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Abstract

We investigate Bayesian alternatives to classical Monte Carlo methods
for evaluating integrals. Bayesian Monte Carlo (BMC) allows the in-
corporation of prior knowledge, such as smoothness of the integrand,
into the estimation. In a simple problem we show that this outperforms
any classical importance sampling method. We also attempt more chal-
lenging multidimensional integrals involved in computing marginal like-
lihoods of statistical models (a.k.a. partition functions and model evi-
dences). We find that Bayesian Monte Carlo outperformed Annealed
Importance Sampling, although for very high dimensional problems or
problems with massive multimodality BMC may be less adequate. One
advantage of the Bayesian approach to Monte Carlo is that samples can
be drawn from any distribution. This allows for the possibility of active
design of sample points so as to maximise information gain.

1 Introduction

Inference in most interesting machine learning algorithms is not computationally tractable,
and is solved using approximations. This is particularly true for Bayesian models which
require evaluation of complex multidimensional integrals. Both analytical approximations,
such as the Laplace approximation and variational methods, and Monte Carlo methods
have recently been used widely for Bayesian machine learning problems. It is interesting
to note that Monte Carlo itself is a purely frequentist procedure [O’Hagan, 1987; MacKay,
1999]. This leads to several inconsistencies which we review below, outlined in a paper
by O’Hagan [1987] with the title “Monte Carlo is Fundamentally Unsound”. We then
investigate Bayesian counterparts to the classical Monte Carlo.

Consider the evaluation of the integral:

f̄p =
∫

f(x)p(x)dx, (1)

wherep(x) is a probability (density), andf(x) is the function we wish to integrate. For
example,p(x) could be the posterior distribution andf(x) the predictions made by a model
with parametersx, or p(x) could be the parameter prior andf(x) = p(y|x) the likelihood
so that equation (1) evaluates the marginal likelihood (evidence) for a model. Classical
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Monte Carlo makes the approximation:

f̄p '
1
T

T∑
t=1

f(x(t)), (2)

wherex(t) are random (not necessarily independent) draws fromp(x), which converges to
the right answer in the limit of large numbers of samples,T . If sampling directly fromp(x)
is hard, or if high density regions inp(x) do not match up with areas wheref(x) has large
magnitude, it is also possible to draw samples from someimportance sampling distribution
q(x) to obtain the estimate:

f̄p =
∫

f(x)p(x)
q(x)

q(x) dx ' 1
T

∑
t

f(x(t))p(x(t))
q(x(t))

. (3)

As O’Hagan [1987] points out, there are two important objections to these procedures.
First, the estimator not only depends on the values off(x(t))p(x(t)) but also on the en-
tirely arbitrary choice of the sampling distributionq(x). Thus, if the same set of samples
{x(1), . . . , x(T )}, conveying exactly the same information aboutf̄p, were obtained from
two different sampling distributions, two different estimates off̄p would be obtained. This
dependence on irrelevant (ancillary) information is unreasonable and violates theLikeli-
hood Principle. The second objection is that classical Monte Carlo procedures entirely
ignore the values of thex(t) when forming the estimate. Consider the simple example of
three points that are sampled fromq and the third happens to fall on the same point as the
second,x(3) = x(2), conveying no extra information about the integrand. Simply aver-
aging the integrand at these three points, which is the classical Monte Carlo estimate, is
clearly inappropriate; it would make much more sense to average the first two (or the first
and third). In practice points are unlikely to fall on top of each other in continuous spaces,
however, a procedure that weights points equally regardless of their spatial distribution is
ignoring relevant information. To summarize the objections, classical Monte Carlo bases
its estimate on irrelevant information and throws away relevant information.

We seek to turn the problem of evaluating the integral (1) into a Bayesian inference problem
which, as we will see, avoids the inconsistencies of classical Monte Carlo and can result
in better estimates. To do this, we think of the unknown desired quantityf̄p as being
random. Although this interpretation is not the most usual one, it is entirely consistent with
the Bayesian view that all forms of uncertainty are represented using probabilities: in this
case uncertainty arises because we cannot afford to computef(x) at every location. Since
the desiredf̄p is a function off(x) (which is unknown until we evaluate it) we proceed
by putting a prior onf , combining it with the observations to obtain the posterior overf
which in turn implies a distribution over the desiredf̄p.

A very convenient way of putting priors over functions is through Gaussian Processes (GP).
Under a GP prior the joint distribution of any (finite) number of function values (indexed
by the inputs,x) is Gaussian:

f = (f(x(1)), f(x(2)), . . . , f(x(n)))> ∼ N (0,K), (4)

where here we take the mean to be zero. The covariance matrix is given by thecovariance
function, a convenient choice being:1

Kpq = Cov(f(x(p)), f(x(q))) = w0 exp
(
− 1

2

D∑
d=1

(x(p)
d − x

(q)
d )2/w2

d

)
, (5)

where thew parameters are hyperparameters. Gaussian processes, including optimization
of hyperparameters, are discussed in detail in [Williams and Rasmussen, 1996].

1Although the function values obtained are assumed to be noise-free, we added a tiny constant to
the diagonal of the covariance matrix to improve numerical conditioning.



2 The Bayesian Monte Carlo Method

The Bayesian Monte Carlo method starts with a prior over the function,p(f) and makes
inferences aboutf from a set of samplesD = {(x(i), f(x(i)))|i = 1 . . . n} giving the
posterior distributionp(f |D). Under a GP prior the posterior is (an infinite dimensional
joint) Gaussian; since the integral eq. (1) is just a linear projection (on the direction defined
by p(x)), the posteriorp(f̄p|D) is also Gaussian, and fully characterized by its mean and
variance. The average over functions of eq. (1) is the expectation of the average function:

Ef |D[f̄p] =
∫∫

f(x)p(x)dx p(f |D)df

=
∫ [ ∫

f(x)p(f |D)df
]
p(x)dx =

∫
f̄D(x)p(x)dx,

(6)

wheref̄D is the posterior mean function. Similarly, for the variance:

Vf |D[f̄p] =
∫ [ ∫

f(x)p(x)dx−
∫

f̄(x′)p(x′)dx′
]2

p(f |D)df

=
∫∫∫ [

f(x)− f̄(x)
][

f(x′)− f̄(x′)
]
p(f |D)dfp(x)p(x′)dxdx′

=
∫∫

CovD
(
f(x), f(x′)

)
p(x)p(x′)dxdx′,

(7)

whereCovD is the posterior covariance. The standard results for the GP model for the
posterior mean and covariance are:

f̄D(x) = k(x,x)K−1f , and CovD
(
f(x), f(x′)

)
= k(x, x′)−k(x,x)K−1k(x, x′), (8)

wherex andf are the observed inputs and function values respectively. In general combin-
ing eq. (8) with eq. (6-7) may lead to expressions which are difficult to evaluate, but there
are several interesting special cases.

If the densityp(x) and the covariance function eq. (5) are both Gaussian, we obtain ana-
lytical results. In detail, ifp(x) = N (b, B) and the Gaussian kernels on the data points are
N (ai = x(i), A = diag(w2

1, . . . , w
2
D)) then the expectation evaluates to:

Ef |D[f̄p] = z>K−1f , z = w0|A−1B+I|−1/2 exp[−0.5(a−b)>(A+B)−1(a−b)] (9)

a result which has previously been derived under the name of Bayes-Hermite Quadrature
[O’Hagan, 1991]. For the variance, we get:

Vf |D[f̄p] = w0

∣∣2A−1B + I
∣∣−1/2 − z>K−1z, (10)

with z as defined in eq. (9). Other choices that lead to analytical results include polynomial
kernels and mixtures of Gaussians forp(x).

2.1 A Simple Example

To illustrate the method we evaluated the integral of a one-dimensional function under a
Gaussian density (figure 1, left). We generated samples independently fromp(x), evalu-
atedf(x) at those points, and optimised the hyperparameters of our Gaussian process fit
to the function. Figure 1 (middle) compares the error in the Bayesian Monte Carlo (BMC)
estimate of the integral (1) to the Simple Monte Carlo (SMC) estimate using the same sam-
ples. As we would expect the squared error in the Simple Monte Carlo estimate decreases
as1/T whereT is the sample size. In contrast, for more than about 10 samples, the BMC
estimate improves at a much higher rate. This is achieved because the prior onf allows



the method to interpolate between sample points. Moreover, whereas the SMC estimate is
invariant to permutations of the values on thex axis, BMC makes use of the smoothness of
the function. Therefore, a point in a sparse region is far more informative about the shape
of the function for BMC than points in already densely sampled areas. In SMC if two sam-
ples happen to fall close to each other the function value there will be counted with double
weight. This effect means that large numbers of samples are needed to adequately represent
p(x). BMC circumvents this problem by analytically integrating its mean function w.r.t.
p(x).

In figure 1 left, the negative log density of the true value of the integral under the predic-
tive distributions are compared for BMC and SMC. For not too small sample sizes, BMC
outperforms SMC. Notice however, that for very small sample sizes BMC occasionally has
very bad performance. This is due to examples where the random draws ofx lead to func-
tion valuesf(x) that are consistent with much longer length scale than the true function;
the mean prediction becomes somewhat inaccurate, but worse still, the inferred variance
becomes very small (because a very slowly varying function is inferred), leading to very
poor performance compared to SMC. This problem is to a large extent caused by theopti-
mizationof the length scale hyperparameters of the covariance function; we ought instead
to have integrated over all possible length scales. This integration would effectively “blend
in” distributions with much larger variance (since the data is also consistent with a shorter
length scale), thus alleviating the problem, but unfortunately this is not possible in closed
form. The problem disappears for sample sizes of around 16 or greater.

In the previous example, we chosep(x) to be Gaussian. If you wish to use BMC to integrate
w.r.t. non-Gaussian densities then an importance re-weighting trick becomes necessary:∫

f(x)p(x)dx =
∫

f(x)p(x)
q(x)

q(x)dx, (11)

where the Gaussian process modelsf(x)p(x)/q(x) and q(x) is a Gaussian andp(x) is
an arbitrary density which can be evaluated. See Kennedy [1998] for extension to non-
Gaussianq(x).

2.2 Optimal Importance Sampler

For the simple example discussed above, it is also interesting to ask whether the efficiency
of SMC could be improved by generating independent samples from more-cleverly de-
signed distributions. As we have seen in equation (3), importance sampling gives an unbi-
ased estimate of̄fp by samplingx(t) from q(x) and computing:

f̂T =
1
T

∑
t

f(x(t))p(x(t))
q(x(t))

(12)

whereq(x) > 0 whereverp(x) > 0. The variance of this estimator is given by:

V (f̂T ) =
1
T

[∫
f(x)2p(x)2

q(x)
dx− f̄2

p

]
(13)

Using calculus of variations it is simple to show that the optimal (minimum variance) im-
portance sampling distribution is:

q∗(x) =
|f(x)|p(x)∫
|f(x′)|p(x′) dx′

(14)

which we can substitute into equation (13) to get the minimum variance,V ∗. If f(x) is
always non-negative or non-positive thenV ∗ = 0, which is unsurprising given that we
needed to know̄f in advance to normaliseq. For functions that take on both positive and
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Figure 1: Left: a simple one-dimensional functionf (full) and Gaussian density (dashed)
with respect to which we wish to integratef . Middle: average squared error for sim-
ple Monte Carlo sampling fromp (dashed), the optimal achievable bound for importance
sampling (dot-dashed), and the Bayesian Monte Carlo estimates. The values plotted are
averages over up to 2048 repetitions. Right: Minus the log of the Gaussian predictive den-
sity with mean eq. (6) and variance eq. (7), evaluated at the true value of the integral (found
by numerical integration), ‘x’. Similarly for the Simple Monte Carlo procedure, where the
mean and variance of the predictive distribution are computed from the samples, ’o’.

negative valuesV ∗ = (1/T )(Ep[|f(x)|]2 − f̄2) which is a constant times the variance of
a Bernoulli random variable (signf(x)). The lower bound from this optimal importance
sampler as a function of number of samples is shown in figure 1, middle. As we can
see, Bayesian Monte Carlo improves on the optimal importance sampler considerably. We
stress that the optimal importance sampler is not practically achievable since it requires
knowledge of the quantity we are trying to estimate.

3 Computing Marginal Likelihoods

We now consider the problem of estimating the marginal likelihood of a statistical model.
This problem is notoriously difficult and very important, since it allows for comparison of
different models. In the physics literature it is known as free-energy estimation. Here we
compare the Bayesian Monte Carlo method to two other techniques: Simple Monte Carlo
sampling (SMC) and Annealed Importance Sampling (AIS).

Simple Monte Carlo, sampling from the prior, is generally considered inadequate for this
problem, because the likelihood is typically sharply peaked and samples from the prior are
unlikely to fall in these confined areas, leading to huge variance in the estimates (although
they are unbiased). A family of promising “thermodynamic integration” techniques for
computing marginal likelihoods are discussed under the name of Bridge and Path sampling
in [Gelman and Meng, 1998] and Annealed Importance Sampling (AIS) in [Neal, 2001].
The central idea is to divide one difficult integral into a series of easier ones, parameterised



by (inverse) temperature,τ . In detail:
ZK

Z0
=

Z1

Z0

Z2

Z1
· · · ZK

ZK−1
, where

Z0 =
∫

p(x)dx = 1 and Zk =
∫

p(y|x)τ(k)p(x)dx,

(15)

where τ(k) is the kth inverse temperature of the annealing schedule andτ(K) = 1.
To compute each fraction we sample from equilibrium from the distributionqk−1(x) ∝
p(y|x)τ(k−1)p(x) and compute importance weights:

Zk

Zk−1
=

∫
p(y|x)τ(k)p(x)

p(y|x)τ(k−1)p(x)
qk−1(x)dx ' 1

T

T∑
i=1

p(y|x(i))τ(k)−τ(k−1). (16)

In practiceT can be set to 1, to allow very slow reduction in temperature. Each of the
intermediate ratios are much easier to compute than the original ratio, since the likelihood
function to the power of a small number is much better behaved that the likelihood itself.
Often elaborate non-linear cooling schedules are used, but for simplicity we will just take
a linear schedule for the inverse temperature. The samples at each temperature are drawn
using a single Metropolis proposal, where the proposal width is chosen to get a fairly high
fraction of acceptances.

The model in question for which we attempt to compute the marginal likelihood was it-
self a Gaussian process regression fit to the an artificial dataset suggested by [Friedman,
1988].2 We had5 length scale hyperparameters, a signal variance (w0) and an explicit
noise variance parameter. Thus the marginal likelihood is an integral over a 7 dimensional
hyperparameter space. The log of the hyperparameters are givenN (0, σ2 = 4) priors.

Figure 2 shows a comparison of the three methods. Perhaps surprisingly, AIS and SMC are
seen to be very comparable, which can be due to several reasons: 1) whereas the SMC sam-
ples are drawn independently, the AIS samples have considerable auto-correlation because
of the Metropolis generation mechanism, which hampers performance for low sample sizes,
2) the annealing schedule was not optimized nor the proposal width adjusted with temper-
ature, which might possibly have sped up convergence. Further, the difference between
AIS and SMC would be more dramatic in higher dimensions and for more highly peaked
likelihood functions (i.e. more data).

The Bayesian Monte Carlo method was run on the same samples as were generate by the
AIS procedure. Note that BMC can use samples fromanydistribution, as long asp(x) can
be evaluated. Another obvious choice for generating samples for BMC would be to use
an MCMC method to draw samples from the posterior. Because BMC needs to model the
integrand using a GP, we need to limit the number of samples since computation (for fitting
hyperparameters and computing theα’s) scales asn3. Thus for sample size greater than
2048 we limit the number of samples to2048, chosen equally spaced from the AIS Markov
chain. Despite this thinning of the samples we see a generally superior performance of
BMC, especially for smaller sample sizes. In fact, BMC seems to perform equally well for
almost any of the investigated sample sizes. Even for this fairly large number of samples,
the generation of points from the AIS still dominates compute time.

4 Discussion

An important aspect which we have not explored in this paper is the idea that the GP model
used to fit the integrand gives errorbars (uncertainties) on the integrand. These error bars

2The data was 100 samples generated from the 5-dimensional functionf(x1, . . . , x5) =
10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε, whereε is zero mean unit variance Gaussian
noise and the inputs are sampled independently from a uniform [0, 1] distribution.
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Figure 2: Estimates of the marginal likelihood for different sample sizes using Simple
Monte Carlo sampling (SMC; circles, dotted line), Annealed Importance Sampling (AIS;
×, dashed line), and Bayesian Monte Carlo (BMC; triangles, solid line). The true value
(solid straight line) is estimated from a single106 sample long run of AIS. For comparison,
the maximum log likelihood is−37.34 (which is an upper bound on the true value).

could be used to conduct an experimental design, i.e. active learning. A simple approach
would be to evaluate the function at pointsx where the GP has large uncertaintyσ(x) and
p(x) is not too small: the expected contribution to the uncertainty in the estimate of the
integral scales asσ(x)p(x). For a fixed Gaussian Process covariance function these design
points can often be pre-computed, see e.g. [Minka, 2000]. However, as we are adapting the
covariance function depending on the observed function values, active learning would have
to be an integral part of the procedure. Classical Monte Carlo approaches cannot make use
of active learning since the samples need to be drawn from a given distribution.

When using BMC to compute marginal likelihoods, the Gaussian covariance function used
here (equation 5) is not ideally suited to modeling the likelihood. Firstly, likelihoods are
non-negative whereas the prior is not restricted in the values the function can take. Sec-
ondly, the likelihood tends to have some regions of high magnitude and variability and
other regions which are low and flat; this is not well-modelled by a stationary covariance
function. In practice this misfit between the GP prior and the function modelled has even
occasionally led to negative values for the estimate of the marginal likelihood! There could
be several approaches to improving the appropriateness of the prior. An importance dis-
tribution such as one computed from a Laplace approximation or a mixture of Gaussians
can be used to dampen the variability in the integrand [Kennedy, 1998]. The GP could be
used to model the log of the likelihood [Rasmussen, 2002]; however this makes integration
more difficult.

The BMC method outlined in this paper can be extended in several ways. Although the
choice of Gaussian process priors is computationally convenient in certain circumstances,
in general other function approximation priors can be used to model the integrand. For
discrete (or mixed) variables the GP model could still be used with appropriate choice of
covariance function. However, the resulting sum (analogous to equation 1) may be difficult



to evaluate. For discretef , GPs are not directly applicable.

Although BMC has proven successful on the problems presented here, there are several
limitations to the approach. High dimensional integrands can prove difficult to model. In
such cases a large number of samples may be required to obtain good estimates of the
function. Inference using a Gaussian Process prior is at present limited computationally
to a few thousand samples. Further, models such as neural networks and mixture models
exhibit an exponentially large number of symmetrical modes in the posterior. Again mod-
elling this with a GP prior would typically be difficult. Finally, the BMC method requires
that the distributionp(x) can be evaluated. This contrasts with classical MC where many
methods only require that samples can be drawn from some distributionq(x), for which
the normalising constant is not necessarily known (such as in equation 16). Unfortunately,
this limitation makes it difficult, for example, to design a Bayesian analogue to Annealed
Importance Sampling.

We believe that the problem of computing an integral using a limited number of function
evaluations should be treated as an inference problem and that all prior knowledge about
the function being integrated should be incorporated into the inference. Despite the lim-
itations outlined above, Bayesian Monte Carlo makes it possible to do this inference and
can achieve performance equivalent to state-of-the-art classical methods despite using a
fraction of sample evaluations, even sometimes exceeding the theoretically optimal perfor-
mance of some classical methods.
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