied deterministically.

3 Implementation

In the following, we describe how to implement the general ideas from the pre-
vious section in discrete-time setting with continuous states and actions.

The probabilistic short-term dynamics models are implemented using flexible
non-parametric models based on Gaussian processes (GPs). State uncertainty is
explicitly propagated forward to obtain a probabilistic representation of long-
term behavior. These computations can be done approximately in closed form,
and Markov chain Monte Carlo is not necessary. Conditioned on the probabilis-
tic dynamics model, the policy is optimized using policy iteration. Since the
implicit internal simulation of the system can be done analytically, we have a
computationally efficient method to perform a policy evaluation step. Moreover,
we can compute the gradient of the expected long-term cost with respect to the
policy parameters analytically, which allows the use of standard optimization
methods, such as conjugate gradients.
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Fig. 1. Interplay of dynamics GP and policy to propagate uncertainty over time.
Consider a state distribution p(st) at time step t. The policy takes this distri-
bution as input and returns a distribution over actions. The dynamics model
takes a fully joint Gaussian of states and actions (shaded nodes in the figure)
as input distribution and determines mean and covariance of the successor state
distribution p(st+1) analytically as detailed in [12]. The distribution p(st+1) is
approximated by a Gaussian with the corresponding mean and covariance.

3.1 Dynamics Model

We propose learning the dynamics using Gaussian process models. A GP is a dis-
tribution over functions and utilized for state-of-the-art Bayesian non-parametric
regression. Regarding a function as an infinitely long vector, all necessary com-
putations can be broken down to manipulating standard Gaussian distribu-
tions. Thus, GP regression combines both flexible non-parametric modeling and
tractable Bayesian inference. For further details, please refer to [11].

The GP dynamics model takes as input a representation of the current state
and action. As output the GP computes a representation of the distribution
over consecutive states. In particular, for a D-dimensional state, we utilize D
separate GPs, one for each state dimension, explicitly incorporating correlations
between state variables. The dynamics models are learned using the observed
state trajectories by the standard algorithm (evidence maximization), see [11].

In the planning stage, the predicted state trajectories are uncertain. We there-
fore need to be able to predict outputs when the inputs are uncertain. To carry
out the necessary computations, we use results from Girard et al., [12], and
Kuss [9]. Generally, a Gaussian state followed by a nonlinear dynamics results
in a non-Gaussian successor state. We follow the above references and compute
exactly the two first moments of the resulting distribution, that is, a Gaussian
approximation. By iteration, we can thus compute the distribution over trajec-
tories in closed form.

Throughout all computations, we explicitly take the uncertainty about the
dynamics into account by averaging over all plausible dynamics models given the
current set of observations from the real world. The variances of the predicted
successor states take into account both the uncertainty in the current state and
the possibly imprecise model of the actual dynamics.
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3.2 Policy Model

The controller implements a nonlinear deterministic policy. While any function
approximator can be used for this purpose, we apply (the mean of) a non-
parametric Gaussian process policy model. This policy GP is parameterized
by a (pseudo-) training set, consisting of pairs of states (training inputs) and
corresponding actions (training targets). By modifying this training set, we can
control the policy being implemented. This idea is related to the sparse Gaussian
process approximation using inducing inputs introduced by Snelson and Ghahra-
mani in [13]. In contrast to [13], we do not average over the training targets, but
optimize them as well. Note that since the policy GP predicts deterministically,
the uncertainty about the underlying policy is zero.

In this paper, we consider deterministic policies only: For a deterministic
input, the policy always returns the same control. However, due to the prob-
abilistic dynamics model there will be uncertainties about states resulting in
distributions over actions as described in Section 3.1. As illustrated in Figure 1,
during the planning phase, we cascade short-term dynamics models to predict
what is going to happen in the long term. When interacting with the real sys-
tem, we assume that the state is measured deterministically. Then, the controller
applies the (unique) corresponding control signal. In other words, we apply only
a single action deterministically when interacting with the real system, but we
consider a distribution over actions in simulation.

3.3 Policy Iteration

Determination of an optimal policy through policy iteration is a natural choice
within the proposed framework. In the following, we will show that the policy can
be evaluated analytically. Moreover, we provide a framework where the gradient
of the expected cumulative cost with respect to the policy parameters can be
determined analytically.

Policy Evaluation Assume a given policy π and a given probabilistic dynamics
model. To evaluate the quality of the policy starting from a particular state
distribution p(s0), the expected cost of the trajectory τ := (s0, π(s0), . . . , sT )
has to be determined. Assuming time-additive losses and a Markovian structure
of the problem, the expected undiscounted finite-horizon cost

V π(τ ) := Eτ

[ T∑
t=0

`(st)
∣∣π, p(s0)

]
=

T∑
t=0

E[`(st)|π, p(s0)] (1)

has to be evaluated, where the expectation is taken with respect to the proba-
bility distribution over trajectories τ . As described in Section 3.1, a Gaussian
approximation of the predictive distributions of future states can be determined
analytically. To evaluate equation (1), it remains to compute E[`(st)|π, p(s0)] for
an immediate cost function `. If we restrict ` for example to contain combina-
tions involving trigonometric functions, exponentials, and powers, this integral
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is analytically tractable and the gradient of equation (1) with respect to the
policy parameters can be computed analytically.

Policy Optimization To optimize the policy, we minimize the expected long-
term cost (1) with respect to the policy parameters using a gradient-based
method. Two different kinds of parameters are involved in the Gaussian process
controller. Firstly, the hyper-parameters of the kernel and secondly, the pseudo
training set of the controller itself. All these parameters are collected inside the
parameter vector θ. They are treated as free variables to be optimized to find
an optimal strategy. In contrast to standard parameter optimization for GPs by
maximizing the marginal likelihood, the objective function in our RL setup is
the expected long-term cost given by equation (1).

We employ an efficient conjugate gradients minimizer, which requires the
partial derivatives of the objective function with respect to the policy param-
eters. These derivatives can be computed analytically by repeated application
of the chain rule applied to the parameters of the distributions governing the
states over time. The gradient of V π, equation (1), with respect to the policy
parameters is given by

dV π(τ )
dθ

=
T∑
t=0

d
dθ

E[`(st)|πθ, p(s0)] ,

where the subscript θ stresses the dependency of π on the parameter set θ.
The total derivative with respect to the policy parameters is denoted by d

dθ . As
we know the approximate (Gaussian) state distribution p(st), we just have to
compute(

d
dµt

E[`(st)|πθ, p(s0)]
)

dµt
dθ

+
(

d
dΣt

E[`(st)|πθ, p(s0)]
)

dΣt

dθ

for t = 0, . . . , T , where µt and Σt are mean and covariance of p(st), respectively.
Exploiting the Markov property, required computations boil down to

dµt
dθ

=
∂µt
∂µt−1

dµt−1

dθ
+

∂µt
∂Σt−1

dΣt−1

dθ
+
∂µt
∂θ

, (2)

dΣt

dθ
=

∂Σt

∂µt−1

dµt−1

dθ
+

∂Σt

∂Σt−1

dΣt−1

dθ
+
∂Σt

∂θ
, (3)

where θ contains all policy parameters and ∂
∂θ denotes the partial derivative

with respect to the parameter vector θ. Note that the moments of the state
distribution p(st) is functionally dependent on the parameter vector θ and the
moments µt−1 and Σt−1 of the state distribution at time t−1. In principle, these
computations are straightforward although the details are somewhat lengthy.

4 Experiments

For demonstration purposes, we apply our approach to learning a controller
for the underactuated cart-pole problem. The cart-pole task is depicted in Fig-
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current state goal state

d

Fig. 2. Cart-pole problem. The pendulum has to be swung up and balanced
at the cross by just pushing the cart to left and right. The Euclidean distance
between the tip of the pendulum and the goal state is shown by the dashed line.

ure 2. As in Doya’s paper [14], the pendulum has to be swung up and balanced.
However, instead of just balancing the pendulum, we additionally require the
pendulum to be balanced in a specific location given by the cross in Figure 2.
Note that the solution of the task implies that the cart stops at the triangle.
One point which makes the problem non-trivial is that to solve it, sometimes
actions have to be taken which temporarily move the pendulum further away
from the target. Thus, greedily optimizing a short-term cost will lead to a policy
that fails to achieve the task. In control theory, the solution of the task is usually
based on an intricate understanding of the system dynamics, which we do not
assume in this paper. Our objective is to learn a good policy without a prior
understanding of the system.

4.1 Cost Function

In general, we are interested in understanding the generic principles, which allow
good solutions to be learned automatically. Hence, the only built-in assumption
is that the state variables evolve smoothly over time. The state s of the system
consists of cart position x, cart velocity ẋ, angle4 of the pole ϕ, and angular
velocity of the pole ϕ̇.

The only feedback the controller gets about the quality of its applied action
is the squared distance

d(s)2 = x2 + 2xl sin(ϕ) + 2l2 + 2l2 cos(ϕ)

between the tip of the pendulum and its desired position, measured every 200 ms.
The distance d is denoted by the dashed line in Figure 2. Note, that in contrast
to common implementations, d only depends on the position variables x, sin(ϕ),
4 Since the angle is periodic, we actually encode it in the input to the dynamics GP

and policy GP as the two variables sin(ϕ) and cos(ϕ), to avoid any discontinuity in
the representation.
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and cos(ϕ). In particular, it does not depend on the velocity variables. We choose
the immediate cost

`(s) = 1− exp(− 1
2d(s)2/c2) ∈ [0, 1] , (4)

where c = 0.25 m is a constant giving the distance at which the cost function
switches between locally quadratic and saturation. The cost is zero at the goal
state, increases with distance, but saturates at unity.

We generally think this cost is a better cost function than the standard
quadratic since for very uncertain states we will get a cost approaching unity
reflecting that the state is simply “not good”, whereas the quadratic cost would
depend crucially on the exact value of the error bar and highly penalize the most
extreme state variable.

Our choice of cost function is supposed to be a näıve, intuitive cost which does
not rely on an intricate understanding of the physical system. For example, with
a little more hindsight we may have chosen to also penalize the velocity variables
departure from zero. However, we consider this as a part of the challenge of the
learning problem. Our choice of the cost function reflects ignorance about the
dynamics as would be the case if we were using our algorithm to solve a complex
novel task. Elaborate tuning of the cost function (including also control penalty)
has indeed been used extensively in the literature to simplify problems. Here, we
derive our cost simply from purely geometric consideration. The only additional
information is the constant c = 0.25 m, giving a rough idea of what it means
to be “close” to a solution (note for comparison that the pendulum length is
0.6 m).

4.2 Experimental Setup

The dynamics of the cart-pole system follow the ODEs

ẍ =

(
u−bẋ+m l

2 ϕ̇
2 sinϕ

I+m( l
2 )2

+m2( l2 )2g sinϕ cosϕ
)

(M +m)(I +m( l2 )2)−m2( l2 )2(cosϕ)2
,

ϕ̈ =
m l

2 cosϕ(u− bẋ+m l
2 ϕ̇

2 sinϕ) + (M +m)gm l
2 sinϕ

m2( l2 )2(cosϕ)2 − (M +m)(I +m( l2 )2)
,

where M = 0.5 kg is the mass of the cart, m = 0.5 kg the mass of the pole,
b = 0.1 N s/m the friction between cart and ground, l = 0.6 m the length of
the pole, I = 0.06 kg m2 the moment of inertia around the tip of the pole, and
g = 9.82 m/s2 the gravitational constant.

The control u ∈ [−10, 10] N is a horizontal force pushing the cart to left
or right. To guarantee that the controller learns and implements only forces in
the admissible range [−umax, umax] = [−10, 10] N, the probability distribution
of the control signal is squashed through the sine function, such that p(u) =
p(umax sin(π(s))).

For the dynamics model, we use four separate GP models, one for each state
variable. The policy is implemented by a GP, which is parameterized by a pseudo
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training set of pairs of states and actions. Throughout the experiments, we use
a pseudo training set with 50 elements, and accordingly the policy contains
approximately 300 free parameters.

The eigen-frequency of this system is of the order of 1 Hz, and we use a short-
term prediction time of 0.2 seconds. Note that this is a much slower sampling time
than is typically used in conventional controllers for this problem. It is adequate
here, as it is easy to capture the dynamics at this time scale. We optimize the
objective function (1) over 5 s, that is, 25 time steps. In our setting, the initial
state distribution p(s0) is Gaussian with zero mean and covariance matrix Σ =
10−4I. The goal state is sgoal = [0, 0, π, 0]T . In other words, the initial state is
that the cart is in the right position, but the pendulum is hanging down (instead
of being balanced in the upright position). The task for the learning algorithm
is thus to explore the state space and to find and to exploit a strategy which will
achieve the swing-up and balancing. Note that this task is not achievable by a
linear controller.

We implement policy iteration within the fast RL framework given by Algo-
rithm 1 as follows. Initially, we assume fully unknown transition dynamics. To
build a first dynamics model, we have to gather some experience. We observe
two short (five seconds) trajectories of the system by applying forces randomly
starting from an initial state since we do not have prior knowledge about a good
policy. We initialize 50 pseudo training inputs of the controller to be the states
along the random trajectories. The corresponding pseudo training targets are
initialized randomly distributed around zero. In the next step, we build a prob-
abilistic Gaussian process model of the transition dynamics using the observed
data. Utilizing this model, we simulate the dynamics for five seconds and opti-
mize the policy parameters using conjugate gradients.5 Now, an optimized policy
for the current dynamics model has been determined, and we are ready to ap-
ply the policy to the real system again. The application of the model-optimized
policy is presumably not optimal when applied to the real system and, there-
fore, might lead the real cart-pole system to unexpected states. However, the
applied policy is better than just applying random forces, such that states closer
to the goal state are visited. We collect these new observations and update the
dynamics model by incorporating all experience from previous interactions with
the real system.

Alternating, the policy is optimized based on the dynamics model, and the
model itself is updated based on collected data when applying the policy to the
real system. With each iteration the probabilistic model describes the dynamics
better and with more confidence.

4.3 Evaluations

In Figure 3, the predicted immediate costs and the costs incurred when applying
the optimized policy to the real system are plotted over a horizon of 5 s. The
system is started in the state where the pendulum is hanging down.

5 Note that the derivatives (2) and (3) can be computed analytically exactly.
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Fig. 3. Predicted costs and real costs after 1, 2, 5, and 11 policy optimizations
(from top left to bottom right). The x-axis is the number of 200 ms time steps,
the y-axis is the immediate costs. The black dots denote the minimum possi-
ble immediate cost when the pendulum is exactly in the goal state. The solid
graphs show the real costs, the dashed graphs show the predicted immediate
cost distribution. The error bars are twice the standard deviation.

In the top left plot, we see that for the first roughly 3 seconds the system does
not enter states with a cost significantly different from unity. At about 3 seconds
the model predicts a decline in cost, but simultaneously a rapid increase in the
error bars is seen. This reflects the poor dynamics model around the goal state
as we have never seen any data in this region. Applying the found policy, we
see (in the solid line) that indeed the cost does decrease after about 3 seconds.
Furthermore, the actual trajectory lies roughly in agreement with the model’s
assessment of its own accuracy. In the top left hand plot, the model now has 5
seconds more experience, also including states close to the goal state. The model
now predicts much smaller error bars, and that the small cost can be maintained
until the end of the simulation. The actual trajectory is in agreement with this.
Iterating the learning procedure for more steps results in even smaller error
bars and in a quicker swing-up action. The determined policy is not necessarily
an optimal one, but it is doing a fairly good job, and the system has found it
automatically in less than 60 seconds experience. See http://mlg.eng.cam.ac.
uk/carl/ewrl08 for demos of the learning system. Doya solved a similar problem
requiring about 20,000 seconds (approximately 5.5 hours) of interactions with
the real system to perform the swing-up reliably, [14].

Note that in the above experiments, we only test whether the system is
able to solve the task from a single specific start state. Generally, we would
seek solutions applicable to larger regions of the state space. Our algorithm
can naturally handle this in two ways: a wider distribution of start state can
explicitly be specified, or alternatively, multiple paths with different start states

http://mlg.eng.cam.ac.uk/carl/ewrl08
http://mlg.eng.cam.ac.uk/carl/ewrl08
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(or distributions) can be simulated. Both of these approaches work successfully,
although we do not report the results here due to lack of space.

5 Discussion

We have demonstrated that our model-based Bayesian RL algorithm is able to
learn a policy for the cart-pole problem from scratch in a handful of iterations.
The algorithm carefully models uncertainties about the underlying latent dy-
namics and takes them seriously into account during planning. In contrast to
Doya’s results reported in [14], our algorithm is very fast and can solve the
swing-up task based on a minute or less interactions with the real system.

It is interesting to speculate what aspects of the model are key to its suc-
cess. Although we have not yet investigated this fully, we did assess whether it
is possible to solve the problem using a deterministic model for the dynamics.
We repeated the experiment, but changed the predictions to have zero variance
(which corresponds to a deterministic dynamics model). In this case, the algo-
rithm failed completely to solve the task. In particular, for the deterministic
model, the policy optimization problem becomes very difficult. This is presum-
ably caused by actions having effects over long horizons, even when the dynamics
models are so poor that very little can in fact be predicted. In contrast, the prob-
abilistic model “knows” when it loses track of the state, and thus the error signal
gets automatically “smoothed out”. In practice, for the deterministic system the
planning never finds trajectories with low expected cost, although inserting the
policy from the probabilistic system yields a low cost. These local minima prob-
lems are very severe: In the cart-pole task, we have never managed to get the
deterministic system to find a good solution, whereas the probabilistic system
has never failed. Demos of the task with a deterministic dynamics model can
also be found at http://mlg.eng.cam.ac.uk/carl/ewrl08/.

5.1 Current Limitations

Although our system works very well on the simple cart-pole problem, there are
a number of ways in which the current implementation is limited:

Firstly, the system currently relies strictly on exploitation. When it has ob-
tained a reasonable strategy it never veers from this. Thus, the strategy found
is sometimes not close to an optimal strategy. For example, the experimental
results reported in the previous section find a solution which swings left, then
right and then left and up to balancing. In other equivalent runs, we have also
seen a more direct strategy, such as left, then right up to balance. We never seem
to find solutions worse than the one reported here, but there may be quite some
sensitivity to the initial experience (which is random in our case). A principled
solution allowing for explorations could be achieved within the current frame-
work, by using a cost depending on both the expected cost and the variance of
the cost. The variance of the cost can also be computed in closed form.

http://mlg.eng.cam.ac.uk/carl/ewrl08/
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Secondly, our current approach learns very fast in terms of the amount of
experience required to solve the task, but the computational demand is not
negligible. In our current implementation, the optimization of the policy takes
about 1 hour of CPU time. Performance can certainly be improved by writing
more efficient code, and by speeding up the basic GP predictions using sparse
approximations, for instance, the recent methods described in [13]. Nevertheless,
it is not obvious that the scheme can necessarily learn in real time. However,
once the policy has been learned, the computational requirements of applying
the policy to a control task are trivial.

Thirdly, we have demonstrated learning in the special case where the obser-
vations are corrupted by only a very modest amount of observation noise. In
principle, there is nothing to hinder the use of the algorithm when observations
are very noisy, but one would probably have to estimate the current state more
carefully—in the current setup we just assume that the state is measured exactly.

Finally, in an actual implementation, one would perhaps prefer a piecewise
linear policy over the currently implemented piecewise constant policy. This
could be achieved by formally treating the previously applied force as a compo-
nent of the state.

6 Conclusions and Outlook

We have developed a framework based on flexible probabilistic non-parametric
models for fast reinforcement learning in continuous state and action systems.
The framework is conceptually simple, relying on well-established ideas, but a
decisive difference is that we use fully probabilistic models of the world dynamics.

We have demonstrated the effectiveness of our approach on the cart-pole
problem. Our algorithm finds a good policy from scratch using less than a minute
worth of experiences—as far as we know this is an unprecedented speed for
this kind of problem, which has previously been considered very hard to learn.
Moreover, we require only very few assumptions: 1) we set the sampling time to
be 200 ms, that is, somewhat shorter than the eigen-frequency of the system, 2)
we set the trajectory length to be 5 s, that is, somewhat longer than the eigen-
frequency and 3) we set the length-scale for the cost function to be c = 0.25 m.
We have not experimented with other settings, but believe that our system is
fairly insensitive to these, as long as the order of magnitude is reasonable.

It is our belief that the success of our algorithm stems from the principled
approach to handling the model’s uncertainty. We anticipate that the effective
solutions of more complex problems will also be possible using this algorithm. In
the near future, we will explore how our algorithm performs on more challeng-
ing tasks, especially in systems with higher dimensional states. In particular, we
believe that principled algorithms to address the exploration versus exploitation
trade-off and other fundamental problems in practical algorithms for reinforce-
ment learning will require careful quantification of model uncertainty.
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