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1 INTRODUCTIONDELVE | Data for Evaluating Learning in Valid Experiments | is a collection of datasetsfrom many sources, an environment within which this data can be used to assess the per-formance of methods for learning relationships from data, and a repository for the results ofsuch assessments.Many methods for learning relationships from empirical data have been developed by re-searchers in statistics, pattern recognition, arti�cial intelligence, neural networks, and other�elds. Methods in common use include simple linear models, nearest neighbor methods,decision trees, multilayer perceptron networks, and many others of varying degrees of com-plexity. Properly comparing the performance of these learning methods in realistic contextsis a surprisingly di�cult task, requiring both an extensive collection of real-world data, anda carefully-designed scheme for performing experiments.The aim of DELVE is to help researchers and potential users to assess learning methods in away that is relevant to real-world problems and that allows for statistically-valid comparisonsof di�erent methods. Improved assessments will make it easier to determine which methodswork best for various applications, and will promote the development of better learningmethods by allowing researchers to easily determine how the performance of a new methodcompares to that of existing methods.This manual describes the DELVE environment in detail. First, however, we provide anoverview of DELVE's capabilities, describe briey how DELVE organizes datasets, methods,and learning tasks, and give an example of how DELVE can be used to assess the performanceof a learning method.1.1 What DELVE can do for youDELVE can help you assess the performance of learning methods in three major ways:1. The DELVE archive contains a collection of many datasets that are appropriate fordeveloping and assessing learning methods.2. The DELVE software helps you use this data to assess learning methods. DELVE alsoprovides guidelines on how such assessments should be done.3. The DELVE archive also records the results of assessing many other learning methodson the same datasets, performed in the same way, along with detailed descriptions ofthese methods.All these components of the DELVE environment are freely available via the Web, at URLhttp://www.cs.utoronto.ca/�delve/1



1. INTRODUCTIONIf you are interested in using a learning method for a particular application, you may �ndDELVE useful in determining which methods might be appropriate for you to use. To dothis, you would look at the results of various learning methods on problems that appearsimilar to your application. For those methods that seem promising, you could refer to thedetailed descriptions recorded in the DELVE archive.If you are a researcher developing new learning methods, you will no doubt wish to knowhow well the methods you develop compare in performance to existing methods. DELVEcan help you answer this question by providing a large number of datasets to test on, byproviding standard conventions for conducting experiments that facilitate comparisons, byproviding the results of other methods on the same datasets, and by performing appropriatetests of the statistical signi�cance of the observed di�erences in performance.After using DELVE to assess a novel learning method, you can submit your results forinclusion in the DELVE archive. You should provide a detailed description of your method,and include results of applying your method to a selection of datasets. In this way otherresearchers and users of learning methods will be able to bene�t from your work.1.2 The DELVE hierarchy of data, methods, and resultsDELVE organizes data, learning methods, and experimental results in a hierarchical fashion.This section provides an informal description of this hierarchy, su�cient for you to followthe example in the next section.The DELVE hierarchy is contained within one or more top-level directories, each of whichhas a name starting with the �ve letters \delve". All such delve directories contain twosub-directories, corresponding to the two main divisions of the DELVE hierarchy. Thedata sub-directory contains information on datasets, and on learning tasks de�ned for thesedatasets. The methods sub-directory contains information on learning methods, and on theresults of applying these methods to various learning tasks.By using more than one top-level delve directory, you can keep datasets and results thatcome from the DELVE archive separate from datasets and results that you are working onyourself, but have not yet submitted to the archive. Some research groups may also �nd itconvenient to maintain a group delve directory, in addition to the private delve directoriesof the group members.When you use DELVE, you will see information on data and methods from all such delvedirectories that are currently active, merged into a single hierarchy. In the rest of this section,we will for simplicity describe this hierarchy as if was contained in a single directory.The data part of the hierarchy begins with a number of datasets, each of which has its ownsub-directory within the data directory. A dataset is a list of cases, with each case consistingof values for a number of attributes. Some additional information is also speci�ed at thedataset level, such as names and ranges for attributes.2



1. INTRODUCTIONPrototasks are the next lower level in the data hierarchy. A prototask de�nes which cases inthe dataset are relevant to the learning task, which attributes of a case we wish to predict(the target attributes), and which attributes we wish to predict the targets from (the inputattributes). There may be several di�erent prototasks for a dataset, each of which has asub-directory within the dataset's directory.At the task level the size of training set for use in learning is speci�ed, along with whateverprior information is available (which can be used, for example, to select encodings for theattributes). The task level speci�es enough information that a learning method will havea well-de�ned expected performance with respect to any particular loss function. A taskinstance is a particular training set and test set for a task, to which we can actually apply alearning method. The performance of a method on several task-instances is used to estimateits expected performance on the task.Tasks do not have directories of their own in the data part of the DELVE hierarchy. However,the results of applying a particular method to a particular task are contained in a directoryin the methods part of the DELVE hierarchy.The methods part begins at the methods directory of a top-level DELVE directory. Withinthis directory are sub-directories for the various learning methods that have been assessed,each of which will contain a description of the method, and perhaps the programs implement-ing it. The directory for a method will also contain sub-directories for every dataset that hasbeen used in assessing the method, within which will be sub-directories for each prototaskto which the method has been applied. Inside the directories corresponding to prototaskswill be task directories, containing the results of applying the method to the various taskinstances.A DELVE hierarchy is illustrated in Figure 1.1. The top-level delve directory could resideanywhere on your �le system, but it's name must start with delve, and it must contain twosub-directories called data and methods.In Figure 1.1, the data part of the hierarchy contains two datasets, demo and kin-8nh, eachwith its own sub-directory within the data directory. Inside each dataset directory thereare two �les: Dataset.data which contains the cases, and Dataset.spec which containsinformation about the data. There is also a sub-directory called Source, which contains allthe data and information used to build the dataset, as it was originally obtained.The demo dataset in Figure 1.1 has two prototasks, age and income, which di�er in theattribute that is to be predicted. These prototask directories contain the �les needed tospecify both the prototask itself and the tasks that are de�ned for it.Back at the top level, the methods directory in Figure 1.1 contains sub-directories for twomethods: lin-1 (a linear regression model), and knn-cv-1 (a k-nearest-neighbor method).The descriptions and program source for these methods are contained in their Source di-rectories. The results of applying the methods to various tasks are contained in directorieswhose names combine the name of the prior for the task | std, for \standard", in these3



1. INTRODUCTION
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1. INTRODUCTION\delve" and must have two sub-directories called data and methods. You tell DELVE whereto look for these directories by setting the DELVE PATH shell environment variable. This pathworks analogously to the shell search path, except that DELVE looks in all the directoriesin DELVE PATH rather than stopping as soon as the �rst match is found. It therefore makeslittle di�erence what order the directories in DELVE PATH come in.You can create your own delve directory, and tell DELVE to use both it and a delvedirectory that holds data, methods, and results from the DELVE archive. Assuming thatDELVE has been installed on your machine in directory /usr/local/lib/delve, you mightdo this as follows, if you use a shell program like csh:unix> cd $HOMEunix> mkdir delve delve/data delve/methodsunix> setenv DELVE_PATH /usr/local/lib/delve:$HOME/delveIf you use a shell like sh, you would instead say:unix> cd $HOMEunix> mkdir delve delve/data delve/methodsunix> DELVE_PATH=/usr/local/lib/delve:$HOME/delveunix> export DELVE_PATHIn either case, you would probably want to put the commands that set DELVE PATH in yourshell start-up �le (either .cshrc or .profile), so that DELVE PATH will be set again whenyou next log in.Setting up your DELVE PATH in this way lets you keep the material distributed with DELVEseparate from the results of your own experiments. You could also have several delvedirectories of your own, or include other users' delve directories in your DELVE PATH inorder to access their results. Also, whenever your current directory is within a valid delvedirectory, that directory will be temporarily added to the list of active delve directories,in addition to those in DELVE PATH. This lets you easily look in a delve directory that youdon't usually access.Listing information | dls and mls, dinfo and minfo, dmore and mmoreOnce you have set your DELVE PATH to a list of delve directories, you can use variousDELVE commands to look at information in the DELVE hierarchy that is contained inthese directories. These commands come in two avours | \d" commands that look in thedata part of the hierarchy, and \m" commands that look in the methods part. You can, forinstance, �nd out what �les are in the directory for a particular dataset using dls, or get aformatted display of various information about a dataset using dinfo.You can specify what you want to look at with these commands in two ways. One way is togive a dpath or mpath that speci�es the location of a �le or directory in the data or methods5



1. INTRODUCTIONpart of the hierarchy. Such dpaths and mpaths start with \/", and are translated by DELVEinto one or more Unix path names within the active delve directories. The other way is tospecify a relative Unix path name (which doesn't start with \/" or \�") of a �le or directoryin the DELVE hierarchy.The dls and mls commands are analogous to the Unix ls command. They let you look atwhat �les and sub-directories exist in the data and methods parts of the DELVE hierarchy.For example, we can use the dls command with a dpath of \/" to list the datasets found inall the active delve directories:unix> dls /demo kin-8nh kin-8nmThere might be many more than these three datasets, of course, depending on what you haveinstalled, and on how your DELVE PATH is set. Note that the three datasets shown would notnecessarily be located in the same Unix directory.We can list the �les and sub-directories for the demo dataset as follows:unix> dls /demoDataset.data Source age income siblingsDataset.spec Summary colour sexOnce again, these �les and sub-directories might not all be in the same Unix directory,though in this case, these �les and sub-directories are in fact all present in the directory fordemo from the DELVE archive. To see exactly where things exist, you can use the -l option.(By the way, you can �nd out about options for any DELVE command by executing thecommand with the -h option.)Here we use -l with the corresponding mls command, to see what methods are available, inwhat places:unix> mls -l //usr/local/delve/methods/:knn-cv-1 lin-1We see that there are just two methods, knn-cv-1 and lin-1, and that �les for both methodsare found only in the directory holding information from the DELVE archive. If we had testedone of these methods on new datasets of our own, however, results for that method couldexist in our private delve directory as well, in which case directories for the method wouldexist in both places.Two DELVE commands similar to the Unix more command also exist, called dmore andmmore. Here we use dmore to look at the summary description for the demo dataset:6



1. INTRODUCTIONunix> dmore /demo/SummaryThe "demo" dataset was invented to provide an example for the DELVEmanual, and to test the DELVE software and software that implementslearning methods. To those ends, it has a variety of numerical andcategorical attributes. Cases for the "demo" dataset were artificiallygenerated from a distribution based on simple demographic assumptionsand various stereotypical notions concerning the relationships betweenpeople's sex, age, number of siblings, income, and favourite colour.Prototasks are defined for predicting each of these attributes giventhe others.We could also use dmore to look at the speci�cation �le for a dataset, but we would notusually do so, since DELVE provides a command dinfo for conveniently displaying this andother information about datasets. We can ask about information for the demo dataset asfollows:unix> dinfo /demoDataset: /demoOrigin: artificialUsage: developmentOrder: uninformativeNumber of attributes: 5Prototasks:agecolourincomesexsiblingsWe would see more details if we used the -a option (ie, the command `dinfo -a /demo').Similarly, we can ask for information about the age prototask from the demo dataset withthe command \dinfo /demo/age", and so on. There is a corresponding minfo commandfor getting information on learning methods, and on their application to learning tasks.Applying your learning method to a task | mgendir and mgendataNow that you have seen how to obtain information about datasets and methods in DELVE,we will see how we can go about testing a simple learning method, which we will callmymethod. First, we need to create a directory for the method, with a structure of sub-directories similar to that for the lin-1method depicted in Figure 1.1. These sub-directorieswill hold the results of applying the method to the demo/age prototask. We could create allthese sub-directories using the Unix mkdir command, but it is more convenient to use theDELVE mgendir command: 7



1. INTRODUCTIONunix> cd delve/methodsunix> mkdir mymethodunix> cd mymethodunix> mgendir demo/agedemodemo/agedemo/age/std.32demo/age/std.64demo/age/std.128demo/age/std.256demo/age/std.512Now that the mgendir command has created the appropriate directories, we can proceed toput �les containing training and test data into the sub-directory for one of the tasks (withthe standard prior, and 256 training cases) using the mgendata command:unix> cd demo/age/std.256unix> mgendatasegmenting cases...splitting test inputs and targets...encoding instance 0 training data...encoding instance 0 test inputs...encoding instance 0 test targets...encoding instance 1 training data...encoding instance 1 test inputs...encoding instance 1 test targets...encoding instance 2 training data...encoding instance 2 test inputs...encoding instance 2 test targets...encoding instance 3 training data...encoding instance 3 test inputs...encoding instance 3 test targets...This command creates �les in the current directory pertaining to four tasks instances. Thetrain.n �les contain the inputs and targets for the training cases in instance n, the test.n�les the inputs for the test cases, the targets.n �les the true targets for the test cases, andthe normalize.n �les the normalization constants used in encoding the data. Files calledCoding-used and Test-set-stats are also created; they hold information used by latercommands.You can get information about the way this method is being applied to this task using theminfo command. When called with no arguments, this command will give information aboutthe method and task associated with the current directory, as illustrated below:8



1. INTRODUCTIONunix> minfoTask: /demo/age/std.256Training set size: 256Inputs:col attr name type relevance coding options1 1 SEX binary nlmh -1/+1 -2 3 SIBLINGS integer nlmh nm-abs -3 4 INCOME real nlmh nm-abs -4 5 COLOUR:pink nominal nlmh 1-of-n -5 5 COLOUR:blue ...6 5 COLOUR:red ...7 5 COLOUR:green ...8 5 COLOUR:purple ...Targets:col attr name type relevance coding options1 2 AGE real nlmh nm-abs -This shows things such as the way the various attributes have been encoded in the data �lesto be used by the method (in this case, the default encodings were used). Similar informationwould be displayed by the dinfo command, but minfo will show any information speci�c tohow this learning method is being applied to this task, whereas dinfo shows only informationabout a dataset itself, and its associated tasks.Each of the train.n �les that were created above contains one line for each training case.With the default encoding used above, the four input attributes are encoded as eight num-bers, which appear at the beginning of the line. (The COLOUR attribute is encoded in 1-of-nform, which uses �ve numbers to represent which of its �ve possible values the attributehas.) The target is encoded as a ninth number, at the end of the line.You can now train your model using the data in each of the four train.n �les. This is tobe done separately for each �le, as the four training �les are for four instances of the task,which are to be handled completely independently of each other. You then use the results ofthis training to make guesses for the targets in the test cases that go with each task instance,given the inputs for these cases in the test.n �les. Your method should write its guesses inthe �les cguess.S.0 though cguess.S.3, one guess per line. Here, the pre�x `c' indicatesthat the guess are for the coded form of the attribute, not the original form in which itappears in the dataset �le. The su�x S indicates that the guesses are designed for use withthe squared error loss function.For this tutorial, we don't want to get into the complexities of writing a realistic learningmethod, so we'll use as an example a method that simply predicts the constant zero forevery test case. Notice that, as seen in the output from minfo above, the (default) encodingof the targets used here is nm-abs, which means that they are shifted and re-scaled sothat the median of the target values in the training cases is zero, and the average absolutedeviation from the median in the training cases is one. Because of this, always predictingzero, while not very sophisticated, is at least not wholely unreasonable. This method can be9



1. INTRODUCTIONimplemented by the following awk commands:unix> awk ' f print "0.0" g ' test.0 > cguess.S.0unix> awk ' f print "0.0" g ' test.1 > cguess.S.1unix> awk ' f print "0.0" g ' test.2 > cguess.S.2unix> awk ' f print "0.0" g ' test.3 > cguess.S.3Notice that the training data is ignored here (though it is implicitly used through the use ofa normalized encoding), and the test data is looked at only in order to determine how manytest cases there are. However, this is certainly not typical behaviour for a learning method!How well did it do? | mloss and mstatsOnce our method has produced cguess.n �les containing its guesses for targets, we can usethe mloss command to evaluate the \loss" su�ered when using each of these guesses. Theloss is based on the di�erence between the guess and the actual target value. To �nd thelosses as judged by the squared di�erence between guess and target value, we would usemloss with the `-l S' option:unix> mloss -l Sdecoding cguess.S.0...decoding targets.0...creating loss.S.0...decoding cguess.S.1...decoding targets.1...creating loss.S.1...decoding cguess.S.2...decoding targets.2...creating loss.S.2...decoding cguess.S.3...decoding targets.3...creating loss.S.3...The mloss command transforms the guesses in the cguess.S.n �les back to the originaldomain, storing these transformed guesses in the �les guess.S.n. It then computes the lossfor each test case and writes these losses to the loss.S.n �les.We can now use the mstats command to get a summary of the predictive performance ofour method. Here, we give the `-l S' option to mstats to say we are only interested in thesquared error loss function: 10



1. INTRODUCTIONunix> mstats -l S/mymethod/demo/age/std.256Loss: S (Squared error) Raw value StandardizedEstimated expected loss: 520.43 1.06461Standard error for estimate: 41.7 0.0853028SD from training sets & stochastic training: 49.1004 0.100441SD from test cases & stoch. pred. & interactions: 1078.63 2.20648Based on 4 disjoint training sets, each containing 256 cases and4 disjoint test sets, each containing 256 cases.The �rst line of this summary gives an estimate for the expected loss when using this methodon this task; the next line gives a standard error for this estimate. The lines below thesegive the standard deviations for the variation in performance due to various causes. For amore detailed discussion of these statistics refer to Section 8. The second column gives thesame quantities rescaled to a standardized domain, which makes interpretation easier. Inthe case of squared error, the losses are standardized by dividing by the sample variance ofthe targets in all the test cases.The mstats command can also be used to compare the performance of di�erent learningmethods. In the methods part of the DELVE hierarchy are descriptions and results for aselection of learning methods on some of the DELVE tasks. If you have obtained the resultsof the linear regression method called lin-1 from the DELVE archive, you will be able tocompare your method to the lin-1 method as follows (again, with respect to squared errorloss): unix> mstats -l S -c lin-1/mymethod/demo/age/std.256Loss: S (Squared error) Raw value StandardizedEstimated expected loss for mymethod: 520.43 1.06461Estimated expected loss for /lin-1: 397.82 0.813792Estimated expected difference: 122.61 0.250815Standard error for difference estimate: 26.9735 0.0551778SD from training sets & stochastic training: 44.5182 0.0910678SD from test cases & stoch. pred. & interactions: 487.52 0.997285Significance of difference (t-test), p = 0.0199425Based on 4 disjoint training sets, each containing 256 cases and4 disjoint test sets, each containing 256 cases.11



1. INTRODUCTIONThis shows that the linear method has a smaller expected loss that our more trivial method.Notice that the expected di�erence between the methods is approximately 4 times greaterthan the standard error on this estimate. The p-value from the t-test indicates that thedi�erence should be considered signi�cant at the 2% level. The methods used to computesuch p-values are described in Section 8.It could happen that when you tried to compare our method with lin-1, as shown above,mstats could fail to �nd loss �les for the linear method in any of the active delve directories.If this were to happen, you could generate the loss �les needed by mstats yourself (assumingthat the guess for lin-1 were available). However, you would probably need to generatethese �les in your own DELVE directory, since you likely don't have permission to write inthe directory that holds information from the DELVE archive. To achieve this, you coulddo the following:unix> cd $HOME/delve/methodsunix> mkdir lin-1unix> cd lin-1unix> mgendir demo/ageunix> cd demo/age/std.256unix> mlossThe mstats command will now be able to use these mloss �les, as long as the delve directorythey are stored within is mentioned in your DELVE PATH, or you are currently inside this delvedirectory.In similar fashion, you put things in your own delve directory that extend what is in thethe DELVE archive by adding new datasets, new prototasks for old datasets, new methodsand results for new methods, and new results for old methods. However, to avoid confusion,DELVE will not allow you to use names for new things that are the same as the names forthings that already exist in the DELVE archive directory.1.4 What to read nextSection 2 contains a more detailed speci�cation of the scope and aims of the DELVE project;this section may be of general interest. Sections 3 and 4 contain detailed descriptions of howdatasets, prototasks, and tasks are speci�ed in DELVE. These sections may be of someinterest to all users, but are primarily intended for people who wish to include new datasetsin DELVE, or who wish to create new prototasks and tasks based on existing datasets.Section 5 describes the standard loss functions supported by DELVE, and discusses how otherloss functions can be incorporated. Section 6 discusses the schemes for learning experimentsused in DELVE, and compares these to more traditional schemes such as cross-validation.Users who want to get straight into using DELVE to test their learning methods may wishto just skim these initial sections, and start serious reading with Sections 7 and 8, which12



1. INTRODUCTIONdescribe the methodology for DELVE assessments, and the DELVE commands required toperform them.Appendix A tells you how to get software, data, and results from the DELVE archive, whileAppendix B tells you how to contribute things to the DELVE archive. Detailed descriptionsof DELVE commands are found in Appendix C, and a glossary of DELVE terminology isfound in Appendix D.
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2 THE SCOPE OF THE DELVE PROJECTThe aim of the DELVE project is to promote the development and use of empirical learningmethods by providing a well-designed environment in which the performance of such learningmethods can be assessed on data that is relevant to the real world. This is a broad objective,which we can hope only to partially ful�ll. This section outlines the scope of the DELVEproject at present | the sorts of learning methods that DELVE can handle, the sorts ofassessments that DELVE supports for these methods, and the kinds of dataset on whichthese assessments are performed.As researchers ourselves, we of course have ideas about which learning methods are mostpromising, but we have tried to keep such prejudices from a�ecting the design of DELVE.We have also tried to minimize the extent to which DELVE constrains the sorts of questionsthat researchers can investigate. Inevitably, however, we have had to use our own judgementin making tradeo�s between di�erent design goals, some of which are mentioned below.2.1 Learning methods that DELVE can handleAt present, DELVE supports only methods for supervised learning | that is, methods thataim to predict one or more target attributes using the information provided by some setof input attributes. The relationship between the inputs and the targets is learned from anumber of training cases, in which both the inputs and targets are known. These trainingcases are modeled as if they were generated more-or-less independently from some source.The goal of learning is to predict the target in a test case, generated from the same sourceas the training cases, but for which only the inputs are known. For some datasets, the casesare not truly independent, but the primary goal is always to learn the relationship of targetsto inputs, not to learn the nature of any dependencies between cases.We distinguish between regression tasks, in which the targets (usually one, but sometimesmore) are real-valued, and classi�cation tasks, in which there is a single target, the class ofthe item in question, which takes on values from a small set. We also provide some limitedsupport for other supervised learning tasks, such as those in which the target is an integer,or an angular value.The DELVE facilities presently treat the attributes in a case as an unstructured collectionof values. In some applications, such as image processing, the attributes (eg, pixel values)are known to have certain relationships to each other (eg, spatial adjacency), which can beof great help in learning. Although data from such application areas could be included inDELVE, assessments using this data may be of limited interest, since DELVE provides noscheme for informing learning methods about such structure in the data.In future, we hope to also support unsupervised learning methods and related statisticalmethods such as density estimation, in which attributes are not characterized as inputs or14



2. THE SCOPE OF THE DELVE PROJECTtargets. As well, we may someday add facilities for assessing time series methods, in whichthe aim is to characterize the sequential dependencies between cases.2.2 Aspects of performance that can be assessed using DELVEDELVE is aimed primarily at assessing the predictive performance of learning methods |that is, their ability to make predictions in previously unseen cases by generalizing fromthe information contained in the data used for training. Computational performance | theamount of time and space needed for training and subsequent use of the methods | is alsoof concern. There will often be a tradeo� between predictive performance and computa-tional performance. However, DELVE does not include any datasets where computationalconsiderations appear paramount, as might be the case, for example, when the amount ofdata is extremely large.Other characteristics of learning methods are also of interest, such as ease of use by bothexpert and inexpert users, and the degree to which the results of learning can be interpreted,but DELVE does not support any formal evaluation of such characteristics.2.3 How DELVE encourages meaningful assessmentsThe DELVE environment is designed to encourage and assist users to produce meaningfulassessments that are faithful, comparable, and reproducible.To be faithful, an assessment of a learning method must be indicative of how well it wouldperform on an actual task that is of some interest. One must, for example, avoid anyinadvertent \cheating", such as would occur if parameters of the learning method wereset on the basis of performance on the test cases. Arbitrary restrictions on how learningmethods may be used must also be avoided, if better performance might be obtained in areal application by doing things di�erently.For assessments of di�erent learning methods to be comparable, they must all have beenapplied in the same context | for instance, with training sets of the same size, and withequivalent attention being paid to prior information. It is perhaps in this respect that astandard environment such as DELVE is most useful.One requirement for an assessment to be reproducible is that the method used be adequatelydocumented. To encourage this, we have provided guidelines for proper documentation,and examples of their use. Reproducibility is most easily achieved if the method is fullyautomatic. This is not always possible, however, so we suggest ways of improving thereproducibility of methods that involve human decisions.Furthermore, DELVE is designed to provide assessments that are as accurate as is practical,and for which the degree of accuracy is known. DELVE also supports comparisons of learning15



2. THE SCOPE OF THE DELVE PROJECTmethods that provide indications of the statistical signi�cance of any observed di�erences.The power of these comparisons is increased by using the same training and test sets fordi�erent methods, which is another advantage of a standard environment.2.4 Kinds of datasets included in DELVEObtaining data is one of the most crucial, and most di�cult, parts of building an assessmentenvironment. We have drawn datasets for DELVE from four sources, each of which has itsadvantages.Natural datasets come from real-world sources, and were at one time used to address ques-tions of real interest that are similar to those addressed by the supervised learning methodswe would like to assess. Cultivated datasets also come from the real world, but do notrepresent real supervised learning problems. Such cultivated data was instead gathered orselected speci�cally for the purpose of assessing learning methods. We also include real-worlddatasets that have been altered (eg, by adding noise) in this category.Simulated datasets are generated by a computer simulation of a real-world phenomenon. Toqualify for this category, the simulation should be reasonably realistic, and of a complexitythat makes it di�cult to see what form the relationships in the data will take. Arti�cialdatasets are randomly generated from a distribution de�ned by a relatively simple mathe-matical formula.Natural datasets have the advantage of being arguably representative of the problems weare actually interested in. For example, a statistical consultant might reasonably concludethat it would be worthwhile to learn more about a learning method that has been foundto perform better than others on such real-world problems. Relevance to the real world ismore doubtful for cultivated, simulated, and arti�cial datasets. As the datasets become lessnatural, it also becomes more likely that a researcher may bias the assessment of a learningmethod by unconsciously selecting problems on which that method can be anticipated to dowell.Why, then, do we include any other than natural datasets? One reason is that the numberof readily-available natural datasets is limited, and those that are available are usually notas large as we would like. In the real world, the cost of collecting data is often high, and wemust try to obtain the most information possible from a small dataset. To properly assessthe performance of a learning method in such a context, however, we need much more data,in order to reduce the uncertainty in our estimate of expected performance. Simulated andarti�cial datasets can easily be made as large as required (limited only by storage space);this can greatly improve the accuracy of performance estimates.Another reason for using non-natural datasets is that they can be designed to address certainquestions that would otherwise be di�cult to answer, such as what the e�ect is of addingextra noise to the input attributes, or of adding extra irrelevant inputs. In particular, we16



2. THE SCOPE OF THE DELVE PROJECTcan design families of tasks that are related in interesting ways | eg, that have more or lessnoise, or a larger or fewer number of input attributes | and see how these dimensions ofvariation a�ect the performance of various learning methods.When we began collecting datasets for use in assessing supervised learning methods, we hadhoped to con�ne ourselves to datasets where the cases were truly independent, as indepen-dence of cases is an assumption behind many existing supervised learning methods. Wefound, however, that in many otherwise-interesting datasets, there is at least a possibility ofdependencies between cases. We therefore decided to include such datasets, both in order toincrease the variety of datasets available, and because it seems to us that the possibility ofsuch dependencies is a common feature of real-world problems, which designers of supervisedlearning methods may be well-advised to accommodate. We have, however, avoided datasetsin which the dependencies themselves are the primary focus of interest.
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3 DATASET FILES AND SPECIFICATIONSA dataset is a collection of cases. For each case, the values of certain attributes are recorded.DELVE stores these attribute values in a �le with a standard format that is general enoughthat a wide variety of datasets can be represented without loss of information. For eachdataset, DELVE also keeps a speci�cation �le, which records basic information such as thenumber of attributes and their theoretical ranges. Finally, the original �les or programs fromwhich the dataset was derived are retained in the DELVE archive, along with any originaldocumentation.Files relating to a dataset are kept in a directory with the same name as the dataset, locatedin the data sub-directory of a top-level delve directory. Some of the �les that may appearin such a dataset directory are listed in Figure 3.1.3.1 Speci�cations for datasets: The dinfo commandThe speci�cations for a dataset include information about the dataset as a whole, such asits origin and usage within DELVE, plus information about each attribute in the dataset,such as its range of legal values. This information is stored in the dataset's speci�cation �le,Dataset.spec. However, the only time you will need to directly access this speci�cation �leis when you create a new dataset, using the procedure described in Section 3.4.Usually, it is more convenient to view the speci�cations for a dataset using the dinfo com-mand, as was illustrated in the tutorial in Section 1.3. For instance, to see the speci�cations(as well as some other information) for the demo dataset, you would use the commanddinfo /demoFurther details on individual attributes of the dataset can be obtained by using the -a optionSummary A brief description of the datasetDataset.data The actual data, in the format described in Section 3.3Dataset.spec Speci�cations for the dataset, usually accessed using the dinfo commandSource A sub-directory with �les relating to the source of the dataset, such as:Notes Documentation on the datasetoriginal The original data �le (but sometimes there will be more than one)gen.c C program for generating dataset (or gen.f for a Fortran program, etc.)Prototask-1Prototask-2Prototask-3 9>=>; Sub-directories for prototasks based on the dataset (see Section 4)Figure 3.1: Some �les and sub-directories that may appear within a DELVE dataset directory.18



3. DATASET FILES AND SPECIFICATIONSwith dinfo, as is illustrated in Figure 3.2.Note that dataset speci�cations contain only very basic information, which is not likely tobe wrong unless the data has been totally misinterpreted. More debatable prior informationmay be speci�ed as part of a task description (Section 4.3).The following characteristics of a dataset as a whole are recorded as part of its speci�cation,and displayed by dinfo:Origin: natural or cultivated or simulated or artificialA natural dataset was originally gathered for some real-world application;a cultivated dataset comes from a real-world source, but was never used tosolve a real problem; a simulated dataset was generated by a simulator, but isbelieved to resemble real data | as opposed to an arti�cial which is generatedaccording to some mathematical formula and does not pretend to resembleany real dataset. These distinctions are discussed further in Section 2.4.Usage: development or assessment or historical or ?A development dataset is recommended for use in developing new learningmethods, but to avoid bias, should not be used for formal assessments. Anassessment dataset is intended for use in formal assessments; use for devel-opment should be minimized. A historical dataset is included in DELVEbecause it has been used for assessing learning methods in the past, but isnot recommended for general use. A `?' indicates that a recommended usagehas not yet been decided on.Order: informative or uninformative or ?A dataset has an informative ordering if the order of cases may convey in-formation that is not already present in the attribute values. The order isrecorded as uninformative if it is random, or has some basis that is not relatedto any matter of interest. The order is recorded as `?' if the order appearsto be non-arbitrary, but the basis of the ordering cannot be determined fromthe available documentation.Commonality indexes are presentIf this line is displayed by dinfo, commonality indexes are associated withsome or all cases in the dataset. Cases with the same commonality indexshare something in common, as is described further in Section 3.2. If this lineis not displayed, the cases in the dataset do not have commonality indexes.If the ordering of a dataset is informative, or if commonality indexes are present, the issueof possible dependencies between cases must be addressed, as is discussed in Section 3.2.Each dataset has a speci�ed number of attributes associated with each case. Datasets inwhich the number of attributes varies from case to case are not handled by DELVE, though it19



3. DATASET FILES AND SPECIFICATIONSDataset: /demoOrigin: artificialUsage: developmentOrder: uninformativeNumber of attributes: 5Attributes:# name c/u range description1 SEX u male female Sex of the person2 AGE u [0,Inf) Age of the person in years3 SIBLINGS u 0..Inf Number of siblings the person has4 INCOME u [0,Inf) The person's annual income (dollars)5 COLOUR u pink blue red green purpleThe person's favourite colourPrototasks:agecolourincomesexsiblingsFigure 3.2: Output of the command: dinfo -a /demo.is possible for the values of some attributes to be missing in some cases (see Section 3.3). Theattributes for a dataset are numbered from 1 on up. Attributes can also have short names,which can be used in place of numbers to identify them. For the demo dataset illustrated inFigure 3.2, the attributes have names of SEX, AGE, etc.The dataset speci�cation also records whether each attribute was controlled or uncontrolled(abbreviated to `c' or `u' in the output of dinfo). The values of a controlled attribute were�xed for each case by the investigator who gathered the data; the values of an uncontrolledattribute were not �xed, though the investigator will often have had some inuence on themechanism by which they were generated. For example, in a dataset concerning the growthof plants under various conditions, the amount of fertilizer applied to a plant would usuallybe a controlled attribute, whereas the amount of rainfall would be an uncontrolled attribute.This �eld will be recorded as `?' if it is not clear from the available documentation whetheror not the attribute was controlled.Each attribute in the dataset also has a speci�ed range, consisting of a list of items, eachof which de�nes a set of allowed values for the attribute. Such an item can specify a singlepermitted value (which could be a missing value, as discussed in Section 3.3), or a set ofpermitted numerical values having the form of an open, closed, or half-open interval of realnumbers, or a range of integers. The bounds of a real interval can be ordinary numbers, orone of `Inf', `-Inf', or `+Inf', with `Inf' representing in�nity; these bounds are enclosedby round or square brackets, indicating whether the bound itself is included. For example,[0,1) represents the interval from 0 to 1, including 0, but not including 1, and (0,Inf)20



3. DATASET FILES AND SPECIFICATIONSrepresents the set of positive real numbers. An integer range extending from low to high,inclusive, is written as low..high (with no enclosing brackets); low and high can be in�nite,as for real intervals. For example, 1..Inf represents the positive integers.Several items can be combined, as in the following range:(-Inf,0) (0,+Inf) ?This speci�es that the attribute can take on any numerical value other than zero, as well asthe missing value indicator, `?'.Note that the range speci�ed for an attribute is the full set of conceivable values, regardlessof whether all of these values actually occur. For example, the range [0,100] would beappropriate for an attribute that represents the percent by weight of water in a sample ofsome substance, since it is inconceivable that the value could ever fall outside this range,but any more narrow range would not be appropriate, even if the actual values in thedataset never exceed 10%. Similarly, for an attribute representing a person's birth sign, theappropriate range would be all twelve signs of the zodiac, even if no Scorpios happen to beincluded in the dataset.Finally, an attribute may be accompanied by a short description, which is ignored by theDELVE software, but may help users keep track of which attribute is which.3.2 Datasets with dependencies between casesDependencies between cases in a dataset are of signi�cance for two reasons. First, a learningmethod may take account of such dependencies in order to improve learning. For example,a method that adapts its behaviour based on the size of the training set might considerthe e�ective size of the training set to be reduced when training cases are dependent (sincethe information in one case may largely duplicate the information in other cases). Second,DELVE itself must be aware of possible dependencies in order to avoid assessing learningmethods using test cases that are dependent on the cases included in the training set, andin order to properly compute standard errors for performance �gures.Whenever a dataset has an informative ordering, there is the possibility of sequential depen-dencies between the cases. In some circumstances, however, this possibility may be remoteenough that it is reasonable to ignore it | for example, if the cases are ordered by the timewhen their attributes were measured by some machine, it is possible that dependencies arepresent as a result of temporal variation in the machine's accuracy, but this possibility maybe too remote to be worth worrying about.Dependencies between cases may also exist whenever commonality indexes are present. Caseswith the same commonality index have something in common of a nature that may producedependencies. For example, suppose the problem is to classify cars by make, given an imageof the car. If several cases were obtained by viewing the same car from di�erent angles, the21



3. DATASET FILES AND SPECIFICATIONSwhole group of cases should be used either for training or for testing, but not for a mixtureof these. Otherwise, a test case might be correctly classi�ed based on some idiosyncraticfeature of a training case in the same group (eg, a scratch on the car's bumper). Similarly,in a dataset of spoken words, all the words spoken by one person would share a commonalityindex.The presence of commonality indexes or of an informative ordering is merely an indicationof the possibility of dependencies, and even if dependencies exist, they may or may notbe of signi�cance in the context of a particular learning task. More speci�c informationconcerning dependencies may be given in prototask and task speci�cations. When signi�cantdependencies do exist, they are dealt with in DELVE in one of two ways. One is to properlyaccommodate the dependencies, as would be necessary in a real-world learning task. Theother is to randomly select cases so as to produce an internally-consistent task withoutdependencies. Such tasks can be useful for assessing learning methods even though they nolonger correspond to a real-world situations. These issues are discussed further in Section 4.Note: Currently, commonality indexes are not really implemented | you can include themin DELVE dataset �les, but they will be ignored. Also, the only way of dealing with sequentialdependencies at present is to randomize the ordering.3.3 The DELVE format for dataset �lesDELVE datasets are stored in a standard format that is designed to preserve as much relevantinformation from the original data as possible, even if some of this information is not currentlyused by DELVE. Users may occasionally wish to look at these dataset �les, but programsimplementing learning methods do not read these �les directly. Instead, a learning methodwill work with data �les that have been appropriately encoded for a given task, as describedin Section 7.A dataset in the DELVE standard format consists of an ordered list of cases, each of whichconsists of values for an ordered list of attributes. A case may optionally be accompanied bya comment, which may be anything, and by a commonality index, a number that identi�esseveral cases as having a common origin. Note: Commonality indexes aren't implemented yet.The number of attributes is a characteristic of the dataset, and all cases have values (of somesort) for all attributes. The value of an attribute may be any of the following:� A string that represents a number in any of the common forms | that is, with syntax[ + j - ] [ digit : : : ] [ : [ digit : : : ] ] [ ( e j E ) [ + j - ] digit : : : ]with the restriction that at least one digit must appear, not counting digits after an`e' or `E'.� A number as above, preceded or followed by `:', representing a censored value. If thecolon is at the end, the actual value of the attribute is known only to be greater than or22



3. DATASET FILES AND SPECIFICATIONSequal to the given number; if the colon is at the beginning, the actual value is less thanor equal to the given value. Note: Support of censored values is not yet implemented.� The character `?', perhaps followed by other non-space characters. This representsa missing value. The other characters may indicate the reason for the value beingmissing. Just `?' is used for values that are missing due to a random mechanismunrelated to the relationship of inputs to targets. Note: Missing values are not reallyimplemented yet. About the only thing useful that can be done at present with caseshaving missing values is to ignore them.� Any other string of non-space characters that does not begin with `n', `@', `#', `(',`[', `+', `-', `.', `:', or a digit. These strings represent values from a discrete set ofcategories.Numerical values are represented in as close to their original form as possible | for example,`5.0' is not converted to `5' or to `5.00'. This preserves any information that might becontained in the original choice of the number of signi�cant digits.A dataset in standard format is encoded as a ASCII �le, in which the cases appear in order,with each case being represented by a group of lines. All lines in a group except the last endwith a space followed by the character `n'. The whole group of lines for a single case shouldbe thought of in terms of the single line that would result if the `n' and the following newlinewere removed. Within the line (or group of lines) representing a case, the attribute valuesappear in order, separated by one or more spaces.If a case has a commonality index associated with it, it appears after all the attributes. Thisindex consists of the character `@' followed by one or more digits.If a case has a comment associated with it, it appears at the end of the line, preceded by`#'. These comments are ignored by all DELVE programs.3.4 Preparing a new dataset: The dcheck commandWhen a dataset is obtained, the original data �les, documentation, programs, and any otherpossibly relevant material should be saved in as close to its original form as possible. Thisarchived information may be of interest if, for example, doubts should arise as to whetherthe original data format was properly interpreted, or questions are raised regarding thereal-world relevance of the data. This information goes in the Source sub-directory of thedataset's directory.The dataset should then be converted to the standard DELVE format, and stored in theDataset.data �le in the dataset's directory. The aim in doing this should be to retain allinformation that could be relevant to some use of the data, discarding only �elds such asredundant case numbers. Converting a dataset will often be simply a matter of mechanicallyreformatting it. However, di�culties of interpretation may arise if there are peculiar aspects23



3. DATASET FILES AND SPECIFICATIONSto the original data, or if it is inadequately documented. In such cases, the rationale forthe decisions made should be documented, in the Notes �le in the Source directory for thedataset.As well as the data �le itself, you must create a speci�cation �le for the dataset, with thename Dataset.spec, which describes how the dataset is to be interpreted and used. Thespeci�cation �le is meant to be machine readable, and, as such, has a very strict format.The �le may have zero or more initial comment lines (lines where the �rst character is a #).Immediately after the comments lines there should appear the three lines (in any order):Origin: originUsage: usageOrder: orderThese lines specify the information discussed in Section 3.1. Speci�cally:origin should be one of the strings natural, cultivated, simulated, or artificial.usage should be one of the strings development, assessment, historical, or ?.order should be one of the strings informative, uninformative, or ?.In addition to the above lines, you may include the optional line:Title: titlewhere title is a string describing the dataset. It is not used directly by DELVE, but it isavailable to users via dinfo.The string Commonality indexes are present may appear on the next line. If there areno commonality indexes, this line should be omitted. Note: Currently, this line must beomitted. You can always include commonality indexes, but they will be ignored.Following these lines should be a line contain the single string Attributes:. Each remainingline in the �le will be interpreted as an attribute description, with the format:i name control range [ # comment ]The �elds above have the following meanings:i is the integer index for the attribute. Indices should start at one and incrementby one for each line.name is a mnemonic name that can be used in place of the attribute's index. Thenames must be unique (within a dataset). They may not contain spaces, andmay not look like integers.control is one of the characters c or u, depending on whether the attributes was con-trolled or uncontrolled. 24



3. DATASET FILES AND SPECIFICATIONSOrigin: artificialUsage: developmentOrder: uninformativeAttributes:1 SEX u male female # Sex of the person2 AGE u [0,Inf) # Age of the person in years3 SIBLINGS u 0..Inf # Number of siblings the person has4 INCOME u [0,Inf) # The person's annual income (dollars)5 COLOUR u pink blue red green purple # The person's favourite colourFigure 3.3: Dataset speci�cation �le for the demo dataset.range is the range for the attribute, a list of items of the form described in Section 3.1.The range for an attribute may optionally be followed by `#' and a comment describing theattribute.The speci�cation �le for the demo dataset is shown in Figure 3.3.Once you have created both Dataset.data and Dataset.spec, you should check that thetwo are legal and consistent using the dcheck command, which will verify that each case hasthe right number of attributes, and that they are in the speci�ed ranges. Note that missingvalues are allowed in Dataset.data only if they are listed as allowed in Dataset.spec. Acensored value for an attribute (speci�ed using `:') is allowed only if it includes at leastone possible value that is within the attribute's range. Note: The dcheck command is notimplemented yet.
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4 FROM DATASETS TO TASKSA dataset does not, by itself, de�ne a problem to be solved. To get a well-de�ned learningtask, we must specify additional information, such as what part of the data we are concernedwith, what we hope to predict about this data, and what contextual information is availableto assist learning. In the DELVE environment, these speci�cations have a hierarchical form,in which speci�city increases as we go from a dataset, to a prototask, to a task, and �nallyto a task instance.A prototask �xes only the most basic aspects of the learning task | just enough so that itmakes sense to compare the performance of various learning methods on the various tasksthat derive from the prototask. Speci�cally, a prototask will de�ne the following:� The subset of cases that a learning method is expected to handle.� The set of target attributes that the method is supposed to predict, and the set of inputattributes that it may refer to when making these predictions.A task is derived from a prototask by specifying the additional information required sothat each learning method will have a well-de�ned expected performance on the task, withrespect to some given loss function (see Section 5). In particular, to de�ne a task, we mustsupplement the speci�cations for the prototask by specifying the following:� The number of training cases in the training set that will be provided to the learningmethod, and (if applicable) whether this training set will be strati�ed by target value.� The prior information that the method may use to assist the learning.Note that expected performance is estimated using task instances, for which particular train-ing cases are speci�ed, as discussed in Sections 6 and 7.Speci�cations and other information relating to a prototask and its tasks are kept in a sub-directory associated with the prototask, located within the directory for the dataset. Someof the �les that may appear within such a prototask directory are listed in Figure 4.1.Summary A brief description of the prototaskPrototask.data Data relevant to the prototask, a subset of that in Dataset.dataPrototask.spec Speci�cations for the prototask and associated tasks, usually accessedusing the dinfo commandstd.prior The \standard" prior information for the prototaskPrior-1.priorPrior-2.priorPrior-3.prior 9>=>; Other speci�cations of prior informationFigure 4.1: Some �les that may appear within a DELVE prototask directory.26



4. FROM DATASETS TO TASKSPrototask: /demo/ageOrigin: artificialCases: allOrder: retainTest set size: 1024Training set sizes: 32 64 128 256 512Test set selection: hierarchicalMaximum number of instances: 8Inputs:# name c/u range description1 SEX u male female Sex of the person3 SIBLINGS u 0..Inf Number of siblings the person has4 INCOME u [0,Inf) The person's annual income (dollars)5 COLOUR u pink blue red green purpleThe person's favourite colourTargets:# name c/u range description2 AGE u [0,Inf) Age of the person in yearsTasks: std.32std.64std.128std.256std.512Figure 4.2: Output of the command: dinfo /demo/age.4.1 Speci�cations for prototasks and tasks: More on dinfoA supervised learning prototask is derived from a dataset by specifying the set of attributesthat are available for use as inputs, the set of attributes that constitute the targets tobe predicted, and any restrictions on the types of cases for which the learning method isexpected to work. It is possible to de�ne many prototasks based on the same dataset,involving di�erent sets of inputs, targets, and cases.Such prototask speci�cations are contained in �les named Prototask.spec in the prototaskdirectories. Usually, users will not look at such �les directly, however, but will instead viewthe information using dinfo. For example, the information displayed by dinfo for the ageprototask of the demo dataset is shown in Figure 4.2.The meaning of the prototask speci�cations displayed by dinfo is as follows:Origin: natural or cultivated or simulated or artificialThe origin of a prototask and the tasks derived from it is usually the same asthat of the dataset on which the prototask is based. For a natural dataset,however, there will generally be only one or a few natural prototasks, those27



4. FROM DATASETS TO TASKSthat were of actual interest to the original investigators. Any substantiallydi�erent prototasks that are based on the same natural dataset are classi-�ed as cultivated. In particular, all prototasks based on natural datasetsin which the e�ect of possible sequential dependencies among the cases hasbeen suppressed by random re-ordering are classi�ed as cultivated.Cases: all or no missing or �lenameThis speci�es which cases are to be included in the prototask. The specialstring all speci�es that all cases are included in the prototask. The stringno missing speci�es that all cases are included except those for which thevalues of one or more attributes used by the prototask are missing. Otherwise,the cases to include are listed in the given �le, as described in Section 4.4.Order: retain or �lenameThe order in which cases for the prototask are to be used in constructingtraining and test sets. The speci�cation may say to retain the order inDataset.data. Alternatively, the order may be as specifed in the given �le;often this is a �le called Random-order containing a random re-ordering ofcases. Section 4.4 for more details.Inputs: listA list of indexes or names for attributes of the dataset that the learningmethod is allowed (but not obliged) to use as inputs.Targets: listA list of indexes or names for attributes of the dataset that the learningmethod will attempt to predict.Test-Set-Size: sizeThe number of cases to be set aside for testing in the standard DELVE setof task instances.Training-Set-Sizes: listA list of sizes for the training sets for the standard DELVE set of tasksassociated with this prototask.Test-Set-Selection: hierarchical or commonSpeci�es how the test sets should de�ned for the standard set of task in-stances. In the heirarchical scheme test sets for the di�erent instances aredisjoint; in the common scheme the same test set is used for all task instances.See Section 6 for further details.28



4. FROM DATASETS TO TASKSMaximum-Number-Of-Instances: numberSpeci�es the maximumnumber of task instances used in the standard DELVEscheme. This upper limit is used to prevent a very large number of instancesbeing generated for the tasks with small training sets.Note that the last four items above are not, strictly speaking, speci�cations for the prototask,but rather for the standard set of tasks and task instances that DELVE de�nes for theprototask.Attributes in the Inputs: and Targets: list may be identi�ed by number, starting with`1' for the �rst attribute in the dataset, or by name. An additional attribute, identi�ed by`0', is allowed for datasets with an informative order; its value is the index of the case in theoriginal ordering, starting with one for the �rst case. (This index attribute is usually not anappropriate input, but provision for its use is included for completeness.) Note: Attribute`0' is not yet supported by the implementation.The ordering of cases in a prototask determines which cases will make up the training andtest sets of the various task instances for the standard DELVE set of tasks. Most typically,we will want this ordering to be random, to ensure that cases are e�ectively independent(even if, in reality, there were dependencies between cases as originally ordered). This can beensured by using a random re-ordering, though one can also choose to retain the orderingif it is certain that the original ordering is random (as will often be the case for simulatedor arti�cial datasets).When the dataset is in an informative order, one may instead de�ne a sequential prototask,in which this order is retained. To avoid certain complications, sequential prototasks arenot allowed when the cases also have commonality indexes. In order to allow an appropri-ate selection of training and test sets, the prototask speci�cation must include a maximumrange over which there may be non-negligible sequential dependences that are relevant tothe supervised learning task. Note that this may be less than the range over which thereare dependencies in the input attributes, as it is only dependences in the noise in the rela-tionship between inputs and targets that are relevant. This maximum range should be seton the high side, to ensure that the performance assessments are not biased. A sequentialprototask should not be de�ned if it is thought that the range of relevant dependencies maybe comparable to the number of cases available. Note: Sequential prototasks are not yetsupported by the implementation.4.2 The size and nature of the training set for a taskPotentially, a researcher might wish to assess the the performance of learning methods ona task with any number of training cases, up to the maximum that is feasible given thenumber of cases in the dataset. It is unrealistic, however, to expect all researchers to testtheir methods on training sets of all possible sizes. DELVE therefore de�nes a relatively29



4. FROM DATASETS TO TASKSsmall set of training set sizes for each prototask, which we hope will be adequate for mostpurposes.The smallest standard training set size is chosen to be the smallest that the designer of theprototask believes might be su�cient for a learning method to learn something interesting.The larger standard training set sizes are bigger than this smallest size by powers of two, upto a maximum size limited by the need to reserve an adequate test set.For non-sequential prototasks with a single target taking values from a �nite set, DELVEalso provides the option of specifying that the training set for a task should be strati�edby target value | that is, that the training set will contain equal numbers of cases witheach target value. The size of a strati�ed training set must be a multiple of the number oftarget values. Strati�cation is natural in applications such as handwritten digit recognition,for which training data would often be collected in a fashion that ensured that there wereequal numbers of cases for each digit. The expected performance of a task with a strati�edtraining set will be based on a distribution of test cases in which all values of the target areequally likely. Note: Support for strati�cation is not yet implemented.4.3 Prior information available for a taskLearning can be (some would say, must be) assisted by the provision of prior informationabout the relationship to be learned. For real applications, all available prior informationshould be used to improve performance, to the extent that it can be accommodated by thelearning method. But for research into the performance of learning methods, it is not desir-able for each researcher to employ whatever prior knowledge they may happen to have aboutthe problem, as the results obtained by di�erent researchers would then not be comparable.Each DELVE task speci�cation therefore includes an explicit speci�cation of the prior infor-mation that is to be regarded as available for use by a learning method. Researchers whohappen to know something about the real-world context of the problem beyond what is spec-i�ed should not use such additional information to improve the performance of their learningmethods. Indeed, if they happen to know that some of the prior information speci�ed forthe task is incorrect, they should still use this information as if they believed it to be true,despite any bad e�ects this might have on performance. (They could, however, create a newprior speci�cation that reects their knowledge, and apply their method to tasks based onthis new prior.)Although prior information for real tasks can take many forms, DELVE supports only priorinformation that is speci�ed in the semi-formal form described below. Most of this priorinformation is associated with the various input and target attributes for the prototask,and is used to determine the default encodings of attributes, as discussed in Section 7.3. Alearning method that uses the default encodings will therefore implicitly be making use ofthe prior information. A learning method may employ some other way of selecting encodingsbased on the prior information, however, and may also use prior information in other ways.30



4. FROM DATASETS TO TASKSTask: /demo/age/std.128Training set size: 128Inputs:col attr name type relevance def coding options1 1 SEX binary nlmh -1/+1 -2 3 SIBLINGS integer nlmh nm-abs -3 4 INCOME real nlmh nm-abs -4 5 COLOUR:pink nominal nlmh 1-of-n -5 5 COLOUR:blue ...6 5 COLOUR:red ...7 5 COLOUR:green ...8 5 COLOUR:purple ...Targets:col attr name type noise-lev def coding options1 2 AGE real nlmh nm-abs -Figure 4.3: Output of the command: dinfo /demo/age/std.128A prototask will typically come with a \standard" prior speci�cation, stored in the �lestd.prior, which generally will be fairly unspeci�c (eg, will be vague about how relevantthe various inputs are). Other speci�cations of prior information may also be de�ned, storedin other �les ending in .prior. A learning task within a prototask is speci�ed by givingboth the name of a prior speci�cation and the number of training cases used, for instance,std.128. The prior for a task can be viewed using dinfo, as illustrated in Figure 4.3. Theoutput also shows the default encodings derived from this prior information, as explained inSection 7.3.Note that the explanations of prior speci�cations given below are meant only as rough guidesto their meanings. The precise, quantitative representation of prior knowledge is, after all, atopic for ongoing research in learning. Note also that none of these prior speci�cations shouldbe taken as indicating absolutely certain knowledge; they mean only that it is consideredvery likely that the true situation conforms to the speci�cation.Noise in targets. The amount of inherent noise that is thought to a�ect the values of atarget is speci�ed using one or more of the characters `N', `L', `M', and `H', representing no,low, medium, or high noise. If more than one character is speci�ed, the amount of noise isuncertain. For example, a speci�cation of `NLM' indicates that there might be no noise atall, or there might be a low or medium amount of noise, but it is thought that there is nota high amount of noise.If a target is noise-free, its value will be the same in all cases where the input attributes arethe same. This does not imply that the target can be always be predicted with certaintyon the basis of information from a �nite training set, since there may be no training casewith inputs that match a particular test case. It means, rather, that it would be possible topredict the target with certainty if we had enough training data. For many prototasks, the31



4. FROM DATASETS TO TASKSinputs will be di�erent for every case that is actually available, so that the characterizationis hypothetical in nature (as is the case below as well).A real-valued target is said to have a low amount of inherent noise if the spread in thedistribution of target values over cases where the inputs are all the same is roughly 1% orless of the spread of target values for all cases. For a target with a medium amount of noise,the spread for particular values of the inputs is roughly 10% of the overall spread. For targetswith a high amount of noise, the �gure is substantially higher, perhaps approaching 100%.Here, the spread is assumed to be measured in a unit such as standard deviation, but theterm is left deliberately vague, as it could be, for example, that the standard deviation is notde�ned for a target that takes on occasional extreme values. The intent is that the rough�gures of 1% and 10% should be interpreted with respect to some intuitively appropriatenotion of spread.For discrete targets, a low amount of noise means that the target value di�ers from that whichis most common for the given inputs about 1% or less of the time, with the corresponding�gure for medium noise being about 10%, and for high noise something substantially greaterthan that.Note: At present, the noise level speci�ed does not a�ect the default encoding, but this maysoon change. For the moment, it is probably best to always specify a noise level prior of`NLMH', as it is expected that the default coding with this speci�cation will not change inthe future.Dependencies between cases. For a sequential prototask, or a prototask based on adataset containing cases with commonality indexes, the prior speci�cation for a task mustinclude information on the anticipated strength of any dependencies between cases withthe same commonality index, or which are close to each other in sequential order. Thisspeci�cation will consist of one or more of the characters `N', `L', `M', and `H', representingthe possibility of no, low, medium, or high dependencies.If there is a high degree of dependence between such cases, knowing the true target for onecase would, if the true nature of the relationship were known, permit one to predict thetarget in another case that is nearby, or has the same commonality index, with an accuracythat is better than would be possible without knowing the true target for such anothercase, by a factor of around 100 or more (in terms of some intuitively appropriate measureof \spread" such as discussed above for noise levels). For a medium degree of dependence,the corresponding factor would be around 10, and for a low degree of dependence, much less(perhaps around 2). If there is \no" dependence, very little or no improvement in predictionswould be possible from knowing the true target in another case that is close in sequentialorder, or that has the same commonality index.For a sequential prototask, the maximum range over which it is thought that non-negligibledependencies may occur will also be speci�ed as part of the prior information. This maximumrange will often be the same as that speci�ed in the prototask speci�cation, but might di�erif the e�ect of changing this aspect of the prior information is being investigated. Note that32



4. FROM DATASETS TO TASKSit is possible for dependencies to persist over a long range even if the magnitude of thesedependencies is low. It is usually reasonable, however, to expect that the strength of thedependencies will likely decline at least somewhat with increasing range, even before themaximum is reached.Note: These prior speci�cations regarding dependencies between cases have not yet beenimplemented.Relevance of inputs. The degree of relevance that an input attribute is thought to possessis speci�ed using one or more of the characters `N', `L', `M', and `H', representing no, low,medium, or high relevance. If more than one character is speci�ed, this indicates thatthe degree of relevance is uncertain, except that it is likely to be in one of the categoriesmentioned.The meaning of degree of relevance can be explained in terms of the variation in targetvaluess, after the component of the variation due to inherent noise is eliminated. An inputis considered to be of high relevance if as it varies over the range of values that may actuallyoccur in combination with the other input values (which are kept �xed), the target attributesoften vary over close to their full range (discounting variation that is due to inherent noise).The e�ects of some inputs may depend on the values of other inputs. To be consideredhighly relevant, it is not necessary that the input always have a big e�ect; only that it doesso in many of the cases. Note the mention above of the range of values for the input thatactually occur in conjunction with the other inputs. It may sometimes be known that aninput would have a big e�ect if it were to take on an extreme value, but this does not makethe input highly relevant unless such extreme values are likely to actually occur.An input is considered to be of medium relevance if it can have a somewhat smaller e�ect onthe targets | say, changing them by about 10% of their range. Variation in inputs of lowrelevance might a�ect the targets to the extent of about 1% of their range. Inputs of \no"relevance have substantially less e�ect (perhaps none).Learning methods may use prior information about relevance in various ways. A Bayesianmethod might use this information to set up a prior distribution for model parameters.A method prone to \over�tting" might reduce the number of model parameters when thetraining set is small by looking only at inputs thought to be highly relevant .Note: At present, the relevance speci�cation does not a�ect the default encoding, but thismay soon change. For the moment, it is probably best to always specify a relevance prior of`NLMH', as it is expected that the default coding with this speci�cation will not change inthe future.Binary attributes. An input or target attribute that takes on only two possible values(not counting missing values) can be speci�ed to be either symmetric or active-passive.For a symmetric binary attribute, nothing is known about the two possible values that wouldjustify treating one di�erently from another. The actual signi�cance of the two values maybe quite di�erent, however | we just have no prior knowledge of which way around the33



4. FROM DATASETS TO TASKSe�ects might go.For an active-passive attribute, one of the two values is speci�ed to be passive; the other isthen active. Exactly what this means will depend on the problem; the general concept isbest de�ned by an example. In a medical diagnosis task, binary input attributes indicatingwhether the patient has fever, chest pain, and yellow toenails are active-passive, with thepresence of the symptom being the active value. We expect that the presence of such asymptom will have speci�c diagnostic implications, pointing to a relatively small class ofdiseases. In contrast, the absence of fever does not in itself suggest a diagnosis. For a binarytarget, the \passive" value is considered to be the \default", though this does not necessarilymean that it occurs more often than the \active" value.What, if anything, the distinction between symmetric and active-passive attributes shouldmean for the proper treatment of binary inputs and targets is a matter for researchers devel-oping learning methods to judge. However, the default DELVE encodings (see section 7.3)do treat symmetric inputs symmetrically, and active-passive inputs asymmetrically.Categorical attributes. An input or target attribute that takes on a �nite number ofpossible values (three or more, not counting missing values) may be speci�ed to be nominalor ordinal. This distinction a�ects the default encoding of the attribute, as discussed inSection 7.3.The values of a nominal attribute are signi�cant only in that they are distinct from oneanother, except that one of the values may optionally be singled out as the passive value.The meaning of such a passive speci�cation is analogous to that described above for binaryattributes.The values of an ordinal attribute have a de�ned ordering, which must be speci�ed, if itdi�ers from the order in which the possible values are listed in the dataset speci�cation.The �rst value in this ordering may optionally be speci�ed to be passive. Note: There iscurrently no way of overriding the ordering of attribute values in the dataset speci�cation.Real-valued attributes. Currently, no speci�c prior information pertaining to real-valuedattributes is recorded, other than the noise level and degree of relevance, as discussed above.Formal speci�cation of prior information regarding promising transformations of real-valuedinput and target attributes may be allowed in future. The expected degree of smoothnessin the relationship between a real-valued input attribute and the targets might also beuseful prior information, but this also has not been standardized. In the absence of suchinformation, it is appropriate to assume that relationships are often smooth, or at leastcontinuous, but that discontinuities are not impossible.Integer attributes. At present, no special special prior speci�cations are de�ned for integerattributes. The relevance and noise level priors apply, however.Angular attributes. Numeric attributes interval can be speci�ed to be angular. Theseattributes are thought to have a circular meaning, for which all that matters is the modulusof the value with respect to some unit. For instance, a attribute giving the time of day could34



4. FROM DATASETS TO TASKSbe considered to be angular, with a modulus of 24 hours.Angular attributes are by default encoded in terms of the sine and cosine of the angle theyde�ne (see Section 7.3). This representation respects the assumed continuity as values wraparound.4.4 De�ning prototasks: The dgenorder and dgenproto commandsBefore a new dataset can be used to assess learning methods in DELVE, at least one prototaskmust be de�ned for it. Researchers may also wish to de�ne new prototasks for existingdatasets. This section describes how to do these things, as well as the approach taken inde�ning the standard DELVE prototasks.The purpose of de�ning a prototask is to support interesting experiments, which say some-thing signi�cant about the learning methods that are assessed. For some datasets, suchinteresting prototasks may need to have special features. For example, if a potential inputattribute is very highly correlated with a target attribute, it may be best to leave it out ofthe allowed set of input attributes, in order to prevent the prototask from being so easy thatit is uninteresting. If the inputs in a few cases di�er greatly from those in the other cases,it might be of interest to de�ne a prototask that excludes cases with these extreme inputs,in order to assess learning methods that do not purport to handle such extrapolation well.The documentation for a prototask with unusual features should include a statement of theresearch questions the prototask is meant to address, and a justi�cation for its speci�cationsin terms of these objectives.Most standard DELVE prototasks are de�ned with no specialized objectives in mind, how-ever, and include all attributes and all cases. Complications due to missing data arise fairlyoften, however. Since many of the supervised learning methods we would like to assess donot naturally handle missing data, we hope to obtain a good collection of DELVE prototasksin which the values of input attributes are never missing. We expect that this will requirecreating some such prototasks by excluding a few input attributes whose values are missingin many cases, or by excluding a few cases for which the values of one or more attributes aremissing, or by doing a bit of both.The designer of a prototask decide how to deal with any dependencies between cases thatmay be present. We take two approaches to this for the standard DELVE prototasks. Forsome prototasks, we accommodate the dependencies in a proper fashion (or rather, we willdo so once the required facilities are implemented). In particular, we ensure that there areno signi�cant dependencies between training and test cases, as this would invalidate theresults. Other times, however, we instead circumvent sequential dependencies by randomlyreordering the dataset. This second approach allows us to de�ne tasks for which ignoringdependencies gives internally consistent results, although such tasks no longer correspond toreal-world situations. 35



4. FROM DATASETS TO TASKSPrototask.spec std.priorCases: all 1 NLMH binaryInputs: 1 3 4 5 3 NLMH integerOrder: retain 4 NLMH realOrigin: artificial 5 NLMH nominalTargets: 2 2 NLMH realTest-Set-Size: 1024Training-Set-Sizes: 32 64 128 256 512Test-Set-Selection: hierarchicalMaximum-Number-Of-Instances: 8Figure 4.4: Prototask speci�cation (Prototask.spec) and standard prior speci�cation (std.prior)for the age prototask of the demo dataset.When a non-sequential prototask is de�ned it is recommended that the cases always be ran-domly re-ordered, unless it is known for certain that the existing order is random. Certainlythis must be done if the ordering is informative, or is sorted by some attribute value. Itshould also be done even if it is thought that the order is arbitrary, in order to providegreater certainty that assessments based on the assumption of no sequential dependence willbe internally valid. When cases have commonality indexes, this random re-ordering mustkeep cases with the same index grouped together (in random order), while randomly orderingthe groups themselves.To create a prototask, you �rst must create a directory for the prototask within the DELVEhierarchy. This directory must have the same name as the new prototask, and be locatedwithin one of the directories for the dataset in the DELVE hierarchy. Within this proto-task directory, you must create a Prototask.spec �le, containing the speci�cations for theprototask and the standard set of tasks associated with it, and also one or more �les contain-ing prior speci�cations, usually including std.prior, which contains the \standard" priorinformation.These �les have formats paralleling the output of dinfo for a prototask and for a task. A.prior �le should have one line per attribute, specifying the attribute number, the noiselevel or relevance prior, the type of the variable, and any additional options. For example,the line for a nominal attribute, numbered 2, thought to be of at least medium relevance,and which has a passive value of none, would be be2 MH nominal passive=noneAn angular attribute must be accompanied by a unit=modulus speci�cation.The Prototask.spec and std.prior �les for the /demo/age prototask are shown in Fig-ure 4.4.The /demo/age prototask includes all cases in the dataset. Another built-in option isno missing, which speci�es that all cases should be included except those for which one or36



4. FROM DATASETS TO TASKSmore of the attributes used in the prototask are missing. One can also give for Cases thename of a �le that contains an explicit list of case numbers to include, one case per line,with numbers starting at one. The order of lines in this �le does not matter. This case �leshould be located in the DELVE hierarchy, within the prototask directory.The order for the /demo/age prototask is speci�ed as retain. This prototask is non-sequential, but the data is arti�cially generated in a fashion that guarantees that the originaldata �le is in random order. For a natural or cultivated dataset, one would normally ran-domize the ordering explicitly (assuming that the prototask is not meant to be sequential).One does this by specifying a �le that contains such an ordering. This �le must be locatedin the DELVE hierarchy, within the prototask directory. The order �le should have one lineper case, with each line containing the index of a case. Indexes start at one, and go up tothe number of cases that are used in the prototask. Note that if any cases were left out ofthe prototask, these will not be the indexes of the cases in Dataset.spec.Most often, this ordering �le will be called Random-order, and will be generated automati-cally using the dgenorder command. This command will also take care of the complicationsinvolved in handling commonality indexes. Or at least it will once commonality indexes havebeen properly implementedAnother command that you will often wish to use after creating a new prototask is dgenproto,which creates the intermediate �le Prototask.data, containing the portion of Dataset.datarelevant to this prototask. This intermediate �le will be created \on-the-y" by other com-mands, as needed, but creating a single permanent copy will save time. You will also want touse the dcheck command, in order to check that the prototask speci�cations are consistentwith the dataset speci�cations.Here is how you would go about creating a non-sequential prototask for a natural dataset:unix> cd dataset # Change to a delve directory for the datasetunix> mkdir prototask # Create a directory for the new prototaskunix> cd prototask # and change into itunix> edit Prototask.spec # Create the prototask specification fileunix> edit std.prior # Create the standard prior specificationunix> dcheck # Check that it's all consistentunix> dgenorder # Generate the Random-order fileunix> dgenproto # Generate the Prototask.data fileThe dgenproto step is optional, but usually advisable; if it is done, it must be afterdgenorder has been done. For a simulated or arti�cial dataset, where the cases are al-ready in random order, the ordering would usually be retain, and the dgenorder stepwould be omitted. Note: The dcheck command is not implemented yet, so you will have toleave out that step at present. 37



5 PREDICTIONS AND LOSS FUNCTIONSTogether, the speci�cations for a prototask and for one of its tasks determine what is tobe learned and what information will be available on which to base learning. To completethe speci�cation of a learning problem, we need to say what form the output of a learningmethod should take, and how the performance of a method on a task will be judged.DELVE supports assessments only of the predictive performance of learning methods | thedegree to which the relationships learned can be used to predict attributes in previouslyunseen cases. For this purpose, the relevant output of a supervised learning method is aset of predictions for the target attributes in a set of test cases for which only the inputattributes are known. The accuracy of these predictions is judged by how well they matchthe actual values of the targets, as measured by some loss function.For some methods, learning, making predictions, and judging the loss from these predictionsmay be sequential activities, with the nature of the predictions required having no e�ecton the learning itself, and with the loss function by which these predictions will be judgedhaving no e�ect on the predictions themselves. In general, however, this need not be so. Alearning method may be designed to behave quite di�erently depending on the predictionsthat it will be required to produce, or on the loss function by which these predictions willultimately be judged.5.1 Types of predictionsDELVE expects learning methods to produce predictions in the form of either guesses orpredictive distributions. A real application might require either type of prediction, and manylearning methods will be able to produce predictions of both types.A guess for a target in a test case is a value of the same type as the target itself | thatis, if the target is categorical, the guess will be one of the possible target values, and if thetarget is numerical, so will the guess be (though a guess for an integer target need not bean integer). If there is more than one target attribute, a separate guess is made for eachtarget. One might sometimes wish to allow a learning method to decide to make no guessfor a target (at a penalty); provisions for this are described in Section 5.3.The accuracy of a guess is judged by a loss function that measures how close the guess is tothe true value, as described below in Section 5.2.A predictive distribution is a probability distribution for the targets in a test case, conditionalon the known values of the inputs for the test case. In theory, a learning method thatproduces predictions of this form should output a complete representation of the predictivedistribution for each test case. Given this distribution and the actual value, a loss couldthen be computed using one of the loss functions described below (Section 5.2).38



5. PREDICTIONS AND LOSS FUNCTIONSHowever, the predictive distribution for a target produced by a learning method could bearbitrarily complex (at least for real-valued targets). When there is more than one target,the predictive distribution might in general involve dependencies between targets. Due tothe di�culty of de�ning a standard representation for predictive distributions that is bothconvenient and su�ciently general, DELVE does not require learning methods to actuallyoutput their predictive distributions. Instead, the computation of the loss based on thepredictive distribution and the actual target values is left for the learning method itself tocompute, using its internal representation of the predictive distribution.Tasks with a single categorical target are an exception to this general procedure. In this caseonly, a learning method may output an explicit representation of the predictive distributionfor each test case, as described in Section 7.5, leaving the computation of losses to DELVE.This is in fact the preferred procedure, since it makes the predictive distributions availablefor examination, and avoids the possibility that the learning method will compute the lossesincorrectly.5.2 Standard loss functions supported by DELVEThe accuracy of a prediction for a test case is measured by a loss function, which takes twoarguments: The prediction output by the method for a particular test case, and the truevalues of the targets for that case. The value of the loss function is a single real number thatrepresents the \loss" su�ered when the given prediction is used in a situation where the truevalues of the targets are as given.Note that the loss function is de�ned in terms of a single test case, not a set of test cases.The goal of prediction is to minimize the expected value of this loss on a test case that israndomly drawn from the distribution of cases de�ned for the prototask. In assessing theperformance of a method, we will of course use test sets with many cases, taking the averageloss over many test cases as an estimate of the expected loss on a single test case.The loss function for an actual application might sometimes be quite complex and specialized.DELVE does not attempt to assess methods for producing predictions in such a context, butconcentrates instead on a predictions that will be judged using a few simple loss functions.These loss functions have been selected because they are already in common use, and becausethey emphasize somewhat di�erent aspects of predictive performance. The performance ofa learning method with respect to these standard loss functions can be compared to that ofthe many other methods that will have been assessed with the same loss functions. Morespecialized loss functions may be of interest for some prototasks, however, and DELVE doesprovide some support for them, as is described in Section 5.3.Each of the standard loss functions has a one-letter abbreviation. This abbreviation is usedto specify a loss function, and occurs in the standard names for �les holding predictions andlosses on a task instance, as is described further in Section 7. The standard loss functionsare summarized in Figure 5.1. 39



5. PREDICTIONS AND LOSS FUNCTIONSabbrev. categorical? integer? real? angular?For guesses:Squared-error loss S p pAbsolute-error loss A p p0-1 loss Z p pFor predictive distributions:Log-probability loss L p p p pSquared-probability loss Q pFigure 5.1: Standard loss functions, their abbreviations, and the types of targets for which theycan be used.For predictions that take the form of guesses, the standard loss functions are all based on a\distance" of some kind between a guess and the true value of a target. For tasks with morethan one target, the total loss is simply the sum of the losses based on the distance of eachtarget guess from the true target value.For guesses of targets that take on integer or real values, DELVE supports two loss functions,based on squared and absolute distance. The squared-error loss is the square of the di�erencebetween the guess and the true target value. Those who take a probabilistic approach tolearning should note that the expected squared-error loss is minimized by guessing the meanof the predictive distribution for the target. The absolute-error loss is the absolute value ofthe di�erence between the guess and the true target value. The expected absolute-error lossis minimized by guessing the median of the predictive distribution.For guesses of integer and categorical targets, DELVE supports 0-1 loss, in which the lossis zero if the guess is correct, and one if it is incorrect. The optimal strategy for minimizing0-1 loss is to guess the target value with greatest probability (the mode of the predictivedistribution).DELVE does not currently support any loss functions for guesses of targets that take onangular values. There is also no provision for using di�erent loss functions for the varioustargets in a case.For predictions that take the form of a predictive distribution, one may use log probabilityloss, which is minus the log (to base e) of the probability or probability density of the truetarget values under the predictive distribution. Log probability loss may be used with targetsof any kind. Note that if all targets are integer or categorical, the predictive distribution willconsist of probabilities for the various combinations of target values. If instead the targetsare all real or angular, the predictive distribution will take the form of a probability density(which must be �nite if log probability loss is to be used). If some targets are integer orcategorical and others are real or angular, the log probability loss will be computed from thehybrid probability/density of the true target values.Squared-probability loss may be used with predictive distributions for a single categoricaltarget. In this case, the prediction takes the form of a list of probabilities, p1; : : : ; pn, for40



5. PREDICTIONS AND LOSS FUNCTIONSthe possible target values, which are labeled 1 to n, with t being the true target value forthe case in question. (As mentioned in Section 5.1, in this case only, the learning methodmay produce the predictive distribution explicitly.) The squared probability loss is thesquare of one minus the probability assigned to the true target value, plus the squares of theprobabilities assigned to all the other possible target values | that is, (1�pt)2 + Pi 6=t p2i .Note that the expected value of both the log probability loss and the squared probabilityloss is minimized by a distribution matching the true probabilities. The log probability losswill be in�nite if the probability or probability density for the true target is zero, but thesquared-probability loss is never greater than two.5.3 Using a specialized loss functionNote: The facilities described in this section have not yet been implemented.In addition to the standard predictions and loss functions described above, DELVE supportsspecialized predictions in which guessing is optional, and specialized loss functions de�nedby an arbitrary loss matrix. These facilities are intended for use with natural prototasksthat come from application areas where such specialized predictions and loss functions areappropriate, or with cultivated or synthetic prototasks that are intended to mimic suchactual applications. For example, an automatic postal code recognition system may havethe option of referring hard-to-recognize postal codes to a human worker, and in a medicaltesting application, we might wish to treat a false positive as less serious than a false negative.Guessing can be made optional by specifying a no-guess penalty, which is the loss su�eredwhen the learning method decides to make no guess | presumably because the method is souncertain of the value of the target that it expects the loss produced with its best guess tobe greater than the no-guess penalty. This form of prediction and loss function is speci�edby appending the value of the no-guess penalty followed by \N" to the abbreviation of anyof the loss functions for guesses in Figure 5.1. For example, \Z0.2N" speci�es 0-1 loss witha penalty of 0.2 for not making a guess.A non-standard loss function for guesses of a single categorical target can be speci�ed bymeans of a loss matrix, in which the loss for every possible combination of a guess and atrue value for the target is explicitly speci�ed, with the restriction that the losses must benon-negative, and be zero when the guess is correct. A loss for making no guess may alsobe speci�ed, separately for each true target value.Use of a loss matrix is speci�ed by giving \M" followed by a �le name wherever you wouldotherwise use an abbreviation for a standard loss function. This �le should be located in thedata part of the DELVE hierarchy, in the directory for the corresponding prototask. The�le should contain as many lines as there are possible values for the target attribute, plusone additional line if the method is to be allowed to make no guess. The lines correspondto possible guesses, according to the ordering of possible attribute values in the dataset41



5. PREDICTIONS AND LOSS FUNCTIONSspeci�cation. Each such line should contain numerical values for the losses su�ered for eachpossible true value of the target, again in the order given by the dataset speci�cation.
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6 SCHEMES FOR LEARNING EXPERIMENTSTasks are su�ciently well-de�ned that each learning method has a well-de�ned expectedperformance on each task, which is the expected value of some speci�ed loss function on arandomly selected test case, when using the predictions produced by the learning methodbased on the given prior information and a random training set of the speci�ed size. Wedo not, and never will, know this expected performance exactly, but we can estimate theexpected performance by performing experiments in which we apply the learning method toseveral task instances, each of which has a particular set of training cases, and a particularset of test cases.There are many possible schemes for de�ning task instances, with di�erent advantages anddisadvantages. This section describes the standard schemes used in DELVE, and discusseswhy we chose this scheme for experiments.6.1 Issues in designing learning experimentsFor research purposes, we are usually interested not so much in the numerical value ofthe expected loss for a method applied a task, but rather in the relative performance ofseveral learning methods on the same task. Such performance comparisons can be donemore accurately if the various performance estimates are all based a common set of taskinstances, in which the training and test sets contain the same cases.The statistical bene�ts of such a common set of task instances are discussed further inSection 8. In this section, we describe the standard scheme used in DELVE to de�ne acommon set of task instances for each task. This scheme has been designed not only toallow for good estimates, and an indication of their accuracy, but also to limit the number oftask instances, and hence the number of times that a learning method must be applied to atraining set in order to obtain a performance estimate for a task. Minimizing the number ofapplications is important if sophisticated learning methods are to be evaluated, which may,at least in early stages of research, be computationally intensive. It is even more importantfor learning methods that involve decisions made by a human analyst. In order to achievethese goals, we have been willing to forgo the use tasks based on small datasets, as we believethat any research questions that these datasets might be useful in answering can equally wellbe addressed using larger datasets.Two di�erent situations arise depending on whether we are dealing with real or syntheticdatasets. For real datasets the number of available cases is often a limiting factor, andit therefore seems best to use large a single common test set for all instances | what isreferred to in DELVE as a common testing scheme. On the other hand, if we are dealingwith synthetic data, it is usually possible to generate an unlimited amount of data for testing,and in this case the limiting factor will be the disk space needed to store the prediction andloss �les for all the applications of methods to task instances. In this case it seems more43



6. SCHEMES FOR LEARNING EXPERIMENTSpro�table to use disjoint test sets for di�erent instances, allowing a much larger number oftest cases in total for a given amount of disk storage. This is what we call the hierarchicaltesting scheme.The standard DELVE schemes for de�ning task instances are certainly not the only possibleways of estimating expected performance, however. Some researchers may prefer to usesome other scheme, such as leave-one-out cross-validation. One may also wish to evaluatethe performance of a new method on exactly the same task instances as were used to evaluatesome older method. For these reasons, we allow users to specify non-standard task instances,which will enable them to perform such evaluations using the DELVE facilities described inSection 7. Note: This facility isn't implemented yet, however.6.2 DELVE's standard set of task instancesIn the standard set of tasks for each prototask, the training set size is one of a series ofnumbers that di�er by factors of two. The designer of a prototask based on some datasetmight, for example, have speci�ed standard tasks with training set sizes of 20, 40, and 80.The same range of training set sizes, and the same actual training and test sets, are used forall speci�cations of prior information, and for all loss functions. The designer of a prototaskalso speci�es how many cases should be reserved for use in testing.To obtain the standard set of task instances that go with a task, DELVE �rst reservesthe speci�ed number of cases for use in testing. Training sets of the desired sizes are thenobtained by successively dividing the set of remaining cases (whose number will usuallyhave been arranged to be a multiple of the largest standard training set size). In the aboveexample, suppose that the prototask was applicable to 500 cases in the dataset. We couldreserve 340 cases testing, leaving 160 cases for inclusion in training sets. For the task witha training set of size 80, this allows for two task instances, obtained by partitioning the 160cases not in the test set into two subsets. Similarly, four instances can be created of the taskwith a training set of size 40, obtained by dividing each of the training sets of size 80 in half,and eight instances of the task with 20 training cases, obtained by subdividing the 40-casetraining sets yet again. (It would also be possible to de�ne a single instance of a task with atraining set of size 160, but with only a single training set, no empirical assessment could bemade of the variability of performance on this task with respect to random choice of trainingset.)In the above example, the generation of test sets for each task instance would depend onthe type of Test-Set-Selection speci�ed for the prototask, as explained in the previoussection. If the Test-Set-Selection is common then all test cases will be included in a singlecommon test set, used for every instance. If the Test-Set-Selection is hierarchical thenthe test cases will also be divided into smaller disjoint subsets, one for each instance of aparticular size.The successive partitioning described above is performed using the order of cases as de�ned44



6. SCHEMES FOR LEARNING EXPERIMENTSin the prototask speci�cation. For prototasks without any complications, the test set consistsof the �rst so-many cases in this ordering, and the training sets are taken from the later partof the ordering. The training sets of di�erent sizes are obtained by successively dividing thefull set of potential training cases into contiguous blocks. Recall that the ordering of caseswill be random unless the prototask is intended to be sequential.The above scheme becomes a bit more complicated if the the prototask has special features.For a sequential prototask, a gap of unused cases will be left between the cases used fortesting and those used for training. The size of this gap will be the maximum range ofdependencies given in the prototask speci�cation. For data with commonality indexes, theordering will group cases with the same commonality index together, and a gap will be leftif necessary to ensure that no cases used for testing have the same commonality index as acase in some training set. These provisions to eliminate dependencies between the trainingand test sets are needed for the performance on the test set to be a faithful indication ofreal performance. Note, however, that for sequential prototasks and for prototasks wherethere are commonality indexes, there may still be dependencies between the training sets fordi�erent instances of a task (though we try to avoid this with commonality indexes). Thiscould reduce the accuracy of the performance estimates, but does not introduce any bias.The provisions in the above paragraph have not been implemented yet. Special provisions willalso be needed to handle tasks whose training sets are speci�ed to be strati�ed.6.3 Using non-standard task instancesThe facilities in this section have not been implemented yet.A non-standard task instance (perhaps for a task with a non-standard size of training set)can be speci�ed by giving an explicit list of the indexes of the cases making up the trainingand test sets. These indexes are with respect to the ordering of the original dataset, butmust be among those included in the prototask.For a sequential prototask, the list for the training set must be a sub-sequence of the prototaskordering, and the test cases must be further from the training cases than the maximumrangeof dependencies speci�ed for the prototask. It is the user's responsibility to ensure that themanner in which cases were selected for the training and test sets is valid in other respects.
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7 ASSESSING A LEARNING METHODThis section and the following explain the details of how to use DELVE to assess learningmethods. We start here with guidelines on documenting your method, and then discuss howyou can apply your method to a set of task instances.The information relating to a method and its application various tasks is organized into �lesand directories in the methods part of the DELVE hierarchy. This organization is illustratedin Figure 1.1, and some of the �les involved are listed in Figure 7.1 below.7.1 Documenting the method to be assessedAn essential part of reporting results for a learning method is to document, as precisely aspossible, what the method actually does. These descriptions should be detailed enough toallow someone to implement the method from the description and get results similar to thosereported. The description should include a speci�cation of how data should be encodedfor use by this method, on the basis of the available prior information. Without such aspeci�cation, it is unclear how the method would be applied to a new task. If the methoduses DELVE's default encodings, you can just say that. The description for a method shouldalso specify such matters as how to decide when an optimization procedure has converged.You can get an idea of the level of detail required in documentation by looking at the existingdocumentation in the methods directory.Precise speci�cation of what a learning method does is easiest if the method is fully auto-matic. However, there may be situations when it is undesirable to formulate fully automaticSummary A brief description of the methodSource A sub-directory with �les that document the method, and perhapsprograms that implement itdataset/prototask/task A sub-directory holding results for one task, with �les such as:Test-set-stats Statistics from the test data used to standardize lossesCoding-used The attribute encoding that was used to generate the data �lesnormalize.n Normalization constants from training data for instance ntrain.n Training data (inputs and targets) for instance ntest.n Test inputs for instance ntargets.n Test targets for instance ncguess.n Coded guesses for test targets for instance nguess.n Uncoded guesses for test targets for instance nloss.S.n Squared error losses produced using the guesses for instance nFigure 7.1: Some �les and sub-directories that may appear within a DELVE methods directory.46



7. ASSESSING A LEARNING METHODmethods. In these cases, careful descriptions of the heuristics used, together with examplesof the human choices made on sample tasks may be useful. Since our overall goal is toevaluate how well learning methods can be expected to work on novel tasks, when appliedby people who are not necessarily the designers of the learning method, the proper approachto assessing a non-automatic method would be for the developers of the method to get otherpeople to apply the method following their documentation. This method of evaluation mayperhaps be too cumbersome in practice, but it is useful to keep in mind while documentinga non-automatic learning method.In many cases it may be a good idea to supply the source of a computer implementationas a part of the documentation, since the program itself may be able to resolve importantdetails of the methods. One should not consider cryptic computer code to be a substitutefor an intelligible description, however.It is also useful to include some rough estimates of the computational costs associated withapplying the learning method. Some learning procedures can use arbitrary amounts ofcomputation time; in this case a fully-speci�ed method must indicate how the time is limitedin practice. Di�erent time allowances will de�ne di�erent (albeit closely related) methods.Learning algorithms often have parameters whose values need to be set using empirical trials.DELVE includes a suite of developmental datasets that are intended for used in such trialruns. However, it is possible that you will discover ways of improving your method as a resultof running it on one of DELVE's assessment datasets. This is unfortunate, since modifyingthe method based on performance on these datasets may introduce bias in the evaluations.If a method was tuned using the assessment datasets, you should therefore include in yourdocumentation a short description of what tests were done, on what datasets, so that peoplecan take account of this tuning when judging the signi�cance of the results obtained.Documentation and programs relating to a method should be placed in the DELVE hierarchyin the Source sub-directory of the method's directory. A brief summary of the method shouldalso be placed in the Summary �le in the method's directory.7.2 Creating directories for assessments: The mgendir commandFor each dataset used to assess a method, a directory with the name of the dataset will existin the DELVE hierarchy, within the directory for the method. These directories need not allbe in the same actual directory, but may instead be in located within various of the activedelve directories. This allows you to assess existing methods on new tasks without havingto write into the directory holding results from the DELVE archive.You can create such directories manually if you wish, but it is usually easier to create anappropriate directory structure using the mgendir command. This command will generateall the directories associated with a given dataset, prototask, or task. If a task is speci�ed,only the directory for this task will be generated (along with the directories needed to contain47



7. ASSESSING A LEARNING METHODthis task directory, if they do not already exist). If a prototask is speci�ed, then directoriesfor all the tasks associated with this prototask will be generated. Typically there will bemany tasks, with di�erent training set sizes, and perhaps with di�erent prior information.Similarly, if a dataset is speci�ed, directories for all prototasks de�ned for the dataset willbe created.Mgendir creates these directories in or below the current directory. If some of the directoriesalready exist, mgendir simply makes sure that they are up to date. An example will illustratethe command:unix> cd delve/methods; mkdir mymethod; cd mymethodunix> mgendir demo/income/std.32demo/incomedemo/income/std.32unix> mgendir /demo/incomedemo/income/std.64demo/income/std.128demo/income/std.256demo/income/std.512In this example we �rst generated the task named std.32 of the demo/income prototask.The mgendir command created the appropriate directories for that dataset, prototask andtask. We then asked to have the entire set of tasks for the income prototask generated. Inthis case mgendir skips the existing directories and generates the new ones. Notice thatthe identity of the current directory is important. For example, if your current directory isat the task level, you should not ask mgendir to generate directories for a new dataset |this will cause mixing of the di�erent levels. Always issue the mgendir command from thecorrect level (or higher up, as in the above example).Note that mgendir just creates directories; it does not create the data �les needed to trainand test your learning method. That is done by the mgendata command.The above discussion has focused on the most common usage of generating directories ac-cording to existing speci�cations in the corresponding data part of the DELVE hierarchy.You may sometimes want to generate tasks with di�erent speci�cations. For example, youmight want to use an existing prototask, but with a new speci�cation for prior information.In this case, you would create a new prior speci�cation �le in your data directory, and specifythis name to mgendir to generate the data.7.3 Specifying how attributes are to be encodedPart of the de�nition of a learning method is the manner in which attributes are encodedin a form suitable for the technique used. For example, inputs to a neural network must benumeric, so a method based on neural networks that handles categorical inputs must includea de�nition of how a categorical value is represented as one or more numbers.48



7. ASSESSING A LEARNING METHODSome researchers may be interested in developing better encoding methods, in which casethey will of course employ whatever methods they think are most promising. DELVE hasfacilities that support a number of common encoding methods, but it is of course possiblethat you will have to implement the encoding you want to use yourself.For researchers who are not especially interested in encoding methods, DELVE suppliesdefault encodings for attributes, selected on the basis of the prior information for the task.If you have no reason not to, it is probably best for you to stick with the default encodings,as that will make it easier to isolate the reasons for any di�erences in performance betweenyour method and other methods that also uses the default encodings.An encoding speci�cation consists of a name for the encoding, perhaps followed an additionalpassive, unit, or center argument. The possible encodings are as follows:ignore Ignore the attribute.copy Copy the raw attribute value unmodi�ed from the dataset �le.0/1 Encode a binary attribute as `0' or `1', with `0' being the passive value. Anargument of passive=value is mandatory.-1/+1 Encode a binary attribute using a symmetric encoding of `�1' for the �rstvalue and `+1' for the second value (as ordered in the dataset speci�cation).1-of-n Encode a categorical attribute as a list of zeros and ones. If the attributehas n possible values, and no passive argument is speci�ed, values will beencoded using n numbers, exactly one of which is `1', with the others being`0'. If an argument of passive=value is given, the n possible values will beencoded as n�1 numbers, with the passive value being encoded by all thenumbers being `0', and the non-passive values being encoded as before, bysetting exactly one of the numbers to `1'.therm Encode a categorical attribute by a thermometer code, using a list of n�1numbers with values of �x or +x, where n is the number of categories forthe attribute, and x is a scaling factor described below. The lowest value ofthe attribute (according to the ordering in the dataset speci�cation) will beencoded by setting all numbers to �x. For the next higher value, the �rstnumber will be +x and the remaining ones �x, and so forth. The scalingfactor x is determined by the scale=string option, where string is one ofnone, linear, or sqrt. If it is none, then x = 1:0. If it is linear, thenx = (n� 1)�1. If it is sqrt, then x = (n� 1)�1=2. The default value is sqrt.nm-sqr Encode a numerical attribute by shifting and re-scaling its values so that thedistribution of these values in the training set has mean zero and varianceone. If a centre=c argument is speci�ed, the values will be shifted to have cas their mean rather than zero.49



7. ASSESSING A LEARNING METHODnm-abs Encode a numerical attribute by shifting and re-scaling its values so thatthe distribution of these values in the training set has median zero and av-erage absolute deviation from the median of one. If a centre=c argumentis speci�ed, the values will be shifted to have c as their median rather thanzero.0-up Encode a categorical attribute as an integer, from zero and up to the numberof possible values minus one (using the ordering of values in the datasetspeci�cation).1-up Encode a categorical attribute as an integer, from one and up to the numberof possible values (using the ordering of values in the dataset speci�cation).rectan Encode a numerical value, x, as two numbers, sin(2�x=u) and cos(2�x=u),where u is the value speci�ed by a mandatory argument of the form unit=u.If you need to use encodings other than these, you will have to specify a coding as closeas possible from the list above, and then modify the data �les DELVE produces using aprogram of your own.When you generate data �les using the mgendata command (described in the next section),DELVE will by default use encodings from the above list that are selected on the basis ofthe prior information speci�ed for the task (see Section 4.3). The default encoding for anattribute is based �rst of all on the type assigned to the attribute in the prior speci�cation,in the following way:binary attributes with a passive value are coded as 0/1; those without a passivevalue are coded as -1/+1.nominal attributes are encoded as 1-of-n, with a passive option if a passive value isspeci�ed in the prior.ordinal attributes are encoded using therm, with the default scale option sqrt.real attributes are encoded using nm-abs.integer attributes are also encoded using nm-abs.angular attributes are encoded using the rectan code, with the unit argument asspeci�ed in the prior.You can override the default encodings by giving the name of a �le of alternate encodings(typically called encoding) to the mgendata command, using the `-c' option. For the formatof this �le, see the documentation for mgendata in Appendix C. This is useful if you wishto use other than the default encodings, and also if the software your using has built-infacilities that implement the default encodings, but expects to receive attributes in someother format. 50



7. ASSESSING A LEARNING METHODThe manner in which choices of encodings are made is logically part of the learning methodand should be documented as part of the description of the learning method being assessed.If other than default encodings are being used, you will probably have to manually specifyhow attributes are to be encoded for a particular task, according to the rules de�ned for themethod. In theory, however, a method's encoding rules could be implemented automatically,using a program that reads the relevant speci�cation �les.7.4 Creating data �les for training: The mgendata commandOnce you have decided on the encodings to be used by a method on some task (whichmay be just deciding to use the defaults), you can use the mgendata command to generatethe training and testing data �les to be read by the program implementing the method.These �les must be placed in the directory for the task within the methods part of theDELVE hierarchy, which you will usually have created earlier using mgendir. The mgendatacommand can also generate �les for all the task instances associated with a prototask ordataset, as described in the detailed documentation for mgendata in Appendix C.For each task, mgendata creates �les pertaining to all task instances. These �les all havethe number of the instance (from 0 on up) as a su�x. Four �les will be generated for taskinstance n: train.n, test.n, targets.n and normalize.n. The contents of the �rst three ofthese �les will depend on the encoding used, which can be left to default, or can be speci�edusing the `-c' option of mgendata, which should be followed by the name of the �le containingthe alternate encodings. If you type minfo (with no arguments) in the task directory for amethod after running mgendata, you will see a listing of all the numbers involved in encodingthe attributes for the present set of data �les (as saved in the �le Coding-used). Typingdinfo (with no arguments) will show you what numbers would be produced by the defaultencodings. These commands can also take explicit task speci�cations. Figure 7.2 shows thedisplay of the default encodings for the /demo/age/std.128 task produced by dinfo.The train �les produced by mgendata contain the training cases, one per line. The encodedvalues of the input attributes for a case appear �rst on the line, in the order they arementioned in the prototask speci�cation (and in the output of dinfo or minfo). The encodedvalues of the target attributes follow the inputs. All the numbers in a training data �le areseparated by spaces. Note that there may well be more numbers than attributes, sincesome attribute encodings produce more than one number | as is the case with the COLOURattribute in Figure 7.2.The test �les contain only the input attributes of the test cases. The true targets for the testcases are not supplied, since they should not normally be available to the learning method.An exception is allowed for a method that makes predictions to be evaluated using the logprobability loss functions (see Section 7.5), since it is not practical for DELVE to evaluatethese losses itself. The true targets are available for this use in the targets �les.The normalize �les contain the o�set and scaling constants that may have been used to51



7. ASSESSING A LEARNING METHODTask: /demo/age/std.128Training set size: 128Inputs:col attr name type relevance def coding options1 1 SEX binary nlmh -1/+1 -2 3 SIBLINGS integer nlmh nm-abs -3 4 INCOME real nlmh nm-abs -4 5 COLOUR:pink nominal nlmh 1-of-n -5 5 COLOUR:blue ...6 5 COLOUR:red ...7 5 COLOUR:green ...8 5 COLOUR:purple ...Targets:col attr name type noise-lev def coding options1 2 AGE real nlmh nm-abs -Figure 7.2: Output of the command: dinfo /demo/age/std.128.encode the data (if nm-abs or nm-sqr encodings were speci�ed, or were the defaults). Youwill not normally have to look at the normalize �les yourself, but they are needed forDELVE to interpret the predictions produced by the method.Once the training and testing data �les for the various task instances have been generatedusing mgendata, you can run your learning method. This should be done completely inde-pendently for each task instance, with the run for one instance making no reference to anydata �les intended for another instance. If your learning method has a stochastic aspect,you should initialize the random seed di�erently for each instance, for reasons discussed inSection 8.7.5 Processing predictions on test cases: The mloss commandThe objective of running your learning method is to produce predictions for the test cases.These predictions will normally be encoded, in the same way as the targets seen by thelearning method were encoded. As discussed in Section 5, predictions can take two forms:point predictions or guesses for the target values, and predictive distributions for the tar-gets. In most circumstances, your method will not read the targets �les when producingpredictions, and the losses with these predictions will be calculated by DELVE, not by themethod itself. However, since there is no easy way of representing an arbitrary predictivedistribution for a target of real, integer, or angular type, the predictive probability densityfor the true target must be evaluated by the method itself, if log probability loss is of interest,with reference to the true target values found in the targets �les.The actual losses are in all cases evaluated by the mloss command, which will refer to �lesof predictions produced by the method. In general, a method may wish to make di�erent52



7. ASSESSING A LEARNING METHODpredictions for use with di�erent loss functions. Accordingly, the �les to which a methodwrites predictions may have names incorporating the abbreviation of the loss function forwhich they are intended. Prediction �les have one of three possibile root names, according tothe form of prediction: guess, for point predictions, prob, for predictive distributions, andptarg, for probabilities (or probability densities) of the true target value. Prediction �lesalways have the instance number as a �nal su�x (e.g. guess.3). If a speci�c loss functionis speci�ed, it goes between the root and the instance number (e.g. guess.S.0). The nameof a prob or ptarg �le can be pre�xed by \l" to indicate that it contains the (natural) logsof the probabilities (or densities), rather than the probabilities themselves. Finally, namesof prediction �les may optionally have a leading `c' to indicating that they are for encodeddata. For a more extensive discussion of these conventions, refer to the discussion of mlossin Appendix C.The mloss command performs two tasks: it decodes predictions (in the typical situationwhere the method's predictions were encoded), and it evaluates losses. When mloss isinvoked it looks to see if it can �nd encoded prediction �les. If so, it decodes the encodedpredictions in the �les and writes these to �les with the initial `c' removed from their name.For example, cguess.A.0 would be decoded into guess.A.0. After this, mloss looks forthe decoded prediction �les (which it may just have produced itself), computes the lossesusing them, and writes them to �les called loss.l.n, where l is the loss function, and n isthe instance number. Section 8 discusses how these loss �les are analysed.After running mloss you can remove the train.*, test.*, targets.*, and normalize.*�les (they can be regenerated using mgendata if you should ever want them again). Youshould keep the Coding-used and Test-set-stats �les, as they are used by mstats andminfo. Usual practice is to also remove any encoded prediction �les, keeping only the decodedversions (guess.*, prob.*, etc.). You can remove the loss.* �les as well, if you need tosave disk space, as they can be regenerated from the decoded prediction �les using mloss,but it is better if possible to keep the loss �les around so that performance comparisonsbetween methods can be made conveniently.7.6 Submitting your results to the DELVE archiveOnce you have documented a learning method, and tried it out on a number of tasks, youmay submit the method and the results of applying it for inclusion in the DELVE archive.Other people will then be able to examine your method and results, and compare the resultsthey obtain with their methods to those that you obtained.You submit a method to the archive by sending the complete directory structure for themethod, containing the documentation and tests on all the datasets you have tried. Thisdirectory will be placed in the methods directory of the DELVE archive. It is also possibleto submit new results on existing methods, and new datasets and prototask speci�cations.For details on how to go about submitting material to the DELVE archive, see Appendix B.53



7. ASSESSING A LEARNING METHODIt should be understood that submission of a learning method to the DELVE archive con-stitutes a form of publication. Once your method has been incorporated into the archive,other researchers will start publishing comparisons of their results with yours. For thesecomparisons to be intelligible to other researchers, it is necessary for methods to remain inthe archive once they have been submitted, in their original form, though you will be ableto submit new commentary on the method, explaining any new developments. When a bugis found in the program implementing the method, or a substantial improvement has beenmade to the learning method, a new updated version may be submitted.
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8 ANALYSING THE RESULTSSuppose we have applied several learning methods to one or more tasks, and used the mlosscommand to evaluate the losses for the predictions they produced, as described in the pre-vious section. We can now use the mstats command to compute summaries of losses, andperform tests of statistical signi�cance on observed di�erences. We hope that in this way wewill be able to draw interesting conclusions about the relative performance of these learningmethods on these tasks.The mstats command addresses two basic questions. First, how can we compute an estimateof the performance of a method on some task, together with an indication of uncertainlyin the estimate? Second, how can we judge whether an observed di�erence in performancebetween two methods is statistically signi�cant? This section will explain the theory of thestatistical procedures used to answer these questions, and the commands that implementthese procedures.A task is the basic unit for which an expected loss can be de�ned. However we cannotapply our learning methods directly to tasks, since no speci�c training cases are associatedwith a task. Instead we apply our methods to a set of task instances and use the observedperformance these particular instances to estimate the expected performance on the task.Note, in particular, that we are generally not interested in the performance on a certain setof test cases, nor in the performance when using particular training sets. Rather, we wish toestimate the expected performance on a new test case when the learning method has beentrained on a new training set, both of which are randomly drawn from the same distributionsas are the available task instances.In order to form estimates that are appropriate for this context, we use a set of statisticaltechniques known as ANOVA (for ANalysis Of VAriance). In each experiment, we tryseveral training sets and for each training set we evaluate the losses for many test cases. Theappropriate analysis depends on whether a single common test set or a hierarchical designwith disjoint test sets was used. The analysis for the hierarchical model is simplest, so webegin with that.8.1 Analysing the hierarchical loss modelIn the hierarchical model, the losses for a particular set of task instances and a particularlearning method are modeled by: yij = � + ai + "ij; (1)where yij is the loss on training set i and test case j (from the i'th test set | remember,in the hierarchical model there is a separate test set for each training set). There are Iinstances, each of which contain J test cases. The overall mean loss is given by �. Theparameter ai is a random variable which explains the variation in losses due to individual55



8. ANALYSING THE RESULTStraining sets. The "ij parameters account for the residual variation in the losses which areunexplained by the model.The loss model in eq. (1) captures the notion that individual training sets may not be equallywell suited to learn the true relationship of the data. As an example, it may be that oneparticular training set contains an outlier, which can be accounted for by the correspondingai taking on a large positive value. The residuals "ij account for the variability in lossesthat are unexplained by the contributions from training set factor a. This variability maybe due to variation in the \di�culty" of test cases (either in general, or when a particulartraining set is used). Any stochastic aspects of the learning method can also contribute tothe variability in either the ai or the "ij, as discussed below.We propose using simple independent Gaussian assumptions about the model parameters:ai � N (0; �2a) "ij � N (0; �2"): (2)These assumptions are primarily based on simplicity requirements for the following analysisof the results. For many loss functions the distributions of the above variables may not bewell approximated by Gaussians. However, it is generally believed that the t-test which willbe used in the following are fairly robust to violations of normality. Finally, it seems thatmore sophisticated models become very complicated to analyse, which is why we have settledfor this simple model as our standard recommendation in DELVE. Note that the loss �lesare available, so that a more ambitious analysis can be performed if desired.The parameter in which we are primarily interested is �, the overall mean performance ofthe method. An estimate for it, �̂, can be found as follows:�̂ = 1IJ Xi; j yij = �y SD(�̂) = ��2aI + �2"IJ �1=2: (3)This above standard error is in terms of the true values of the � parameters. In practice, wewill have to substitute estimates for the � parameters.We introduce the following partial means:�yi = 1J Xj yij (4)and the \mean squared error" for a and " and their expectationsMSa = JI � 1Xi (�yi � �y)2 E[MSa] = J�2a + �2" (5)MS" = 1I(J � 1)Xi Xj (yij � �yi)2 E[MS"] = �2" : (6)We can now use the following minimum variance unbiased estimators for the � values�̂2" = MS" �̂2a = MSa �MS"J : (7)56



8. ANALYSING THE RESULTSUnfortunately, �̂2a may be negative, in which case we set it to zero. The estimated valuesmay be substituted back into eq. (3) to estimate the uncertainty associated with the averageloss.In order to compare two learning methods, the same model can be applied to the di�erencesbetween the losses from two learning methods, identi�ed by k and k0yij = yijk � yijk0 = �+ ai + "ij; (8)with similar Gaussian and independence assumptions as in eq. (2). In this case � is theexpected di�erence in performance and ai will be the di�erence e�ect due to training sets.Since the overall estimate for the mean can be seen as arising from I independent estimatesfrom each of the instances, we can test whether the estimate for � is should be consideredsigni�cantly di�erent from zero using a t-test. This is e�ectively a paired t-test for whetherthe expected performance of the two methods is di�erent, with the pairing being performedby modeling the di�erences in losses. The appropriate t statistic to use ist = �y� 1I(I � 1)Xi (�yi � �y)2��1=2 = �y� MSaJ(I � 1)��1=2; (9)with I � 1 degrees of freedom.In cases where the methods to be analysed have stochastic elements, these give rise tovariation in the losses that are not explicitly accounted for in the above analysis. Theremay be stochastic elements in both the training of the method and in the predictions. Forexample, many neural network methods are initialized with random weights which gives riseto stochasticity in the training phase.Although these stochastic elements are not explicitly modeled, the additional variability thatthey lead to will still show up in this model. Some training conventions should be followed sothat it always shows up in the same way. If your learning method is stochastic, you shoulduse a di�erent random number seed for every training set. This will result in the variationdue to stochastic training being lumped together with the training set e�ects in the analysis.Similarly, if your prediction procedure is stochastic, you should use random numbers thatare independent for each combination of training set and test case, so that the e�ects ofstochastic predictions will be lumped together with the e�ects of test cases. Followingthese conventions, the present analysis will take these stochastic e�ects into account in aconsistent way, but you will not be able to separate the stochastic training and predictione�ects from the other sources of variability. In future versions of DELVE we may supportexplicit evaluation of stochastic training e�ects, since it may often be of interest to knowhow much performance varies with things such as random initialization of model parameters.However, this extra information will come at the cost of having to run methods multiple timeson identical training and test sets, but with di�erent random number seeds.57



8. ANALYSING THE RESULTS8.2 Analysis of experiments with common test setsWhen using a common test set the nested model described in the previous section is nolonger applicable. Instead, we model the losses for a particular set of task instances and aparticular learning method by: yij = � + ai + bj + "ij; (10)where yij is the loss on training set i and test case j. The overall mean loss is given by�. The parameters ai and bj are random variables that explain the variation in losses dueto individual training sets and test cases respectively. The "ij parameters are the residualvariation in losses, which are unexplained by the model.The loss model in eq. (10) captures both e�ects of training sets ai and test cases bj. In thecase of a common test set, we have computed the loss for each test case using each of the Itraining sets, and can thus explicitly estimate the e�ects of the di�erent test cases in general(as opposed to their e�ect in combination with a particular training set). As before, theresiduals "ij account for the variability of the losses unaccounted for by the model, such asinteractions between training sets and test cases. If the methods being tested have stochasticelements, variation due to this will also show up somewhere, as discussed below.We again propose using simple independent Gaussian assumptions about the model param-eters: ai � N (0; �2a) bj � N (0; �2b ) "ij � N (0; �2" ): (11)As before, these assumptions are primarily based on simplicity requirements for the followinganalysis of the results. For many loss functions the distributions of the above variables maynot be well approximated by Gaussians. However, it is generally believed that the F-testwhich will be used in the following is fairly robust to violations of normality.We wish to �nd an estimate, �̂, for the expected loss of the learning method, as well as astandard error associated with this estimate. As our estimate for the expected loss, we canuse the average loss. We can estimate the standard deviation for this estimate based on themodel de�ned by eq. (10) and (11):�̂ = �y SD(�̂) =  �2"IJ + �2bJ + �̂2aI !1=2 ; (12)where I is the number of training sets and J the number of test cases. The expected mean issimply the overall average loss. To evaluate the standard error we �rst need to estimate thevalues of the � parameters. Here and in the following we will use the property that whentraining sets are set up using the DELVE standard scheme (see section 6), the training setsare disjoint subsets of the entire data set. We introduce the overall mean and the marginalmeans: �y = 1IJ Xi Xj yij �yi = 1J Xj yij �yj = 1I Xi yij; (13)58



8. ANALYSING THE RESULTSand the the \mean squared error" for a, b and " and their expectations:MSa = JI � 1Xi (�yi � �y)2 E[MSa] = J�2a + �2"(14)MSb = IJ � 1Xj (�yj � �y)2 E[MSb] = I�2b + �2" (15)MS" = 1(I � 1)(J � 1)Xi Xj ((yij � �y)� (�yi � �y)� (�yj � �y))2 E[MS"] = �2" (16)Now we can use the empirical values of MSa, MSb and MS" to estimate values for the �'s:�̂2" = MS" �̂2b = MSb �MS"I �̂2a = MSa �MS"J (17)These estimators are uniform minimum variance unbiased estimators. Unfortunately how-ever, the estimates for �2a and �2b are not guaranteed to be positive, so we set them to zeroif they are negative. We can then substitute back these variance estimates in eq. 12 to getan estimate for the standard error for the estimated mean performance.Note that the estimated standard error �̂ diverges if we only have a single training set (asis common practise!). This e�ect is caused by the hopeless task of trying to empiricallyestimate a variance based on a single observation. At least two training sets must be used,and probably more if accurate estimates of uncertainty are to be achieved.Another important question is whether we have good evidence that one learning methods isbetter than another. To settle this question we again use the model from eq. (11), only thistime we model the di�erence between the losses of the two models, k and k0:yijk � yijk0 = � + ai + bj + "ij; (18)under the same assumptions as above. The question now is whether the estimated overallmean di�erence �̂ is signi�cantly di�erent from zero. We can test this hypothesis using aquasi-F test [Lindman, Harold R., \Analysis of Variance in Experimental Design", Springer-Verlag, 1992], which uses the F statistic and degrees of freedom:F�1;�2 = (SSm +MS")=(MSa +MSb); where SSm = IJ �y2 (19)�1 = (SSm +MS")2=(SS2m +MS2"=((I � 1)(J � 1))) (20)�2 = (MSa +MSb)2=(MS2a=(I � 1) +MS2b=(J � 1)): (21)The result of the F-test is a p-value, which is the probability that given the null-hypothesis(� = 0) is true, we would observed a di�erence in average performance of this magnitude(positive or negative), or of a more extreme magnitude. In general, a low p-value produceshigh con�dence that the learning method with better performance in this experiment actuallyhas better performance. If the p-value is not low (say, greater than 0.05), it is not implausiblethat the method whose performance appeared better in this experiment could actually beworse in reality. 59



8. ANALYSING THE RESULTSAs is the case with the hierarchical model, the common test set model will pick up thevariability due to stochastic training and stochastic predictions, even though they are notmodeled explicitly. Whenever you apply a stochastic method you should initialize it witha di�erent random seed. The uncertainty due to stochastic training will then be lumpedtogether with the training set e�ects in the model, and the e�ects of stochastic predictionswill by lumped together with the interaction e�ects. Thus, the present analysis will takethese stochastic e�ects into account, but you will not be able to separate the e�ects accordingto their causes. In future versions of DELVE we may support explicit evaluation of thestochastic training set e�ect, if the method has been run several times on the same trainingset with di�erent random seeds.8.3 Obtaining performance statistics: The mstats commandThe mstats command implements the calculations described in the two previous sections.When used to estimate the expected loss for a particular task, mstats is called from withinthe task directory, or is given the path to such a directory in the DELVE hierarchy. Thecommand will look for loss.l.x �les in this directory, and produce the statistics derived fromthese �les. You may specify the desired loss functions with the `-l' option. As an example,we can analyse the performance of a linear regression method in the demo/age/std.128task, using absolute error loss:unix> mstats -l A /lin-1/demo/age/std.128/lin-1/demo/age/std.128Loss: A (Absolute error) Raw value StandardizedEstimated expected loss: 15.0988 0.893246Standard error for estimate: 0.667719 0.0395023SD from training sets & stochastic training: 1.49368 0.0883662SD from test cases & stoch. pred. & interactions: 13.0755 0.773547Based on 8 disjoint training sets, each containing 128 cases and8 disjoint test sets, each containing 128 cases.Here, the values reported correspond to the parameters of the model in eq. (1); the overallmean performance is followed by the standard error on this estimate. Also the standarddeviations for di�erent sources of variability are printed.In the second column, the values have been standardized, an a manner appropriate for theloss function. The standardized domain is designed such that a simple baseline method hasa nearly pre-speci�ed performance. This makes the standardized losses easier to interpretthan the raw losses. Note however, that these standardizations are obtained by imaginingthe baseline methods applied to the union of all test cases, such that applying the same60



8. ANALYSING THE RESULTSsimple methods to actual training instances will typically yield a standardized error a littlelarger than might be expected. (We are forced to accept this, since the standardizationsmust be the same for all instances in a task, whereas the training sets usually di�er.)For the `S', `A', `Z' and `Q' loss types, we obtain standardized losses by division by thebaseline loss. For squared error loss, the baseline method is prediction of the mean. Forabsolute error loss, the baseline is prediction of the median. For 0/1-loss, the baselinemethod is to always predict the majority class, yielding a loss of 1 � p�, where p� is thefrequency of the majority class. The baseline method for squared probability loss predictsthe empirical class probabilities as observed in the test cases, giving a loss of 1�Pi p2i , wherepi is the frequency of the i'th class over the test cases. Thus, these simple methods (whichdon't utilise the inputs) will have a standardized losses of close to 1:0 and better methodswill have losses closer to 0:0.For log probability loss, the baseline method depends on whether the targets are discreteor continuous. For continuous targets the baseline method produces a Gaussian predictivedistribution with mean and variance set to the empirical mean and variance of the testcases. Thus, the standardized losses are obtained by subtracting 12 log(2��2) + 12 from theraw values. For discrete targets, the baseline method sets the class probabilities in accordancewith the test frequencies; the standardized values are consequently obtained by subtracting�Pi pi log(pi) from the raw values, where pi is the frequencies of class i in the test set.Thus, methods which perform as well as the baseline methods will have a standardizedloss of around 0 and better methods will have negative losses. The negative value of thestandardized loss can be interpreted as the amount of information (measured in nats) thatthe method predicts about the targets relative to the baseline method.Specifying the `-c' option to mstats causes it to compare losses with the method named afterthe `-c' option. For example we can compare the linear method with a k-nearest-neighbormethod with respect to absolute-error loss on the /demo/age/std.128 task as follows:
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8. ANALYSING THE RESULTSunix> mstats -l A -c knn-cv-1 /lin-1/demo/age/std.128/lin-1/demo/age/std.128Loss: A (Absolute error) Raw value StandardizedEstimated expected loss for lin-1: 15.0988 0.893246Estimated expected loss for /knn-cv-1: 13.2854 0.785965Estimated expected difference: 1.8134 0.107281Standard error for difference estimate: 0.350707 0.0207478SD from training sets & stochastic training: 0.505922 0.0299304SD from test cases & stoch. pred. & interactions: 9.65323 0.571086Significance of difference (t-test), p = 0.00129409Based on 8 disjoint training sets, each containing 128 cases and8 disjoint test sets, each containing 128 cases.
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A INSTALLING DELVE ON YOUR COMPUTERDELVE consists of a set of utility programs for assessing learning methods, a number ofdatasets that can be used for such assessments, and the results of assessing various learningmethods on these datasets. To use DELVE you must at least install the utility programs.You will no doubt wish to install some of the datasets as well (unless you wish to use DELVEonly on your own data). If you want to compare your learning methods with others, youwill also need to install the relevant results.RequirementsCurrently, DELVE requires you to be running some variant of Unix. It has been tested underIRIX 5.3 and Sun-OS 5.4, but should run under other variants without problems.The datasets and method results have no requirements beyond a Unix �le system. Theutilities currently require that you have an ANSI-compliant C compiler and an installedcopy of Tcl (Tool Command Language). Tcl is freely available on the Internet and areextremely portable (i.e. it has almost certainly been ported to whatever variant of Unix youare running). If you do not already have Tcl installed, copies of the source are available atthe ftp site ftp.smli.com in the directory /pub/tcl.Obtaining DELVEThe best way to obtain DELVE is to visit our web site: http://www.cs.utoronto.ca/�delve/.You'll �nd full instructions on getting and building delve there, as well as the latest news onthe software, results, and datasets.If you don't have access to a web browser, the DELVE distribution is available via anonymousftp, in multiple compressed tar �les (Unix tape archive format). Currently the �les areavailable on the machine ftp.cs.toronto.edu in the directory /pub/neuron/delve.The �les are broken down as follows:1. The source code for the DELVE utilities and documentation is available in one �le:delve-*.tar.gz.2. Each dataset is in its own �le, where the name of the �le is the same as the dataset (withthe appropriate su�x added), e.g. demo.tar.gz. The easiest way to obtain datasetsis from the Delve web site at http://www.cs.toronto.edu/�delve or they can be ob-tained by ftp from ftp.cs.toronto.edu in the directory /pub/neuron/delve/data/tarfiles3. The complete results for each method that has been run on DELVE is in its own�le, named in a manner similar to the datasets, but with an all appended, e.g.63



A. INSTALLING DELVE ON YOUR COMPUTERlin-1-all.tar.gz. Results for a particular method and dataset are stored in �leswith the -all su�x replaced with the dataset name: lin-1-demo.tar.gz. The sourcecode and description for the methods are stored in another tar �le with -all replacedwith -Source: lin-1-Source.tar.gz. These �les are only available from the Delveweb site at http://www.cs.toronto.edu/�delve.A sample ftp session for obtaining DELVE might be as follows1:ftp ftp.cs.toronto.educd /pub/neuron/delvebinaryget software/delve-1.1.tar.gzget data/tarfiles/demo.tar.gzquitInstallationBefore installing the datasets and method results, you must build and install the DELVEutilities as follows:1. Obtain the distribution �le from our ftp site:ftp ftp.cs.toronto.eduget /pub/neuron/delve/software/delve-1.1.tar.gzbye2. Uncompress and untar the distribution using the gunzip utility:gunzip delve-1.1.tar.gztar xvf delve-1.1.tar3. Run the con�guration script:cd delve-1.1./configureor, for systems that don't recognize #! in shell scripts:cd delve-1.1/bin/sh ./configureBy default, the con�guration script will set things up to be installed in /usr/local.You can change this by specifying a di�erent prefix in the configure command:./configure --prefix=/your/install/path1This example illustrates the process for version 1.1; for other versions replace \1.1" by the version/patchnumber you wish. 64



A. INSTALLING DELVE ON YOUR COMPUTERYou can also add options for a particular cc compiler and compiler ags:./configure --with-cc=gcc --with-cflags=-gFor a full list of the options configure takes, type:./configure --helpThe configure script generates new Make�les from their respective templates (Make-�le.in). If configure can't �nd something, you can make changes to the intermediateconfig.status script, and invoke this script to recon�gure the Make�les:vi config.status./config.statusAs a last resort, you can edit the Make�les in the current directory and doc/ by handand insert the proper paths.4. Build the libraries and the executables. From the top-level directory type:make all5. Install the executables, libraries, documentation, and script �les. From the top-leveldirectory type:make installIf you have problems with the installation, you can use a subset of the commands:make install-binariesmake install-librariesmake install-docmake install-manOnce you've installed the utilities, you can install the datasets. This involves simply ex-tracting the �les from their tape archives into the proper directory: the installed top-levelDELVE data directory. By default this directory is /usr/local/lib/delve/data. If youspeci�ed a --prefix to the configure command, replace the /usr/local pre�x with thepath of that directory.Each tape archive will create a directory with the same base name as the archive �le. Thisdirectory will contain all the data and speci�cation �les DELVE needs to generate the tasks.mv demo.tar.gz /usr/local/lib/delve/datacd /usr/local/lib/delve/datazcat demo.tar.gz | tar xvf -If you want to install a dataset in a private directory, you can do the following65



A. INSTALLING DELVE ON YOUR COMPUTER1. Create a directory called delve in your home directory (or anywhere else, for thatmatter).2. In that directory create two more directories: data and methods.3. In the delve/data directory, untar the data �le as described above.Once you've done that, you can work in your own private delve directory and you will have ac-cess to the datasets you've downloaded, as well the ones installed in /usr/local/lib/delve/data.Once you've extracted the data, you can safely remove the tar �le.SetupOnce the software has been installed you can run any of the DELVE commands withoutfurther setup. There are, however, 2 environment variables that make the software moreexible1. DELVE PATH - (see also appendix C) allows multiple delve directories to be active.It is similar in avour to the normal Unix PATH environment variable.2. DELVE UNCOMPRESS - Set this environment variable to the name of the Unix utilitythat will uncompress �les on the \y", ie it can read compressed �les and uncompressthem to stdout. If this environment variable is not set, zcat is assumed.
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B CONTRIBUTING TO THE DELVE ARCHIVEThe ultimate aim of the DELVE project is to collect datasets, implementations of learn-ing methods, and the results of learning experiments from a wide variety of sources. Ifyou have datasets, methods or results which might be of interest to other users you cansubmit these to the DELVE archive. To make contributions, you can put �les on our ftp-server ftp.cs.utoronto.ca in the directory /pub/incoming, and notify us by email todelve@cs.utoronto.ca. The submitted �les should preferably conform to the usual DELVEconventions, and be in the form of a compressed tar �le.We welcome contributions of datasets to DELVE. We are particularly seeking large real-world datasets, and realistic simulation programs that can be used to create large datasets.Contributions of datasets should be accompanied by descriptions of the data. For realdatasets both the data in its original form and in DELVE format should be supplied, aswell as descriptions of the relevant context and the attributes recorded. Also suggestions forprototasks together with speci�cations of prior information should be included. Naturally,proprietary data cannot be included in DELVE without permissions. For simulated andarti�cial datasets, programs to generate the data should be supplied (if possible) as well asdescriptions of the data attributes and suggestions for prototasks and priors, etc.You may also contribute new learning methods to the archive. Typically, you would alsoprovide results of running your method on various DELVE datasets. You can convenientlysubmit the whole methods directory pertaining to your method. Also you need to supplya detailed description of your method. Remember, that the description should be detailedenough that someone else can re-implement the method and get comparable results to theones you might get for any dataset to which the method is applicable. The easiest way toattain this, is if your method is fully automatic. In particular, you should make sure thatyour description includes:� implemetational details allowing someone else to re-implemet your method with similarresults� discussion of the role of all parameters of the method� discussion of the heuristic rules for setting all parameters of the method on the basisof a particular application, including convergence criteria for iterative methods� detailed discussion of how attributes should be encoded for the methodFinally, it would be convenient if source code of the program implementing you methodcan be included in DELVE. This may help clarify details of the implementation, help otherresearches to easily use the methods and help with identifying possible bugs. Authors shouldtake care not to submit implementations containing any parts whose copyrights prohibitpublic distribution. 67



B. CONTRIBUTING TO THE DELVE ARCHIVEFor all contributions it should be considered that submission to DELVE is a form of publica-tion, and once contributions are released with DELVE they cannot in general be retracted,since other people may have used them in their research. Therefore, care should be taken toavoid submissions of erroneous material. If a bug should be discovered in a learning methoda new corrected version can be submitted under a di�erent name; eg. a buggy version ofloess-1 could be succeeded by a corrected version named loess-2 | but the originalmethod and its results would be retained in the archive.You may also submit experimental results using new combinations of methods and datasetsthat are already in DELVE. If you repeat experiments for which results are already in thearchive, it is of interest whether your results were comparable to the earlier results. Notesof such con�rmations can be included in DELVE, but for practical reasons only one set ofresults can be maintained for each method.All submitted material will be presented in DELVE with the date, name and address (oremail) of the contributor(s) allowing further clari�cations and collaboration.
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C DESCRIPTIONS OF DELVE COMMANDSThis appendix is a detailed reference for the commands that make up the DELVE workingenvironment. You will not necessarily need to use all these commands every day, as some ofthem are needed only by people creating new datasets or prototasks.Introduction to DELVE commandsBefore describing the individual DELVE commands, we will describe the common aspectsthat they all share.Command syntaxAll DELVE utilities have a common calling syntax, along the lines of:command [ option ] argument . . .Portions enclosed by \[" and \]" are optional; things before \. . . " can be repeated severaltimes. A vertical bar, \|", separates alternatives, only one of which should be present.The command is the name of the DELVE utility, for example dinfo. Commands are namedso that those that act on dataset directories have names that begin with the letter `d', whilethose that act on method directories have names beginning with `m'.The options are used to modify the behaviour of the command. They take the usual Unixform | a dash followed by a single character, for example: \-h". Some options also take asingle argument. In this case the argument must immediately follow the option, separatedby one or more blank spaces, for example: \-i foo". If the argument contains spaces itmust be quoted: -i "this arg has spaces".The arguments di�er in number and meaning for each command. However, all commandsrecognize the two following options:-h This causes the command to print a short help message describing its usage andoptions, after which it exits normally without doing anything else.-- This marks the end of the options for the command. The arguments following thisone will be treated as regular command arguments even if they start with a -.Data and method path namesThroughout this appendix, we refer to data path names, or dpaths and method path names,or mpaths. These paths look just like normal unix path names, but they di�er in two69



C. DESCRIPTIONS OF DELVE COMMANDSimportant aspects:� Dpaths and mpaths are de�ned only for �les that exist inside the DELVE directoryhierarchy. Dpaths point into the data part of the hierarchy; mpaths point into themethods part.� A dpath or mpath may identify a �le or directory in any of the active delve directories.Dpaths and mpaths for directories can even resolve to several locations within di�er-ent delve directories (though this is not supposed to happen for dpaths and mpathsidentifying �les).The DELVE hierarchy is the collection of all the active delve directories. A delve directorymust have a name that starts with the �ve characters \delve", and it must have two sub-directories called data and methods. DELVE decides on the set of active delve directoriesas follows. First of all, if your current working directory is inside a DELVE directory, thatdelve directory will be considered active, for as long as you remain in it. In addition, youmay provide a list of delve directories in your DELVE PATH environment variable. If you donot have such an environment variable, DELVE will use a default list of directories that was�xed when DELVE was installed.The DELVE PATH environment variable, if set, should contain a colon separated list of DELVEdirectories. You can use the command \dinfo -k delve path /" to �nd out which direc-tories are currently in your DELVE PATH, or what the default list of directories is, if you havenot set your DELVE PATH.All the �les relating to DELVE datasets, methods, and the results of applying methods todata are kept in the DELVE hierarchy. Files relating to datasets, but not to any particularmethod, are stored in the data part of the hierarchy, and hence have a dpath. Methodsand the results of applying methods are stored in the methods part of the hierarchy, andhence have an mpath. An mpath that points to a �le or directory relating to the resultsof a method on a particular dataset, prototask, or task can also be used to identify thecorresponding information in the data part of the hierarchy.Dpaths and mpaths may be \absolute", starting with a \/" character, or they may bespeci�ed relative to the current directory.Some examples may clarify these naming conventions. Consider the case where you have adirectory called /usr/local/lib/delve. Inside this directory are the directories data andmethods (and any number of other �les and directories). This is a valid DELVE directory.Inside the data directory there is another directory called demo. Its absolute unix pathname is: /usr/local/lib/delve/data/demo; however, its dpath is simply /demo. It doesnot have a mpath because it is not in the methods directory. If your current directory weredemo, its relative Unix path would be \.", as would its relative dpath.Assume the methods directory contained lin-1/demo. Its absolute unix path name would be:/usr/local/lib/delve/methods/lin-1/demo; however, its mpath would be /lin-1/demo.70



C. DESCRIPTIONS OF DELVE COMMANDSIt would not have a dpath because it is not in the data directory. If your current directorywere lin-1/demo, its relative unix path would be \.". This would also be its relative mpath.Similarly, the relative path name of lin-1 in both schemes would be \..".Finally, note that commands that create �les inside a directory need to know the truepathname for the directory, not just a dpath or mpath, since the latter might resolve tomore than Unix directory.
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dcheck C. DESCRIPTIONS OF DELVE COMMANDS dcheckdcheck | Validate DELVE data �lesNote: This command is not yet implemented.The dcheck command is used to verify that the data and speci�cations for a dataset and itsprototasks are legal and consistent.Command Summarydcheck [ -l ] [ dpath |mpath ]The path given dcheck must identify a dataset, a prototask for a dataset, or a prior �lefor a prototask. The default is \.", the current directory, which must identify a dataset orprototask. If a dataset is speci�ed, its Dataset.spec and Dataset.data �les are checked forerrors. Unless `-l' is speci�ed, all the prototasks for the dataset are also checked. A singleprototask can be checked by giving a path to that prototask. When a prototask is checked,the Prototask.spec �le is checked for consistency with the Dataset.spec, and, unless `-l'is speci�ed, all the .prior �les for the prototask are also checked for errors. A single .prior�le can be checked by giving its pathname.The dcheck command recognizes the -h \help" option described in the introduction to thissection, as well as:-l This causes dcheck to run locally. If a dataset is speci�ed, only information onthe dataset itself is checked, not information on its prototasks. If a prototask isspeci�ed, only information on the prototask itself is checked, not information inprior �les for the prototask.
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dgenorder C. DESCRIPTIONS OF DELVE COMMANDS dgenorderdgenorder | Generate random order for a prototaskThe dgenorder command is used to set up a random ordering of cases in a prototask. Thiswill usually be necessary only for natural or cultivated datasets, not for simulated or arti�cialones, for which the order will presumably already be random.Command Summarydgenorder [ path ]The argument given must be the true path name of a prototask directory (not the dpathfor a prototask); the default is `.', the current directory. The dgenorder command createsa �le called Random-order within this directory that contains a random ordering of casesin the prototask. This �le has one line for each case used by the prototask, with each linecontaining a number from one up to the total number of cases in the prototask.This Random-order �le is meant to be used as the ordering �le in the speci�cation for aprototask. Use of a random ordering is advisable whenever the prototask is not sequential(where the ordering is meaningful), unless the ordering is already known for certain to berandom (as would often be the case for simulated and arti�cial data).Note: For prototasks with commonality indexes, or for which training sets are to be strati�ed,dgenorder will have to do something cleverer, but such things are not implemented yet.Files Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/Random-orderthis is the output �le produced by the command.
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dgenproto C. DESCRIPTIONS OF DELVE COMMANDS dgenprotodgenproto | Generate prototask data �lesPrototasks are composed of a subset of the cases in a dataset, and a subset of the attributesin each case. The prototask data �le is an intermediate �le between the dataset data �le andthe task data �les. It will be generated \on the y" if it doesn't exist, but some time will besaved each time it is needed if the creator (or installer) of a prototask creates it once and forall, using the dgenproto command. (On the other hand, keeping such prototask data �lesaround permanently takes up disk space.)Command Summarydgenproto [ -i ] [ path ]The dgenproto command generates prototask data �les (called Prototask.data) insideprototask directories found within the data part of the DELVE hierarchy. The data put inthese �les is taken from the corresponding dataset data �les (called Dataset.data), whichare also found in the DELVE hierarchy.The path argument is the true path of the directory to generate the data in (not its dpath,as the dpath might not specify a unique directory). If path is a prototask directory | thatis, a subdirectory of a DELVE dataset directory | the prototask data �le for that prototaskalone is generated. If path points to a dataset directory, data for all prototasks in the datasetwill be generated. If path points to the root of the data part of the DELVE hierarchy, data�les for all prototasks for all datasets will be generated.The dgenproto command recognizes the -h \help" option described in the introduction tothis section, as well as:-i This option causes the command to ignore errors when multiple data �les are beinggenerated. The command will continue even if one or more of the �les cannot becreated.ExampleAfter obtaining the dataset /demo from the DELVE archive and placing it in the archiveDELVE directory /usr/local/lib/delve, the installer will probably wish to run the fol-lowing command: 74



dgenproto C. DESCRIPTIONS OF DELVE COMMANDS dgenprotounix>dgenproto -i /usr/local/lib/delve/data/demo generating:/usr/local/lib/delve/data/demo/age/Prototask.dataextracting cases...creating file...generating: /usr/local/lib/delve/data/demo/colour/Prototask.dataextracting cases...creating file...generating: /usr/local/lib/delve/data/demo/income/Prototask.dataextracting cases...creating file...generating: /usr/local/lib/delve/data/demo/sex/Prototask.dataextracting cases...creating file...generating: /usr/local/lib/delve/data/demo/siblings/Prototask.dataextracting cases...creating file...Files Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/Prototask.datathis is the output �le produced by the command.
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dinfo C. DESCRIPTIONS OF DELVE COMMANDS dinfodinfo | Get information about datasetsAlthough dls and dmore can be used to browse through the directories and �les that de�nea dataset, the information the �les contain is not presented in a very useful format. Thedinfo command takes all of the information available and puts it into a more accessibleformat.Command Summarydinfo [ -a | -k keys ] [ -q ] [ -t ] [ dpath |mpath ]The dinfo command prints human readable information summaries about the DELVEdataset, prototask or task whose data path is dpath. If dinfo is given a method path nameinstead of a data path name, it converts it to a data path name by removing the methodpre�x. If not speci�ed, the path defaults to `.', which must be in the DELVE heirarchy.For di�erent types of paths, dinfo returns di�erent types of information. The dpath argu-ment may specify one of the following:� The root data directory `/'; for which the information available includes: the DELVE PATHand a list of all installed datasets.� A dataset, for which the available information includes: the name of the dataset; itsorigin; its recommended usage; the order cases occur in it; the number of attributeseach case contains; a description of these attributes; and a list of all prototasks in thedataset. An example of a dataset path is `/demo'.� A prototask, for which the available information includes: the name of the prototask;its origin; the number of cases it contains; the ordering of these case; the number ofcases in each test set; the sizes of the training sets for each task; the scheme used forgenerating test sets; the maximum number of training instances a task may contain;a list of the attributes to be used as inputs for tasks; a list of the attributes to beused as targets; and a list of the available tasks. An example of a prototask path is`/demo/age'.� A task, for which the available information includes: the name of the task, the numberof cases in each training set; a list of the attributes to be used as inputs; a list of theattributes to be used as targets; the type, relevance, and default coding method foreach attribute. An example of a task path is `/demo/age/std.128'.The dinfo command recognizes the -h \help" option described in the introduction to thissection, as well as: 76



dinfo C. DESCRIPTIONS OF DELVE COMMANDS dinfo-a Causes the command to print out all the information it knows about the path youare querying. By default, it only prints \interesting" information.-k keys Print only information about �elds in the keys list. Keys can be obtained with the-q option. This is useful, for example, if you are only interested in what prototasksa dataset contains.-q Print, instead of the information normally printed, the keys for the information.For example the command dinfo -q /demo would print:dataset origin usage order number-of-attributes prototasksThese keys can be used as arguments for the -k option. Note that the -k and -aoptions a�ect the behaviour of this option, i.e. -q causes the command to print thekeys for the information it would print given all other options.-t Print information in a terse format: no headings are printed, and the format ismore suitable as input to another program than to a human. The -t and -koptions can conveniently be used together in scripts.-v Print the software version number.ExampleAn example of a command to obtain information about the demo dataset is:unix> dinfo /demoDataset: /demoOrigin: artificialUsage: developmentOrder: uninformativeNumber of attributes: 5Prototasks:agecolourincomesexsiblingsSimilar results would be obtained if you were in a directory with dpath /demo and you typed`dinfo .' or `dinfo'.If you only wanted to know what prototasks the dataset contained, and you wanted theoutput to be machine readable, you could use the command:unix> dinfo -t -k prototasks /demoage colour income sex siblings 77



dinfo C. DESCRIPTIONS OF DELVE COMMANDS dinfoFiles Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat. The contents of the �le are not used, but its existence may be checked./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/*.prior�les contain prior information to be used when generating tasks for the prototaskwith dpath /dataset/prototask.
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dls C. DESCRIPTIONS OF DELVE COMMANDS dlsdls | List contents of DELVE data directoriesIn the DELVE environment, if a given dpath refers to a directory, it could resolve to multipletrue directories. This can be inconvenient if you want to list the �les contained in the dpath.To help in this situation, DELVE supplies the dls utility for listing all �les that reside indirectories with a common dpath.Command Summarydls [ -l ] [ dpath |mpath ]The dls command lists the merged contents of all directories with the common data pathname dpath, or if dpath refers to a �le, it repeats its name. If dls is given a method pathname (an mpath) as an argument instead of a data path name, it converts it to a data pathname by removing the method pre�x.The output of the command is sorted alphabetically. If no path is given on the commandline, it defaults to `.', which must be a dpath or an mpath.The dls command recognizes the -h \help" option described in the introduction to thissection, as well as:-l Print a long listing, where �les are grouped by the directory they are contained in,and the true path name of each directory is printed.ExampleIf you wished to list all �les in the data directories with dpath /demo/age you could use dlsas follows:unix> dls /demo/agePrototask.data Prototask.spec std.priorSince dls allows you to give either a dpath or a mpath as an argument, you could obtainthe same results using the command `dls /lin-1/demo/age'.
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dmore C. DESCRIPTIONS OF DELVE COMMANDS dmoredmore | Browse or page through DELVE data �lesIn a manner similar to the dls and mls commands, DELVE provides a utility called dmorefor viewing text �les given their dpath. This allows you to look at a �le without knowing itstrue path.Command Summarydmore dpath |mpath . . .The dmore command displays the contents of text �les that reside in DELVE data directories.The dpath arguments are the data path names of the �les to be displayed. If dmore is givenmethod path names instead of data path names, it converts them to data path names byremoving the method pre�x. Files are displayed on the terminal, one screenful at a time.To view the �les, dmore passes its output through a pager. The default pager is more, butit can be changed by setting the environment variable PAGER to the name of the commandyou wish to use.The dmore command recognizes only the -h \help" option described in the introduction tothis section.ExampleTo view the �le containing the standard prior information for the demo/age prototask, youcould use the command:unix> dmore /demo/age/std.prior1 NLMH binary3 NLMH integer4 NLMH real5 NLMH nominal2 NLMH real
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mgendata C. DESCRIPTIONS OF DELVE COMMANDS mgendatamgendata | Generate task data �lesOnce you have created the directory hierarchy that will contain the data to train and testyour method on, you have to populate it with the actual data. To do this you use thecommand mgendata.Command Summarymgendata [ -c �le ] [ -q ] [ path ]The mgendata command generates task data �les inside a DELVE method directory fromdataset or prototask data �les inside a DELVE data directory. The path argument is the truepath of the directory to generate the data in: not its mpath (since the mpath could easilyresolve to multiple directories). The path argument must be a subdirectory of a DELVEmethods directory.If path points to a task directory, only data for that task will be generated. If it points toa prototask, data for all tasks in the prototask will be generated. If it points to a dataset,data for all tasks in all prototasks will be generated.In each task directory, four sets of �les are generated. Each set contains the same numberof �les as there are training instances in the task. Each �le in a set has a unique extension`.n', where n is the integer index of the training instance which the �le corresponds to.� Each instance in the task has a training �le called train.n. This �le contains casesthat are to be used for training your learning method. Each line in the �le contains thedata for one case. A case contains the encoded representation of all attributes to beused for the task (see Section 7.3 for a description of encoding schemes) printed to the�le such that all values are separated by white space. In each case, input attributescome �rst, followed by target attributes (i.e. each line contains both input values andtarget values).� As well as a training �le, each instance in the task has a testing �le called test.n.These �les contain encoded input attributes for all testing cases (one case per line,all values separated by white space). Testing �les do not contain target values; theycontain only input values.� For each testing �le, there is a corresponding target �le. This �le contains the en-coded target attributes for the testing cases, one case per line. Target �les are calledtargets.n.� Data attributes can be encoded using various forms of normalization. To keep trackof the normalization constants, a normalization �le normalize.n is created for eachinstance. This �le contains the mean, variance, median, and average absolute deviationfrom the median for each attribute (one attribute per line).81



mgendata C. DESCRIPTIONS OF DELVE COMMANDS mgendataAs well as the above sets of �les, two single �les are generated: Coding-used which willcontain a description of the method used to encode each of the attributes (in the formdescribed below), and Test-set-stats which will contain statistics derived from the testingdata. These �les are needed to calculate the losses and evaluate the method performanceafter it has been run.The mgendata command recognizes the -h \help" option described in the introduction tothis section, as well as:-c �le This option allows you to override the default encoding of attributes. The �leshould contain one encoding speci�cation per line, containing �rst an identi�er ofan attribute (either number or name) followed by the desired encoding. If optionsare to be given for the encoding, they should appear on the same line, in the formoption=value, where option is the option's name (for example passive), andvalue is the value it is to be set to. Multiple option/value pairs may appear onthe same line, separated by spaces. No spaces may appear between the option'sname and the equal sign, or between the equal sign and the value. All attributeswhich are not mentioned in the encoding �le retain their default encodings.The valid encodings and their options are described in section 7.3.-q Command should run quietly. Normally mgendata prints the names of the �lesthat it is working on.ExampleSuppose that you are in a directory whose mpath is /lin-1, and that you have previously runmgendata. If you now want to generate training and testing �les for the task of the /demo/ageprototask based on standard prior information and using 256 cases in each training set, youwould use the command:unix> mgendata ./demo/age/std.256./demo/age/std.256segmenting cases...splitting test inputs and targets...encoding instance 0 training data...encoding instance 0 test inputs...encoding instance 0 test targets...encoding instance 1 training data...encoding instance 1 test inputs...encoding instance 1 test targets...encoding instance 2 training data...encoding instance 2 test inputs...encoding instance 2 test targets...encoding instance 3 training data...encoding instance 3 test inputs...encoding instance 3 test targets...82



mgendata C. DESCRIPTIONS OF DELVE COMMANDS mgendataFiles Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/Prototask.datacontains all the data for the prototask with dpath /dataset/prototask in a DELVEstandard format./dataset/prototask/*.prior�les contain prior information to be used when generating tasks for the prototaskwith dpath /dataset/prototask./dataset/prototask/Random-Ordercontains the ordering to use when extracting cases from the Dataset �le and gen-erating the Prototask �le for the prototask with dpath /dataset/prototask./method/dataset/prototask/task/train.ncreated to hold the encoded inputs and targets for training cases./method/dataset/prototask/task/test.ncreated to hold the encoded inputs for test cases./method/dataset/prototask/task/targets.ncreated to hold the encoded targets for test cases./method/dataset/prototask/task/normalize.ncreated to hold the normalization constants used in the encoding./method/dataset/prototask/task/Coding-usedcreated to hold coding actually used in creating the data �les for/dataset/prototask/task./method/dataset/prototask/task/Test-set-statscreated to hold statistics of the testing data for the task with dpath/dataset/prototask/task.
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mgendir C. DESCRIPTIONS OF DELVE COMMANDS mgendirmgendir | Generate task directoriesWhen you �rst want to run a new method on a dataset, you must build the directory tree thatwill contain all of the training and testing data. You could use a normal Unix command suchas mkdir, but that would be quite tedious, or you could use the DELVE command mgendir.Command Summarymgendir [ -l ] [ -q ] [ path ]The mgendir command generates directory trees for DELVE datasets, prototasks, or tasksinside a method directory. The path argument is the true path of the root of the tree tocreate: not its mpath (since the mpath could easily resolve to multiple directories). Thepath must be a subdirectory of a DELVE methods directory.If path speci�es a method, directories for all available datasets are created in the methoddirectory. If it speci�es a dataset, directories for all prototasks and tasks of that datasetare generated. If it speci�es a prototask or a task, only directories associated with them aregenerated.mgendir will not complain if parts of the directory tree already exist.The mgendir command recognizes the -h \help" option described in the introduction to thissection, as well as:-l This causes mgendir to run locally. This means that sub-directories are not created.If you specify a method name, no dataset directories are generated. If you specifya dataset name, no prototask directories are generated. If you specify a prototaskname, no task directories are generated.-q Command should run quietly. Normally mgendir prints the names of the subdi-rectories as they are created.ExampleAssuming that you were in a directory with mpath lin-1, and you wanted to generate thedirectory tree �les for the entire demo dataset, you could use the command:84



mgendir C. DESCRIPTIONS OF DELVE COMMANDS mgendirunix> mgendir ./demo./demo./demo/age./demo/age/std.32./demo/age/std.64./demo/age/std.128./demo/age/std.256./demo/age/std.512./demo/colour./demo/colour/std.32..../demo/siblings/std.512Similarly, you could generate the directories for just the age prototask using the command:unix> mgendir ./demo/age./demo./demo/age./demo/age/std.32./demo/age/std.64./demo/age/std.128./demo/age/std.256./demo/age/std.512Files Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat. The contents of the �le are not used by dinfo but its existence is checked./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/*.prior�les contain prior information to be used when generating tasks for the prototaskwith dpath /dataset/prototask. 85



minfo C. DESCRIPTIONS OF DELVE COMMANDS minfominfo | Get information about learning methodsIn a manner similar to dinfo the minfo command can be used to obtain information aboutDELVE methods.Command Summaryminfo [ -a | -k keys ] [ -q ] [ -t ] [mpath ]The minfo command prints human readable information summaries about the DELVEmethod, dataset, prototask or task whose DELVE method path name is given by the mpathargument. If no path is speci�ed, it defaults to `.', which must be a DELVE methods direc-tory. The minfo command returns information about datasets, prototasks, or tasks as theywere used by the method, not as they appear in the data directory. For example, when thempath argument speci�es a dataset, the list of prototasks returned by minfo will containonly those the method was run on, not all of the ones available to be run on.For di�erent types of paths, minfo returns di�erent types of information. The mpath argu-ment may specify one of the following:� Information available for the root data directory / includes: the DELVE PATH and a listof the methods that have been run on DELVE datasets.� For a method directory, the information available includes a list of all datasets themethod has been run on. An example of a method path is `/lin-1'.� For a dataset, the available information includes all the information returned by dinfofor datasets, with the exception that the list of prototasks includes only those that themethod has been run on. An example of a dataset path is `/lin-1/demo'.� For a prototask, the available information includes all the information returned bydinfo for prototasks, with the exception that the list of tasks includes only those thatthe method has been run on. An example of a prototask path is `/lin-1/demo/age'.� For a task, the available information includes all the information returned by dinfo fora task, with the exception that the actual coding method used for the data is printed,not the default method. An example of a task path is `/lin-1/demo/age/std.128'.The minfo command recognizes the same options as dinfo.ExampleAn example of a command line that could be used to obtain information about the demodataset as it was used by lin-1 would be: 86



minfo C. DESCRIPTIONS OF DELVE COMMANDS minfounix> minfo /lin-1/demoDataset: /demoOrigin: artificialUsage: developmentOrder: uninformativeNumber of attributes: 5Prototasks:ageincomeSimilar results would be obtained if your current working directory had the mpath /lin-1/demo,and you typed `minfo .' or `minfo'.If you only wanted to know what demo prototasks the lin-1 method was run on, and youwanted the output to be machine readable, you could use the command:unix> minfo -t -k prototasks /lin-1/demoage incomeFiles Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat. The contents of the �le are not used, but its existence may be checked./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/*.prior�les contain prior information to be used when generating tasks for the prototaskwith dpath /dataset/prototask./method/*used to get the list of datasets the method with mpath /method has been run on./method/dataset/*used to get the list of prototasks from the dataset with dpath /dataset that themethod with mpath /method has been run on./method/dataset/prototask/*used to get the list of tasks from the prototask with dpath /dataset/prototask thatthe method with mpath /method has been run on./method/dataset/prototask/task/Coding-usedcontains the coding scheme used to generate the task data �les for the task withmpath /method/dataset/prototask/task.87



mloss C. DESCRIPTIONS OF DELVE COMMANDS mlossmloss | Generate task loss �lesOnce you have run a method on a task and produced predictions, you will need to calculatethe loss from the true targets and your predictions. Loss functions are discussed in detail inSection 5.Command Summarymloss [ -i instances ] [ -l losses ] [ -q ] [ path ]The mloss command decodes prediction �les and generates loss �les. The path argument formloss is the true path of the directory to generate the decoded prediction and loss �les in(not its mpath, since the mpath could easily resolve to multiple directories). The prediction�les used to generate the losses can reside in any directory with the same mpath. If notspeci�ed, path defaults to the current directory.If path points to a task directory, only loss �les for that task will be generated. If it pointsto a prototask, loss �les for all tasks in the prototask will be generated. If it points to adataset, loss �les for all tasks in all prototasks will be generated. Finally, if it points to amethod, loss �les will be generated for all tasks that the method has been run on.The mloss command can generate losses using using any of the �ve following measures. Eachmeasure has a single-character code associated with it:A Absolute error loss.S Squared error loss.Z Zero-one loss.L Negative log-probability loss.Q Squared-probability loss.You must write your predictions to �les with special names in order to get them evaluatedwith the intended loss measure. Depending on the type of the prediction, the �le may haveone of three root names: guess for �les that contain guesses for the targets, prob for �lescontaining class probabilities and ptarg for �les containing the probabilities (or densities)of the true targets under the method's predictive distribution. In general the methods donot need to read the targets �les, with the exception of the situations where the methodproduces a predictive distribution and the targets are real, integer or angular. In thesecases there seems to be no general convenient way of conveying the predictive distribution;instead the method must itself evaluate the probability (or density) of the true target underthe predictive distribution and write this to a prediction �le with the ptarg root name.88



mloss C. DESCRIPTIONS OF DELVE COMMANDS mlossA number of pre�xes and extensions may be added to these root names. The instancenumber is always added as an extension, e.g. guess.3. Optionally, the name of a spci�c lossfunction can also be speci�ed as an extension, e.g. guess.S.3. If no loss function is speci�edthen the predictions can be applied to any loss function for which that particular root ismeaningful (although, loss speci�c predictions always take precedence over generic ones).Some prediction �les may have a `c' pre�xed to their name, indicating that the predictionsare in the coded domain. This will normaly be the case for the �les your method writes,since it only sees that training and test �les which have been encoded. The `c' pre�x canbe applied to �les with the guess or ptarg root names. Files which contain probabilities(or densities) may have an `l' pre�xed their name indicating that the predictions are madein the (natural) log domain. Some examples of names of prediction �les are cguess.A.0,prob.3 and clptarg.L.7. Note, that the pre�xes and extensions must follow the order givenin these examples.The �rst task mloss performs is decoding the predictions. It places the decoded predictions in�les with the same names as those containing the coded ones with the initial `c' removed. Forexample the decoded predictions for cguess.A.0 would be placed in guess.A.0. Similarly,the decoded predictions for clptarg.7 would be placed in lptarg.7.Once the predictions have been decoded, mloss generates loss �les based on those predictionsand the target values. The losses are placed in �les named loss.l.n, where where the `l 'and `n' characters have the same meanings as above. For loss �les the `.l ' extension is notoptional (as the values in the �le are de�ned by the loss function).The prediction �les used to generate the losses for a particular measure are found by �rstlooking for all prediction �les speci�c to that loss (i.e. �les that have the appropriate `.l 'extension). If even one such �le exists for a given measure, then only �les with that extensionare used to generate the losses. If no such �les exist for the given loss, mloss looks forprediction �les where the loss was not speci�ed (i.e. �les with the appropriate root name,but without the `.l ' extension). It then uses these to calculate the loss. If none of these �lesexist, a warning message is printed, and no loss �les for that measure are generated.A table of the allowed combinations of target types and loss functions is given in section 5.2.Whenever predictions are made in �les with the prob root, mloss automatically normalisesthe probabilites to sum to unity. However, this is not possible for predictions with theptarg root, so users should be careful to ensure that their method's predictive distributionis correctly normalised when using these predictions.The mloss command recognizes the -h \help" option described in the introduction to thissection, as well as:-i instances This allows you to specify which training instances you want to evaluate theloss for. It should be a list of integer values or the string `all'. It's default value is`all'. 89



mloss C. DESCRIPTIONS OF DELVE COMMANDS mloss-l losses This allows you to specify the loss functions mloss attempts to evaluate. Youcan specify any combination of A, S, L, Q, and Z. By default, mloss attempts toevaluate all approriate types.-q Command should run quietly. Normally mloss prints the names of the �les that itis working on.Note: The mloss command does not yet support the specialised loss functions discussed insection 5.3.To generate the loss �les, mloss must temporarily decode the target �les. Because of this,the target �les must be present in the mpath of the task.Files Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat. The contents of the �le are not used by dinfo but its existence is checked./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/*.prior�les contain prior information to be used when generating tasks for the prototaskwith dpath /dataset/prototask./method/dataset/prototask/task/targets.ncontains the coded targets for the n'th training instance of the task with dpath/dataset/prototask/task/, as made by the method with mpath /method./method/dataset/prototask/task/[c]guess[.l].ncontains the guesses for the (optianally coded) targets of the n'th training instanceof the task with dpath /dataset/prototask/task/, as made by the method withmpath /method, with an optionally speci�ed loss function (A, S or Z)./method/dataset/prototask/task/[c][l]ptarg[.L].ncontains the (optionally log) probabilities (or densities) for the (optionally coded)targets of the n'th training instance of the task with dpath /dataset/prototask/task/,as made by the method with mpath /method. The L loss function may optionallybe speci�ed./method/dataset/prototask/task/[l]prob[.l].ncontains the (optionally log) probabilities of the targets for the n'th training in-stance of the task with dpath /dataset/prototask/task/, as made by the methodwith mpath /method, with an optionally speci�ed loss function (L or Q).90



mloss C. DESCRIPTIONS OF DELVE COMMANDS mloss/method/dataset/prototask/task/Coding-usedcontains the coding scheme used to encode the data for the method with mpath/method/dataset/prototask/task./method/dataset/prototask/task/normalize.ncontains the normalizing constants used to encode the data for the method withmpath /method/dataset/prototask/task/
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mls C. DESCRIPTIONS OF DELVE COMMANDS mlsmls | List contents of DELVE method directoriesAs with dpaths, if a given mpath refers to a directory, it could resolve to multiple truedirectories. To list all �les in directories with a common mpath, DELVE supplies the mlsutility.Command Summarymls [ -l ] [mpath ]The mls command lists the merged contents of all directories with the common method pathname mpath, or if mpath refers to a �le, it repeats its name.The output of the command is sorted alphabetically. If no path is given on the commandline, it defaults to `.', which must be a DELVE method directory.The mls command recognizes the -h \help" option described in the introduction to thissection, as well as:-l Print a long listing, where �les are grouped by the directory they are contained in,and the true path name of each directory is printed.ExampleIf you wished to list all �les in the method directories with mpath /lin-1/demo you coulduse the mls command as follows:unix> mls /lin-1/demoage income
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mmore C. DESCRIPTIONS OF DELVE COMMANDS mmoremmore | Browse or page through DELVE method �lesThe command corresponding to dmore for viewing DELVE method �les is mmore.Command Summarymmore mpath . . .The mmore command displays the contents of text �les that reside in DELVE method direc-tories. The mpath arguments are the method path names of the �les to be displayed. Filesare displayed on the terminal, one screenful at a time.To view the �les, mmore passes its output through a pager. The default pager is more, butit can be changed by setting the environment variable PAGER to the name of the commandyou wish to use.The mmore command recognizes only the -h \help" option described in the introduction tothis section.ExampleTo view the source program for the implementation of the lin-1 method, you could use thecommand:unix> mmore /lin-1/Source/lin-1.c/* lin-1.c: Robust linear method for regression.** Reads training examples from "train.n", test inputs from "test.n" and* targets from "targets.n". Produces point predictions in "cguess.n" and* densities of targets under a predictive distribution in "clptarg.L.n".* Here "n" is the instance number, supplied as a command argument. Handles* badly conditioned cases where inputs are (close to) linearly dependent.** (c) Copyright 1996 by Carl Edward Rasmussen. */#include <stdio.h>... 93



mstats C. DESCRIPTIONS OF DELVE COMMANDS mstatsmstats | Calculate or compare loss statisticsOnce the loss �les for a given method have been generated, you can see how well or poorlythe method performed, either in absolute terms, or in comparison to another method. Thisis done with the mstats command.Command Summarymstats [ -c methods ] [ -i base ] [ -l losses ] [mpath ]The mstats command prints summary statistics about a method's loss �les, or comparesthe loss �les of two methods, and prints summary statistics about the comparison. Thempath argument is the DELVE method path name of the method whose losses are to besummarized. If it is omitted, it defaults to `.' which must be a DELVE method directory.Loss �les are generated by mloss and are normally named loss.l.n, where l is a singlecharacter describing the loss function used to generate the �le, and n is an integer describingthe training instance the loss �le corresponds to. See the description of mloss for furtherdetails.Full details of the statistics used to summarize the losses are described in Section 8; howevera quick summary is given here.When summarizing the loss �les for a single method, mstats returns:� the estimated expected loss.� the standard error of the estimate.� the standard deviation of the losses between training sets.� the standard deviation of the losses between testing cases (if applicable).� the standard deviation of the residuals.Both the raw values and a standardized version of these terms are printed. See section 8.3for a discussion of the standardization used.When comparing the performance of two methods, mstats returns:� the estimated expected loss for both methods.� the estimated expected di�erence in the losses.� the standard error of the estimate for the di�erence.� the standard deviation of the losses between training sets.94



mstats C. DESCRIPTIONS OF DELVE COMMANDS mstats� the standard deviation of the residuals.Both the raw values and a standardized version of these are printed. The report also includesa probability describing the signi�cance of the di�erences of the two loss estimates (calculatedusing either a T-test, or F-test as appropriate).Both reports include a listing of how many training sets and cases, and test sets and caseswere used to calculate the statistics.The mstats command recognizes the -h \help" option described in the introduction to thissection, as well as:-c methods This ag causes mstats to compare the current method with the selectedmethods. Summary statistics about the di�erences of the loss �les in mpath andthose of the other methods are returned. The method arguments may be propermpaths for a method, e.g. /lin-1, or you may omit the initial slash.-i base This allows you to change the base name of the input loss �les. These �les aregenerated by mloss and normally have the base name loss.-l losses This allows you to change what loss functions mstats attempts to summarize.You can specify any combination of A, S, L, Q, and Z. By default, it attempts tosummarize all of them, using whatever �les exist. Mstats will only print warningsif it attempts to summarize a loss measure for which there are no loss �les.ExampleSuppose you wished to know how well the /lin-1 method did on the /demo/age/std.128task, using the squared error loss measure. You could use the command:unix> mstats -l S /lin-1/demo/age/std.128/lin-1/demo/age/std.128Loss: S (Squared error) Raw value StandardizedEstimated expected loss: 400.73 0.819745Standard error for estimate: 28.6111 0.0585277SD from training sets & stochastic training: 40.898 0.0836622SD from test cases & stoch. pred. & interactions: 790.029 1.61611Based on 8 disjoint training sets, each containing 128 cases and8 disjoint test sets, each containing 128 cases.If you then wanted to compare its performance to the /knn-cv-1 method, you could use:95



mstats C. DESCRIPTIONS OF DELVE COMMANDS mstatsmstats -c knn-cv-1 -l S /lin-1/demo/age/std.128/lin-1/demo/age/std.128Loss: S (Squared error) Raw value StandardizedEstimated expected loss for lin-1: 400.73 0.819745Estimated expected loss for /knn-cv-1: 368.003 0.752798Estimated expected difference: 32.727 0.0669473Standard error for difference estimate: 14.075 0.0287922SD from training sets & stochastic training: 27.6978 0.0566594SD from test cases & stoch. pred. & interactions: 323.515 0.661792Significance of difference (t-test), p = 0.052988Based on 8 disjoint training sets, each containing 128 cases and8 disjoint test sets, each containing 128 cases.Files Used/dataset/Dataset.speccontains speci�cations describing the dataset with dpath /dataset./dataset/Dataset.datacontains all the data for the dataset with dpath /dataset in a DELVE standardformat. The contents of the �le are not used, but its existence is checked./dataset/prototask/Prototask.speccontains speci�cations describing the prototask with dpath /dataset/prototask./dataset/prototask/*.prior�les contain prior information to be used when generating tasks for the prototaskwith dpath /dataset/prototask./method/dataset/prototask/task/loss.l.ncontains the losses for the n'th training instance of the task calculated using theloss function l with dpath /dataset/prototask/task/, as made by the method withmpath /method./method/dataset/prototask/task/Test-set-statscontains statistics of the testing data for the task with dpath /dataset/prototask/task.96



D GLOSSARY OF DELVE TERMINOLOGYabsolute-error loss A loss function for regression tasks in which the loss is the ab-solute value of the di�erence between the guess and the target.When there is more than one target, the absolute loss is the sumof such absolute di�erences for all the targets.angular attribute An attribute whose value is an angle or some other circular quan-tity, such as time-of-day. By default, such attributes are encodedas the sine and the cosine of the equivalent angle, so as to avoidintroducing an arti�cial discontinuity.arti�cial dataset/prototask A dataset generated by a program (usually with a random com-ponent) on the basis of some mathematical speci�cation, withoutany connection with a real-world problem. Prototasks based onsuch datasets are also referred to as arti�cial.assessment dataset A dataset that is recommended for use in formally assessing learn-ing methods.attribute One of the quantities associated with each case in a dataset.The dataset speci�cation classi�es attributes as controlled oruncontrolled, according to how their values were determined.The prior information for a task will characterize attributes asbinary, nominal, ordinal, integer, angular, or real.binary attribute A categorical attribute that can take on exactly two possiblevalues (not counting missing values) | for example, an attributewith possible values of \male" and \female", or one with valuesof \0" and \1".categorical attribute An attribute that takes on values from some �nite set. The tar-gets for a classi�cation prototask must be categorical. The priorinformation for a task further characterizes categorical attributesas binary, nominal, or ordinal, and may designate one of thevalues as passive.case A collection of attribute values that all apply to the same thing.For example, in a dataset of medical tests on patients, a casemight consist of all the test results for a particular patient.censored value An indication of the value for an attribute in a case that saysonly that the value is known to be greater than or equal to (orless than or equal to) a speci�ed value. In DELVE dataset �les,a censored value is recorded as \number :" (if the actual value isgreater than or equal to number), or as \:number" (if the actualvalue is less than or equal to number).classi�cation prototask/task A prototask (or task) in which all the target attributes are cat-egorical. 97



D. GLOSSARY OF DELVE TERMINOLOGYcontrolled attribute An attribute whose values were �xed by the investigators whogathered the data. For example, the amount of fertilizer appliedto an agricultural test plot would likely be a controlled attribute.common testing scheme An experimental set-up in which a single common test set is usedto assess the performance of a method with all the training sets;distinguished from a hierarchical testing scheme.commonality index An integer that may be associated with a case, indicating thatthe case has something in common with the other cases with thesame commonality index. For example, in a dataset where a caserecords features of a handwritten digit, all the digits written byone person might have the same commonality index.cultivated dataset/prototask A dataset that comes from a real-world source, but has no real-world context, having been collected or selected for the purposeof creating a DELVE dataset rather than from any genuine in-terest. Natural datasets that have been modi�ed in some way,such as by adding extra noise, are also in this class. Prototasksbased on cultivated datasets are also classi�ed as cultivated, asare prototasks that are based on natural datasets but which havelittle resemblance to the original purpose for which the data wasgathered.dataset A collection of data, consisting of a number of cases, each associ-ated with the values of several attributes. Datasets are classi�edas natural, cultivated, simulated, or arti�cial according tothe data's relationship to the real world. DELVE also distin-guishes among development datasets, assessment datasets,and historical datasets, on the basis of recommended usage.default encoding The encoding of an attribute that DELVE will use by defaultif a particular learning method does not specify otherwise. Thedefault encoding is based on the prior information for the task.dependency (between cases) A situation where knowledge of the values of the targets in onecase would be informative regarding the values of the targetsin other cases with the same commonality index, or that arenearby in a sequential prototask. Here, it is assumed that theinputs in all cases are already known, and that the true natureof the general relationship between inputs and targets is alsofully understood | ie, the dependency is between the \noise"or \residuals" in the related cases (the part of the variation notexplainable by the relationship between inputs and targets).development dataset A dataset that is recommended for use in developing learningmethods. To avoid bias, such datasets should not also be used informal assessments of performance.encoding (of an attribute) The way that DELVE represents the value of an attribute (usu-ally as one or more numbers) when generating data �les for taskinstances. The encoding to use is part of the speci�cation of a98



D. GLOSSARY OF DELVE TERMINOLOGYlearning method, but DELVE provides a default encoding thatwill often be appropriate.estimated expected loss An estimate for the expected loss of a learning method on sometask, based on the results of a learning experiment. At present,DELVE's estimates are simply the average loss over training setsand test cases tried. Each estimate has an associated standarderror, that is indicative of its likely accuracy.expected loss The expected performance of a learning method on some taskas judged by a speci�ed loss function, the expectation beingwith respect to random selection of a training set and a test case.Put another way, the performance the method would achieve onaverage if it were applied a great many times to training sets andtest cases obtained from the same source as the actual dataset.Note that the true expected loss cannot be determined exactly,but an estimated expected loss can be computed from theresults of a learning experiment.guess (for a test case) A prediction for the targets in a test case consisting of a singlevalue for each target, these values being chosen by the learn-ing method with the aim of minimizing the expected absolute-error, squared-error, or 0-1 loss. If a no-guess penalty hasbeen speci�ed, a learning method also has the option of makingno guess for a particular target in a particular test case.hierarchical testing scheme An experimental set-up in which separate, non-overlapping testsets are used to assess the performance of a method as trainedon di�erent training sets; distinguished from a common testingscheme.historical dataset A dataset that is included in the DELVE archive because it hasbeen used to assess learning methods in the past, but which isnot recommended for future use, except when there is a need tomake comparisons with past results in the literature.input attribute For a particular prototask, an attribute that is available for usein predicting the values of the target attributes in the samecase, but whose values do not themselves need to be predicted.informative ordering An ordering of cases in a dataset (as originally obtained) thatconveys information that may be signi�cant | for instance, anordering of data on patients by date of admission to hospital.integer attribute An attribute whose values are integers, and for which the priorinformation does not specify an interpretation as a categoricalattribute. Note that the range of an integer attribute may berestricted (eg, to the positive integers).learning experiment An experiment in which the performance of one or more learn-ing methods on one or more tasks is assessed by applying thelearning methods to several task instances. DELVE de�nes astandard scheme for conducting such experiments.99



D. GLOSSARY OF DELVE TERMINOLOGYlearning method A well-de�ned procedure for discovering relationships among at-tributes on the basis of prior information and empirical data,and for making predictions for new cases using the relationshipslearned. Learning can be supervised or unsupervised.log-probability loss A loss function used with methods whose predictions are predic-tive distributions over target values. The log-probability loss isminus the log (base e) of the probability or probability density ofthe target values. This loss function can be used with any task,but for tasks with real-valued targets (such as regression tasks),the loss must be computed by the learning method itself, ratherthan by DELVE.loss function A measure of how far o� a prediction is, given the actual valuesof the targets. The standard loss functions DELVE supports aresquared-error loss, absolute-error loss, 0-1 loss, squared-probability loss, and log-probability loss. Specialized lossfunctions can also be constructed that incorporate a no-guesspenalty, or that are based on a loss matrix.loss matrix For a prototask with one categorical target, a matrix that spec-i�es the loss that is su�ered for every possible combination of aguessed value for the target and an actual value for the target.For each actual value of the target, the loss su�ered when noguess is made may also be speci�ed.missing value An indicator that the actual value of an attribute for a particularcase is not known. In DELVE dataset �les, a missing value startswith a question mark; this may be followed by other charactersto distinguish values that are missing for di�erent reasons.natural dataset/prototask A dataset that comes from a real-world source, and for whichthere is or was a real interest in learning relationships amongthe attributes (for either scienti�c or engineering purposes). Aprototask is classi�ed as natural if it is based on a natural dataset,and involves learning relationships that were of interest to theoriginal investigators.no-guess penalty The loss su�ered when a learning method whose predictions takethe form of guesses decides to make no guess for a particulartarget in a particular case.nominal attribute A categorical attribute with at least three possible values (notcounting missing values) for which the prior information does notspecify any natural ordering of the values. An example might bean attribute with values of \beef", \pork", and \lamb".non-standard task instance A task instance in which the training and test sets are not selectedaccording the standard DELVE scheme.noise level (for a target) The proportion of the variation in a target attribute that is notexplained by the variation in the input attributes, even given fullknowledge of the true relationship between inputs and targets.100



D. GLOSSARY OF DELVE TERMINOLOGYorder (of a dataset) An indicator of whether the order of cases in the dataset (asoriginally obtained) is informative or uninformative.ordinal attribute A categorical attribute with at least three possible values (notcounting missing values) for which the prior information spec-i�es a natural ordering of the values. An example might bean attribute with values of \no-education", \primary-education",\secondary-education", and \post-secondary-education".p-value (for a comparison) When comparing the estimated expected loss of two learningmethods on some task, the probability that a di�erence in es-timated expected loss of equal or greater magnitude than thatobserved might arise by chance even if the true expected lossfor the two methods is the same. A low p-value may give onecon�dence that the apparently better method actually is better.passive value A value for a categorical attribute that is expected on the basisof prior information to play a role di�erent from that of the othervalue or values of the attribute, with the passive value being as-sociated with a lack of positive inuence. If a binary attributehas values of \hockey-player" and \not-a-hockey-player", for ex-ample, \not-a-hockey-player" might be regarded as passive.performance (of method) In the DELVE context, usually the predictive performance ofthe method on some task, formalized in terms of expected loss.One might also be interested in the computational performanceof a method (its time and memory requirements).prediction (for a test case) The output of a learning method for a test case, embodying themethod's prediction regarding the likely values of the targets inthis case. Predictions may be either single-valued guesses forthe target values, or predictive distributions that say howlikely each of the possible target values is.predictive distribution A probability distribution produced by a learning method as itsprediction for the values of the targets in a test case. For classi�-cation tasks, the predictive distribution consists of a �nite num-ber of probabilities, which may be output in explicit form. Fortasks with real targets, the predictive distribution consists of aprobability density function, which DELVE does not attempt torepresent explicitly; instead, the learning method itself calculatesthe log-probability loss based on its internal representation ofthe predictive distribution.prior information Information regarding the the possible or likely nature of the rela-tionship being learned that is obtained from the prior knowledgeof the investigator (or a surrogate for the investigator), ratherthan from the data itself.prototask A supervised learning problem associated with a dataset, con-sisting of a set of target attributes that are to be predicted,101



D. GLOSSARY OF DELVE TERMINOLOGYa set of input attributes that may be used in making predic-tions, and a pool of cases that are seen by the learning method.A prototask can have many associated tasks, in which the avail-able prior information and the size of the training set are alsospeci�ed. Prototasks are classi�ed as natural, cultivated, sim-ulated, or arti�cial according to their relationship to the realworld. Regression and classi�cation prototasks are distin-guished by the nature of their target attributes.range (of attribute) The set of values that an attribute could conceivably take on,including the set of missing values that are allowed for theattribute.real attribute An attribute whose values are real numbers, and for which theprior information does not specify an interpretation as an angu-lar, integer, or categorical attribute. Note that the range ofa real attribute may be restricted (eg, to some interval).relevance (of an input) The degree to which variation in an input attribute (within itsobserved range) a�ects the values of the target attributes. Putanother way, the degree to which knowledge of the input at-tribute's value helps in predicting the values of the targets, giventhat the true nature of the relationship between inputs and tar-gets is known.regression prototask/task A prototask (or task) in which all the targets attributes are real.sequential prototask A prototask based on a dataset with an informative orderingin which this ordering has been preserved, and in which theremay therefore be dependencies between nearby cases.simulated dataset/prototask A dataset generated by a program (usually with a random com-ponent) that simulates some actual phenomenon in a realisticfashion. Prototasks based on such datasets are also referred toas simulated.squared-error loss A loss function for regression tasks in which the loss is the squareof the di�erence between the guess and the target. When thereis more than one target, the squared-error loss is the sum of suchsquared di�erences for all the targets.squared-probability loss A loss function for classi�cation tasks, used with methods whosepredictions are predictive distributions over target values. Thesquared-probability loss is the square of one minus the probabilityassigned to the correct target value, plus the sum of the squares ofthe probabilities assigned to all the other target values. Squared-probability loss cannot be used when there is more than onetarget attribute.standard error (of estimate) The standard deviation of an estimate (eg, of expected loss) thatwould be observed if the experiment on which the estimate isbased were to be repeated many times with new data randomly102



D. GLOSSARY OF DELVE TERMINOLOGYobtained from the same source as the actual data. (In practice,the standard errors quoted are themselves estimates, since thetrue standard deviation usually depends on unknown quantities.)standard task instance One of the task instances that are used in DELVE's standardscheme for learning experiments.strati�ed training set A training set for a classi�cation task in which training cases havebeen selected in such a way that each of the di�erent possibletarget values appears the same number of times.supervised learning Learning whose goal is to discover the relationship of certaintarget attributes to other input attributes, and on this basispredict the values of the target attributes for a new case for whichonly the input attributes are known.target attribute For a particular prototask, an attribute whose values are to bepredicted, based on the values of other input attributes in thesame case.task A speci�c learning context for a prototask, consisting of theprior information regarded as being available for use in learn-ing, and the size and nature of the training set that will beprovided. A task is su�ciently well speci�ed that each learn-ing method has a well-de�ned expected loss for a given taskand loss function. A task may be associated with many taskinstances, in which particular training sets and test cases arespeci�ed.task instance A particular training set for a task, to which a learning methodcan be applied as part of a learning experiment, together witha test set that is used to evaluate the accuracy of the learn-ing method's predictions. In DELVE's scheme for learning ex-periments, a set of standard task instances are de�ned; it ispossible to de�ne non-standard task instances as well.test case A case that is used to evaluate the performance of a learningmethod applied to a particular task instance.test set The set of all test cases for a particular task instance. Notethat although a task instance will normally include many testcases, the predictions for the targets in each test case are to bemade without using information from any other test case.training case A case that is part of the training set made available to alearning method.training set The set of training cases that are made available to a learningmethod in a particular task instance.uncontrolled attribute An attribute whose values were not �xed by the investigators whogathered the data, but by some random process. For example,the amount of rainfall on various agricultural test plots would be103



D. GLOSSARY OF DELVE TERMINOLOGYan uncontrolled attribute (even though the investigators inuencethe amount of rainfall by where they decide to put the plots).uninformative ordering An ordering of cases in a dataset (as originally obtained) thatdoes not convey any useful information| for instance, a randomordering, or an ordering that is sorted by the value of one of theattributes.unsupervised learning Learning whose goal is to discover the relationships amongst allattributes, without distinguishing some attributes as \inputs"and others as \targets". DELVE does not currently handle meth-ods for unsupervised learning, but may do so in future.value (of an attribute) The actual numerical or non-numerical quantity taken on by anattribute in a particular case. Some cases may have attributeswith missing values, for which the actual value is not known,or with censored values, for which the actual value is knownonly to be beyond some given value.0-1 loss A loss function for classi�cation tasks in which the loss is 0 whena guess matches the actual target value and 1 when the guessdoes not match the actual target value. When there is more thanone target, the total loss is the number of mis-matches betweenguesses and actual values.
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