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ABSTRACT
Motivation: The Bayesian network approach is a frame-
work which combines graphical representation and
probability theory, which includes, as a special case,
hidden Markov models. Hidden Markov models trained on
amino acid sequence or secondary structure data alone
have been shown to have potential for addressing the
problem of protein fold and superfamily classification.
Results: This paper describes a novel implementation of
a Bayesian network which simultaneously learns amino
acid sequence, secondary structure and residue accessi-
bility for proteins of known three-dimensional structure. An
awareness of the errors inherent in predicted secondary
structure may be incorporated into the model by means
of a confusion matrix. Training and validation data have
been derived for a number of protein superfamilies from
the Structural Classification of Proteins (SCOP) database.
Cross validation results using posterior probability classi-
fication demonstrate that the Bayesian network performs
better in classifying proteins of known structural superfam-
ily than a hidden Markov model trained on amino acid se-
quences alone.
Contact: alpan raval@kgi.edu; zoubin@gatsby.ucl.ac.uk;
david wild@kgi.edu

INTRODUCTION
The functional and structural annotation of the proteins
coded by a newly sequenced genome is usually initially
performed by pairwise sequence similarity searches
against protein sequence databases, with the subsequent
transfer of annotation, although a number of authors
have drawn attention to the limitations of this approach
(Richards et al., 1995; Smith and Zhang, 1997; Brenner et
al., 1998). Since the sequences of remotely homologous
proteins may have diverged beyond the point at which
their similarity may be detected by pairwise sequence
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comparisons, typically some 30% or more of open reading
frames (ORFs) may remain functionally uncharacterized
after this type of analysis. Recent benchmarking experi-
ments (Brenner et al., 1998; Park et al., 1998; Mueller et
al., 1999) using the Structural Classification of Proteins
(SCOP) classification of protein structural domains
(Murzin et al., 1995) have shown that techniques based
on multiple sequence profiles, such as PsiBlast (Altschul
et al., 1997) and hidden Markov models (HMMs) (Krogh
et al., 1994) provide more sensitive methods for detecting
remote homologies than database search methods which
rely only on pairwise sequence similarity. These bench-
mark studies also demonstrated that all sequence-based
methods miss many important remote homologies be-
tween proteins with less than 20% sequence similarity. In
addition, since three-dimensional (3D) structure is more
highly conserved than primary sequence in evolution,
and homologous proteins nearly always have similar 3D
structures, fold recognition techniques, which attempt
to utilize the additional information encoded by the 3D
structure to identify the fold which an protein of unknown
structure is most likely to adopt, also provide a sensitive
method of detecting remote homologies (Fischer and
Eisenberg, 1997; Rychlewski et al., 1998, 1999; Jones,
1999). As structural genomics projects get underway,
there will be a dramatic increase in the number of exper-
imentally determined protein structures available, which
will increase the coverage of fold recognition template
libraries and the utility of these techniques for remote
homologue detection (Burley et al., 1999).

There have been two main approaches to fold assign-
ment to date: threading using empirically derived pairwise
pseudo-potentials (Sippl, 1990; Sippl and Weitckus,
1992; Godzik et al., 1992; Jones et al., 1992; Bryant and
Lawrence, 1993) and profile alignment methods (Bowie
et al., 1991; Rost, 1995; Fischer and Eisenberg, 1996;
Russell et al., 1997). These methods are summarized
below.
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In the first approach an amino acid sequence is
‘threaded’ onto the backbone coordinates of each protein
in a library of protein folds, and the compatibility of
the sequence with the structure is evaluated by a scor-
ing function based on empirical pairwise interaction
potentials that are derived using the statistics of known
protein structures and the equilibrium Boltzmann distri-
bution (Sippl, 1990). Potentials corresponding to short-,
medium-, and long-range interactions have been utilized.
In this approach, the score of the sequence-to-structure
alignment is interpreted as a pseudo ‘free energy’ of the
sequence in the conformation imposed by the structural
template, and the assumption made is that the most
probable sequence-to-structure alignment is the one with
the lowest ‘free energy’. However, as Bienkowska et al.
(2000) have pointed out, if one assumes that the structural
templates used for fold recognition represent an ensemble
of similar structures or expected variants around a partic-
ular fold topology, then the most probable (or lowest ‘free
energy’) sequence-to-structure alignment represents only
one of the possible variants in the ensemble.

The second approach to fold recognition involves the
use of a profile, or position-specific scoring matrix and
gap penalties, derived from a multiple alignment of related
sequences (Gribskov et al., 1987). The similarity of any
other sequence to the profile can be obtained through the
use of dynamic programming to obtain an optimal (or
most probable) sequence-to-profile alignment. The ‘3D
profile’ approach to fold recognition extends this concept
by incorporating structural information into the profiles
(Bowie et al., 1991). Substitution matrices have been
derived for different secondary structural environments,
and may also include additional information such as the
degree of solvent accessibility of an amino acid residue.
The matching of both the primary sequence and the
predicted secondary structure of an unknown sequence
with the sequences and observed secondary structures
of a fold library is then performed using a dynamic-
programming algorithm and these structural profiles.
However, the optimal sequence-to-structure alignment
produced by dynamic programming techniques is rarely
the correct one (Rost et al., 1997; Levitt, 1997; Russell et
al., 1996). Bienkowska et al. (2000) have pointed out that
the set of suboptimal alignments can be seen as a set of
optimal alignments under expected statistical fluctuations
in the scoring function, and can be interpreted as optimal
alignments to structural variants of the same fold. White et
al. (1994) and Lathrop et al. (1998a,b), using an approach
based on Bayesian theory have proposed that summing the
probabilities of all possible sequence-to-structure-model
alignments should give a more rigorous approach to fold
recognition than relying on the optimal or most probable
sequence–structure alignment. The HMM approach to
this problem uses the forward algorithm to calculate the

likelihood (the probability of observing the sequence
given the model; P(sequence | model)). The posterior
normalization of the sequence-model probabilities is
given by Bayes’ rule, which calculates the probability
of observing a particular model given the sequence;
P(model | sequence). Using an approach based on these
ideas, Bienkowska et al. (2000) have shown that fold
recognition accuracy may be increased by 40% compared
to an approach based on optimal sequence–structure
alignment probability.

Hidden Markov models have been successfully applied
to protein fold recognition by using two other strategies.
Homologous sequences of the unknown probe are first
used to build a model which is then searched against
sequences of a library of folds, or a model is built directly
from a library of fold sequences and the probe sequence
is scored against each model in turn. HMMs trained on
either amino acid sequence or secondary structure data
have been shown to have potential for addressing the
problem of protein fold and superfamily recognition,
where the goal is to classify a new protein sequence as
belonging to a particular fold or superfamily (Karplus et
al., 1997; Di Francesco et al., 1997). In the benchmarking
experiments of Park et al. (1998), sequence-based HMMs
were shown to be three times more effective than pairwise
methods at detecting remote protein homologies. Further
improvement in the sensitivity of remote homologue
classification has been obtained by Jaakkola et al. (1999)
who have used sequence-based HMMs to develop a
discriminative model, based on a Fisher kernel function,
estimated using both positive and negative training
examples. The Fisher kernel method is a special case
of the more general method of constructing a support
vector machine (Cristianini and Shawe-Taylor, 2000)
for the purpose of classification. The aim of a support
vector machine is to find a hyperplane that separates
training examples in one class (the positive or like class)
from training examples in another (negative, or unlike
class). This is done by mapping the training data into
a higher-dimensional space and defining an appropriate
separating hyperplane there. The map used by Jaakkola
et al. (1999) was the Fisher score of a sample training
sequence, derived from the parameters of a HMM trained
on positive sequences examples.

We have previously proposed a method to combine
features of the 3D profile alignment fold recognition
method with a HMM formalism by developing Bayesian
network models which incorporate both primary sequence
and structural information (Wild and Ghahramani, 1998).
The Bayesian network approach is a framework which
combines graphical representation and probability (Pearl,
1988) and may be thought of as a generalization of HMMs
(Smyth et al., 1997; Ghahramani, 2001). Our model
simultaneously learns amino acid sequence, secondary
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structure and residue solvent accessibility for proteins
of known 3D structure. A consideration of the errors
inherent in the predicted secondary structure and residue
accessibility for a query sequence may be incorporated
into the model by means of a confusion matrix. We have
used posterior probabilities (obtained from the likelihoods
calculated by summing over all possible sequence-model
alignments) for each of our structural models to identify
the model which best classifies a particular sequence.

Several groups have recently presented methods which
combine amino acid and secondary structure information
in a HMM framework, with promising results. Thorne et
al. (1996) have described the use of a HMM with three
fully connected states and evolutionary trees for secondary
structure prediction. Yu et al. (1998) describe a new class
of probabilistic models (discrete state-space models) in
which amino acid probability distributions associated
with particular secondary structural states are replaced
by the distributions of conserved sequence patterns.
Hargbo and Elofsson (1999) describe modifications to the
HMMER hidden Markov model package (Eddy, 1998)
which combine the use of predicted secondary structure
and pre-existing multiple sequence alignments (Sander
and Schneider, 1991) and their application to the problem
of protein fold (not superfamily) recognition. The work
described here significantly extends this area of research
by examining various Bayesian network structures for
combining amino acid and secondary structure sources
of information and the use of Fisher kernel discriminants
derived from these Bayesian networks to evaluate clas-
sification performance. In the next section we provide
tutorial material on the Bayesian network approach.

BAYESIAN NETWORKS
Bayesian networks are a graphical tool for representing
conditional independencies between a set of random
variables in a probabilistic model (Pearl, 1988; Cowell
et al., 1999; Jensen, 1996). A random variable A is
conditionally independent from B given C if P(A, B |
C) = P(A | C)P(B | C), or equivalently P(A | B, C) =
P(A | C), where the notation P(Y | X) denotes the proba-
bility of Y given X . For example, in a medical diagnosis
model, the probability of observing a symptom (A) may
be conditionally independent of the results of a test for
the disease (B), if we are given (i.e. we know) whether
the patient suffers from the disease (C). Using these
conditional independecies, the joint probability of all the
variables in the model can be factored into a product of
conditional probabilities. For example,

P(A, B, C) = P(C)P(A | C)P(B | C).

In a Bayesian network, each variable in the model is
represented by a node in a graph and the conditional

C

A B

Fig. 1. A Bayesian network consistent with the conditional indepen-
dence relations in P(A, B, C) = P(C)P(B | C)P(A | C).

independence relationships by directed arrows in the
graph. We draw arrows from the variables on the right-
hand side of the conditionals in the factorization to the
variables on the left-hand side, calling the right-hand
side variables the parents of the left-hand side variables
(called the children). The Bayesian network for the above
factorization is shown in Figure 1.

We now turn to HMMs, which are a special case of
Bayesian networks. A HMM is a tool for representing
probability distributions over sequences of observations.
Let us denote the observation at location (or time) t
in the sequence by the variable Pt . This can be, for
example, the amino acid residue observed at location t
in a protein sequence. The HMM gets its name from two
defining properties. First, it assumes that the observation
at location t was generated by some process whose state
St is hidden from the observer. The state of the HMM is
assumed to be a discrete variable: i.e. St can take on K
values which we can denote by the integers {1, . . . , K }.
Second, it assumes that the state of this hidden process
satisfies the Markov property: that is, given the value
of St−1, the current state St and all future states are
independent of all the states prior to t − 1. In other words,
the state at some time or location encapsulates all we
need to know about the history of the process in order
to predict the future of the process. The outputs also
satisfy a Markov property with respect to the states: given
St , Pt is independent of the states and observations at
all other time indices. A Bayesian network specifying
the conditional independence relationships for a HMM is
shown in Figure 2. For HMMs, the algorithm that infers
the hidden states given the observations efficiently by
exploiting conditional independence relations is called the
forward–backward algorithm, which is a special case of
both dynamic programming and the general propagation
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P1 P2 P3

Simple HMM: Primary Structure (HMM)

Emission matrix

(20xK)

Transition matrix 

KxK

Fig. 2. A Bayesian network specifying conditional independence
relations for a HMM showing the hidden states (open circles)
and observations (filled circles) for the first three time steps of a
sequence.

algorithms for Bayesian networks (Pearl, 1988; Lauritzen
and Spiegelhalter, 1988; Smyth et al., 1997).

Graphical diagrams can also be used to represent the
transitions allowed in a HMM and, while this form of
diagram is easy to confuse with the Bayesian network
representation of HMMs, the two have very different
semantics. If the variables St−1 and St each have K
possible discrete values (states), then P(St | St−1) is a K×
K state transition matrix which we can draw graphically
by showing K nodes connected by up to K 2 arrows. If a
state is not allowed to transition to some other state, i.e.
P(St = k | St−1 = m) = 0, then the corresponding arrow
from m to k is missing from such a diagram. For example,
in biological sequence modeling using HMMs we usually
have states denoted ‘match state’, ‘insert state’, etc, and
a match state cannot transition to previous match states.
Although the left-to-right form of such a diagram may
appear similar to a Bayesian network, it is a depiction of
the non-zero elements of a transition matrix and does not
carry any conditional independence interpretation.

METHODS
In this paper we evaluate the performance of various
Bayesian network models which incorporate both se-
quence, secondary structure and residue accessibility
information in comparison to sequence-based HMMs,
when modeling diverse superfamilies containing a number
of remote homologues. Our goal is to evaluate perfor-
mance for two scenarios; one in which the actual structure
of a protein is known (for instance, as would be the case
with a structural genomics experiment) and one in which
only the amino acid sequence of a protein is known (for
instance, a newly sequenced gene product) and where

secondary structure and residue accessibility information
must be obtained by prediction. We have compared five
models: a hidden Markov model trained and tested on
amino acid sequence alone (HMM) a Bayesian net-
work model which simultaneously learns amino acid,
secondary structure and residue accessibility symbols,
trained and tested using known primary sequence and
structural data for proteins of known three-dimensional
structure (BN1); a similar model (BN1-JNET) which used
predicted secondary structure and residue accessibility
in the test data set; a Bayesian network model which
incorporates additional elements relating actual secondary
structure and accessibility symbols to values obtained
by prediction from amino acid sequence alone (BN2),
and a model identical to BN1 except trained and tested
on known primary but predicted secondary structure
and accessibility symbols (BN1-PRED, described in
the Discussion section). The differences between these
models are summarized in Table 1. We have compared
the performance of these models using both posterior
probability scores and Fisher kernel discrimination. We
describe these models and the scoring methods in more
detail below.

IMPLEMENTATION
Training and Test Data
Comparing benchmarks for remote homology detection is
difficult, given the constantly evolving nature of sequence
and structural databases. One of the most rigorous studies
to date has been performed by Chothia and co-workers
(Brenner et al., 1998; Park et al., 1998) who developed
a structural benchmark for sequence homology methods,
based on recognizing superfamily relationships in the
Structural Classification of Proteins (SCOP) database
(Murzin et al., 1995). SCOP classifies protein domains
of similar 3D structure and demonstrated homology (i.e.
evolutionarily related proteins) into the same superfamily.
Domains which share the same structure but lack evidence
for a divergent evolutionary origin are assigned to the
same fold. An alternative benchmark for remote homology
detection, more suitable for machine learning methods,
was used by Jaakkola et al. (1999), who describe an
alternative way of partitioning training and test data to
answer the question ‘could the method discover a new
(unknown) family of a known superfamily?’ In these
experiments, the problem of remote homology detection
was simulated by withholding all members of one SCOP
family from the training set, and then training with
the remaining members of the SCOP superfamily. The
withheld family (which are known remote homologs of
the superfamily sequences) was then used as test data.

To construct our training and test sets we chose protein
domains from the SCOP database, version 1.53. Rather
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Table 1. Definitions of the various types of Bayesian network models used. The fields in the second row stand for: P = primary structure, SS = secondary
structure, R A = residue accessibility. The various model types: HMM, BN1 etc. are then defined by whether the primary structures, secondary structures and
residue accessibilities are known or predicted and whether or not a confusion matrix was used. A—in an entry indicates that the corresponding information
was not used in that model type

Model type Training data Test data
P SS RA P SS RA

HMM Known – – Known – –

BN1 Known Known Known Known Known Known

BN1-JNET Known Known Known Known Predicted Predicted

BN2 Known Known Known Known Predicted Predicted
(with plus (with plus
confusion confusion

matrix) matrix)

BN1-PRED Known Predicted Predicted Known Predicted Predicted

than splitting the domains in each superfamily randomly
into training and test sets, following Jaakkola et al. (1999),
we withheld one entire family as a test set and trained
on the domains present in the other families (within the
same superfamily). The reason for splitting the data in
this manner is that it guarantees a low sequence similarity
between training and test sets (which a random split
does not guarantee—see http://public.kgi.edu/∼wild/BN/
table3.htm for sequence identity statistics). To this end,
we only chose superfamilies that contain at least three
families (so that at least two families could be chosen
as training families and one as test). Superfamilies with
just one family would not be suitable for this type of
cross-validation experiment and superfamilies with two
families would give trained models that are likely to be
overfitted to the one family on which they are trained.
We also filtered the superfamilies chosen so that there
were a sufficiently large number of training sequences
(greater than or equal to 100 before further filtering). Since
the methods we use incorporate secondary strucuture
and residue accessibility information (both calculated and
predicted), we further filtered all families for domains
for which secondary structure and residue accessibility
could be calculated as well as predicted. The resulting
25 superfamilies used, along with their SCOP identifiers
and descriptions, are given in Table 2. Statistics for the 25
superfamilies, including families withheld as test families,
numbers of training and test sequences, and percentage
sequence identity between training and test sets, are
given at http://public.kgi.edu/∼wild/BN/table3.htm. The
percentage sequence identities were calculated using the
global Needleman–Wunsch alignment algorithm (GCG
program GAP with end gaps penalized).

For each protein domain, secondary structure and rel-
ative residue solvent accessibility were calculated from

the 3D coordinate files using the DSSP algorithm (Kabsch
and Sander, 1983) and converted to a three letter alphabet
({Helix, Sheet, Coil} for secondary structure and a two let-
ter alphabet {Buried, Exposed} for accessibility) accord-
ing to Rost and Sander (1994). In the work of Hargbo and
Elofsson (1999), the secondary structure for each train-
ing sequence is inherited from the HSSP database (Sander
and Schneider, 1991) and is assumed to be the same for all
proteins in a family. However, an analysis of a set of 68
structurally aligned proteins of between 8–30% identity
by Zhang et al. (1997) showed that the secondary struc-
ture, as measured by a three-state model calculated by
DSSP, is only 68% conserved on average between pairs
of structurally aligned proteins, with a similar figure for
residue burial. The assumption made by Hargbo and Elof-
sson, of a similar secondary structure for every member of
a superfamily is not, therefore, justified, which is why we
have used the actual (DSSP calculated) secondary struc-
tures and residue accessibilities in our model training.

MODEL ARCHITECTURES
An initial model, trained on amino acid sequence alone,
was built according to the basic HMM architecture shown
as a Bayesian network in Figure 2 (HMM). This model
was then extended to simultaneously learn amino acid,
secondary structure and accessibility symbols as shown
in Figure 3 (BN1). BN1 can be thought of as a regular
HMM with vector valued observations, and the figure
illustrates the conditional independence relations between
different variables (i.e. the Bayesian network). Since the
model assumes that the amino acid, secondary structure
and accessibility observations are independent, given the
hidden state, the total emission probability is obtained
by multiplying the emission probabilities for the three
different alphabets. This model is similar to that described
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Table 2. SCOP descriptions of the 25 superfamilies used in the current experiment. The second column gives the superfamily identifier in SCOP version 1.53
(Class.Fold.Superfamily) and the third column gives the full description (Class/Fold/Superfamily)

No. SCOP 1.53 ID Description (class/fold/superfamily)

1 1.3.1 All alpha proteins/cytochrome c/cytochrome c
2 1.4.5 All alpha proteins/DNA/RNA binding 3-helical bundle/winged helix DNA-binding domain
3 1.36.1 All alpha proteins/lambda repressor-like DNA binding domains/lambda repressor-like DNA binding domains
4 1.41.1 All alpha proteins/EF hand-like/EF hand
5 2.1.1 All beta proteins/immunoglobulin-like beta sandwich/immunoglobulins
6 2.5.1 All beta proteins/cupredoxins/cupredoxins
7 2.28.1 All beta proteins/concanavalin A-like lectins/glucanases/concanavalin A-like lectins/glucanases
8 2.38.4 All beta proteins/OB-fold/nucleic acid-binding proteins
9 2.44.1 All beta proteins/trypsin-like serine proteases/trypsin-like serine proteases
10 2.47.1 All beta proteins/acid proteases/acid proteases
11 2.56.1 All beta proteins/lipocalins/lipocalins
12 3.1.8 Alpha and beta proteins (a/b)/TIM beta/alpha-barrel/(Trans)glycosidases
13 3.2.1 Alpha and beta proteins (a/b)/NAD(P)-binding Rossmann-fold domains/NAD(P)-binding Rossmann-fold domains
14 3.3.1 Alpha and beta proteins (a/b)/FAD/NAD(P)-binding domains/ FAD/NAD(P)-binding domains
15 3.32.1 Alpha and beta proteins (a/b)/P-loop containing nucleotide triphosphate hydrolysases/P-loop containing nucleotide

triphosphate hydrolysases
16 3.42.1 Alpha and beta proteins (a/b)/Thioredoxin fold/Thioredoxin-like
17 3.50.1 Alpha and beta proteins (a/b)/Ribonuclease H-like motif/Actin-like ATPase domain
18 3.50.3 Alpha and beta proteins (a/b)/Ribonuclease H-like motif/Ribonuclease H-like
19 3.62.1 Alpha and beta proteins (a/b)/PLP-dependent transferases/PLP-dependent transferases
20 3.65.1 Alpha and beta proteins (a/b)/alpha/beta-Hydrolases/alpha/beta-Hydrolases
21 4.2.1 Alpha and beta proteins (a+b)/Lysozyme-like/Lysozyme-like
22 4.3.1 Alpha and beta proteins (a+b)/Cysteine proteinases/Cysteine proteinases
23 4.70.1 Alpha and beta proteins (a+b)/Glyceraldehyde-3-phosphate dehydrogenase-like,C-terminal domain/

Glyceraldehyde-3-phosphate dehydrogenase-like,C-terminal domain
24 4.81.1 Alpha and beta proteins (a+b)/Zincin-like/Metalloproteases (‘zincins’), catalytic domain
25 4.154.1 Alpha and beta proteins (a+b)/C-type lectin-like/C-type lectin-like

by Hargbo and Elofsson (1999), with the exception that
our model also incorporates residue solvent accessibility.
In addition, there are important differences in the training
and scoring methods, described below. To better model
training sets with few sequences, and avoid overfitting,
the model was regularized using pseudo-counts for the
transition probabilities and emission matrices, according
to Laplace’s rule (Durbin et al., 1998).

Model lengths (T ) were chosen both by comparing
validation set likelihoods and by computing modes of
sequence length histograms. The number of hidden
states in the models shown in Figures 2, 3, and 4 is
then K , where K = 3T , with the factor of three coming
from the fact that there is an insert state and delete
state for every match state. Emission probabilities for
both match and insert states are learned directly from
the training data. To compensate for possible sequence
redundancy in the training set, models were trained
using a weighted expectation–maximization (EM) algo-
rithm, with similar sequences down-weighted. Training
set sequences were multiply aligned using ClustalW
(Thompson et al., 1994) and relative weights for each
sequence calculated according to the degree of sequence
similarity, using the weighting scheme of Vingron and

Argos (1989). The model parameters were fitted by the
EM algorithm and not obtained via sequence or structure
alignment.

BN2 (Figure 4) represents the extension of BN1 to the
case where the structure of the probe sequence is unknown
and the secondary structure and residue accessibility must
be predicted. In this model, the actual secondary structure
and residue accessibility are hidden state variables, with
the predicted secondary structure and accessibility repre-
senting ‘pseudo-observations’. Since these quantities can
only be predicted with an accuracy of around 70% (Zemla
et al., 1997), it is advantageous to incorporate an aware-
ness of the errors inherent in predicted secondary struc-
ture and residue accessibility into the model by means of
a confusion (or misclassification) matrix, as shown in Fig-
ure 4. The experiments described here used the JNET soft-
ware (Cuff and Barton, 2000), which is reported to give
76.4% average accuracy on a large test set of proteins, for
secondary structure and accessibility predictions. In any
multi-class prediction problem with K classes, one obtains
a K ×K confusion matrix Z = zi j where zi j represents the
number of times the observed value is predicted to be in
class j whilst belonging to class i (Baldi et al. (2000)). For
secondary structure prediction with three classes; helix,
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P1

Secondary Structure and Residue Burial (BN1)

A1

DSSP

S1

Secondary Structure Calculation

Transition matrix 

KxK

Emission matrix

(2xK)

(20xK)

(3xK)

P2 P3A2 S2 A3 S3

Fig. 3. BN1, incorporating secondary structure and residue burial (solvent accessibility).

Real Case: Noisy Predicted Observations (BN2)

Confusion matrix

(2x2)

P1

A

JNET

Secondary Structure Prediction

Confusion matrix

(3x3)

P2 S2

S

P3P2P2A2 A3 S3

Fig. 4. BN2, incorporating predicted ‘pseudo-observations’ (gray circles) for secondary structure and residue burial.

sheet and coil, we obtain a 3 × 3 confusion matrix, whilst
for residue solvent accessibility prediction with two states;
buried and exposed, we obtain a 2 × 2 confusion matrix.
The confusion matrix for secondary structure and residue

accessibility predictions using JNET was derived for the
non-redundant set of 350 high-quality protein structures
used by Russell et al. (1997) and is shown in Table 3.
This inherent uncertainty in secondary structure prediction
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Table 3. Confusion (or misclassification) matrix for secondary structure
(left) and residue accessibility (right) predictions from JNET, based on a non-
redundant set of 350 protein structures. These matrices show the frequency
with which a residue in a particular state is predicted to be in a helix, sheet
or coil, etc

Predicted/ Helix Sheet Coil Predicted/ Buried Exposed
Observed observed

Helix 0.753 0.036 0.211 Buried 0.825 0.175

Sheet 0.023 0.838 0.138 Exposed 0.329 0.671

Coil 0.079 0.096 0.826

was not considered in the models of Hargbo and Elofsson
(1999) which used predicted secondary structures.

MODEL SCORING USING POSTERIOR
PROBABILITIES AND FISHER KERNELS
Log-likelihood scores for the training and test sets were
calculated (using the forward algorithm) for each super-
family model and for a default (baseline) model. The base-
line model assumes that amino acid, secondary structure
and residue accessibility symbols are independent at each
position, and assigns fixed emission probabilities based on
Dayhoff background frequencies for amino acids (Day-
hoff et al., 1978), and the ‘stationary probabilities’ for
secondary structure and residue accessibility derived by
Thorne et al. (1996). The baseline model is used to clas-
sify proteins which cannot be classified by any of the su-
perfamily models, and so represents a ‘don’t know’ clas-
sification. Posterior probabilities [Prob(Model | Data)] for
each of the structural models plus the baseline model were
calculated from Bayes’ rule and used to perform Bayesian
classification. All proteins in each superfamily were clas-
sified according to these posterior probabilities and the re-
sults summarized in the form of a confusion or classifica-
tion table, similar to that described above for secondary
structure prediction. The criterion for selecting the model
which best classifies a particular protein is to choose the
model with the highest posterior probability for a given
pattern of evidence. If N models have been trained, the
model selected as the best classification for the protein (X )
would be model Mi such that P(Mi | X) > P(M j | X)

for all j 
= i . For each model architecture (HMM, BN1,
BN1-JNET and BN2) posterior probabilities were calcu-
lated and a Bayesian classification table constructed.

The recently developed Fisher kernel method has been
used to obtain more sensitive protein superfamily clas-
sification using sequence based HMMs (Jaakkola et al.,
1999). This is a variant of support vector machine methods
(Boser et al., 1992), using a kernel function derived from
a HMM. During the training of a generative model, such
as a HMM, parameters are estimated so that positive train-

ing examples (proteins belonging to the superfamily be-
ing modeled) are likely to be observed under the probabil-
ity model. In contrast, the parameters of a discriminative
model would be estimated using both positive and negative
training examples. Jaakkola et al. (1999) describe the par-
ticular class of discriminative techniques known as Fisher
kernel methods. Following their approach, we model the
discriminant function L(X), the sign of which determines
the classification of a protein X into one of two hypothesis
classes (superfamily member/non-member), as

L(X) = log P(H1 | X) − log P(H0 | X)

=
∑

i :Xi ∈H1

λi K (X, Xi ) −
∑

i :Xi ∈H0

λi K (X, Xi ).

Here H1 and H0 are the positive and negative hypothesis
classes, respectively, and the kernel function we use is

K (X, Y ) = φ(X) · φ(Y )

where φ(X) is the Fisher score vector for protein X , given
by the derivatives of the log-likelihoods with respect to the
parameters of the model. The coefficients λ are computed
according to a gradient ascent algorithm that maximizes
an objective function of the coefficients λ, as described by
Jaakkola et al. (1999).

We compute Fisher scores from a ‘mixture model’,
combining all the models for the different superfamilies.
In order to compute the Fisher score vectors from the
generative models, we start with N training datasets,
D1, . . . , DN in N classes, and consider the N generative
models M1, . . . , MN , plus one baseline model M0.
P(D | Mi ) is the likelihood of the data given model i .
Prior probabilities π0, . . . , πN are estimated from the
frequency of occurrence of protein superfamilies in
the SwissProt sequence database, which we consider
to be more representative of the distribution of protein
sequences than the limited number of sequences of known
structure represented in the SCOP database. We then form
a global mixture model M∗ such that

P(X | M∗) =
N∑

i=0

πi P(X | θi ),

θi being the parameters of the generative model i . The
Fisher score vector for a particular protein X is obtained
by evaluating the derivative of the log-likelihood with
respect to a vector of parameters. We take these parameters
to be the prior probabilities πk (the mixing proportions of
the mixture model). The appropriate derivative is

∂ log P(X | M∗)
∂πk

= ∂

∂πk
log

∑
i

πi P(X | θi )

= rk

πk
− 1

795



A.Raval et al.

where the −1 comes from the sum to 1 constraint on the
estimated priors πk , and the rk are the previously calcu-
lated posterior probabilities of X , i.e. rk = P(Mk | X).
Similarly, the Fisher score vector with respect to the
model parameters θi (emission and transition probabili-
ties) would be

∂ log P(X | M∗)
∂θi

= πi

P(X | M∗)
∂ P(X | θi )

∂θi

= πi P(X | θi )

P(X | M∗)
∂ log P(X | θi )

∂θi

= ri
∂ log P(X | θi )

∂θi

From these Fisher score vectors we compute Li (X) for
the protein X to be classified. This would be sufficient
for pairwise discrimination (two-class discrimination).
However, in order to construct a multi-class classifier
we add bias terms ai that are model dependent but
independent of protein. These bias terms are trained to
maximize the log-likelihood of the training data D being
correctly classified, i.e., we maximize the function

C(D) =
N∑

i=1

∑
X j ∈Di

log P(i | X j )

where

P(i | X j ) = exp(Li (X j ) + ai )/

{∑
k

exp(Lk(X j ) + ak)

}

is the probability of classifying protein X j into class i .
C(D) is maximized by simple gradient ascent with respect
to ai . The test data are then classified in the model in
which Li + ai is maximum. If all Li (X) + ai < 0 then
the protein X would be classified as not in any of the N
modeled classes (baseline classification).

RESULTS
For all the methods described above (HMM, BN1, BN1-
JNET, BN2) a Bayesian (posterior) classification table
was constructed for the whole data set, i.e. the number
of sequences classified as belonging to each superfamily
modeled. This is the usual way of presenting results for
K -way multiclass classification. However, for clarity, we
present a simplified table showing the total number of
correct classifications and misclassifications made by each
method for each superfamily (Table 4). The individual
detailed classification tables for each method are available
at http://public.kgi.edu/∼wild/BN/index.htm. The overall
numbers of misclassifications made by each method are
presented in Figure 5.

In 22 out of the 25 superfamilies studied in this test,
the structural Bayesian network model (BN1) trained and
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Fig. 5. Graphical representation of Table 4. The height of a bar
represents the total number of misclassifications for that method
(gray: baseline misclassifications, black: misclassifications into
other superfamilies). The percentage number on top of each bar is
the overall percentage of misclassified domains (as a fraction of the
total number of test domains).

tested on real structural data performed as well as or bet-
ter than the HMM trained only on amino acid informa-
tion. In particular, the structural BN1 model misclassified
far fewer proteins into the default (baseline) category than
the sequence-based HMM (Table 4). Although these base-
line misclassifications were not strongly correlated with
amino acid composition or sequence length, we specu-
late that these misclassifications are due to the inability of
the sequence-based HMM to model diverse superfamilies.
Table 4 and Figure 5 also show the classification results
obtained using secondary structures and residue accessi-
bilities as predicted by JNET. BN1-JNET shows the per-
formance of BN1 on predicted data when no confusion
matrix was used, and this structural model performs as
well as or better than the sequence-based HMM on 16 out
of the 25 superfamilies studied. Incorporating confusion
matrices for secondary structure and residue accessibility
(which model inaccuracies in the JNET prediction algo-
rithm) resulted in improved performance over both HMM
and BN1-JNET (18 out of 25 superfamilies).

As an additional measure of performance, following
Park et al. (1998) and Jaakkola et al. (1999), we use the
rate of false positives (RFP) achieved for each model as a
metric. The RFP for a protein is defined as the fraction of
negative test proteins (i.e. proteins not belonging to the
same superfamily) which score as high, or better, than
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Table 4. Overall comparison of the classification performance of all methods. The first column is the superfamily number. For each method, column a gives
the number of correct classifications (boldface), column b gives the number of baseline misclassifications, and column c gives the number of misclassifications
into other superfamilies

No.
HMM BN1 BN1-JNET BN2 BN1-PRED

a b c a b c a b c a b c a b c

1 6 17 0 12 0 11 11 0 12 13 0 10 21 0 2
2 68 7 0 75 0 0 71 0 4 75 0 0 75 0 0
3 1 4 0 2 0 3 1 0 4 1 0 4 1 0 4
4 164 12 0 176 0 0 176 0 0 176 0 0 176 0 0
5 481 809 19 875 0 434 542 0 767 759 0 550 925 0 384
6 77 154 0 91 0 140 85 0 146 96 0 135 95 0 136
7 132 111 8 166 0 85 248 0 3 129 0 122 119 0 132
8 30 21 1 45 0 7 31 0 21 39 0 13 41 0 11
9 233 48 10 236 0 55 237 0 54 236 0 55 235 0 56
10 68 228 0 68 0 228 68 2 226 68 0 228 68 0 228
11 48 45 0 48 0 45 48 0 45 48 0 45 48 0 45
12 123 6 18 109 0 38 102 0 45 91 0 56 106 0 41
13 201 123 0 324 0 0 226 0 98 310 0 14 322 0 2
14 24 0 1 23 0 2 4 0 21 16 0 9 24 0 1
15 205 51 20 265 0 11 241 0 35 265 0 11 262 0 14
16 19 40 0 27 0 32 18 0 41 22 0 37 22 0 37
17 15 35 2 20 0 32 16 0 36 20 0 32 17 0 35
18 28 23 0 28 0 23 23 0 28 27 0 24 28 0 23
19 22 10 8 32 0 8 30 0 10 32 0 8 32 0 8
20 85 5 1 79 12 0 82 9 0 82 9 0 79 12 0
21 548 3 0 548 0 3 544 0 7 548 0 3 548 0 3
22 1 0 10 1 0 10 0 0 11 0 0 11 0 0 11
23 8 8 0 8 0 8 2 0 14 8 0 8 8 0 8
24 48 1 0 48 0 1 47 0 2 47 0 2 48 0 1
25 4 8 0 6 0 6 5 0 7 6 0 6 6 0 6

the protein (in terms of posterior probability). In other
words, the RFP for each true positive protein is the fraction
of incorrect proteins that are found before the correct
protein when the proteins are ranked in order of their score
(posterior probability). The maximum RFP for a model
is the maximum over RFPs of all proteins in the model’s
superfamily. This measure is zero when there is perfect
test set recognition. Since this measure may be dominated
by a few outliers, which are hard to recognize, Jaakkola et
al. (1999) also utilize the median RFP. However, for all the
tests conducted here, this quantity was zero for all models,
and so is not quoted.

In a two-class classification problem the numbers of
true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) often depend on how the
threshold of the scoring function is selected. Generally
there is a trade off between the number of FPs and
FNs, and these are usually summarized by a receiver
operating characteristics curve (ROC), which displays
the sensitivity (defined as TP/(TP+FN)) versus the false
positive rate (FP/(FP+TN)). Alternatively, the sensitivity
is often plotted against the specificity (TP/(TP+FP)) (Baldi
et al. (2000)). Following Jaakkola et al. (1999), we use
an alternative form of the ROC curve more suitable for

our multi-class classification problem. The x-axis gives
possible values for the maximum rate of false positives
(maximum RFP). The y-axis gives, for each method, the
number of families with that maximum rate or lower. The
higher a curve is on this graph, the better the overall
performance of the method. ROC curves are presented
in Figures 6 and 7, which give a graphical comparison
of the overall performance of the various methods on
the 25 test superfamilies. The scoring function used for
classification and for the calculation of RFPs is the
posterior probability of the model given the data. In the
case of support vector machines, the scoring function
is the discriminant function for each datum in each
model. We also compare all classification methods to
the classification performance of BLAST2 (PSI-BLAST
version 2.0.10 with one iteration, Altschul et al., 1997).
In the BLAST2 case, the RFP for each sequence is
computed by searching that sequence against all other
sequences in the 25 superfamilies considered. The number
of false positives resulting from the search are divided by
the total number of unlike sequences (sequences that do
not belong to the superfamily of the original sequence)
to obtain the RFP for that sequence. Once again, these
ROC curves indicate that better performance is obtained
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Fig. 6. Maximum rate of false positives (rfp) for each method used,
and for Blast2. The rfp of a positive test sequence is defined as
the fraction of negative test sequences that have score greater than
or equal to the score of the positive test sequence. The maximum
is taken over all test sequences in a superfamily. The y-axis gives
the number of superfamilies that have less than or equal to the
corresponding maximum rfp on the x-axis. The higher a curve is
on this graph, the better its overall performance.

by model BN2, which uses real primary, secondary and
residue accessibility for training, but predicted secondary
structure and accessibilities, with their confusion matrices
for testing. All of the models considered dramatically
outperform BLAST2 in this test of remote homolog
recognition.

DISCUSSION AND FUTURE WORK
The cross validation experiments using Bayesian (pos-
terior) classification demonstrate that the Bayesian
network model which incorporates structural information
outperforms a HMM trained on amino acid sequences
alone, when tested with both real and predicted secondary
structure and residue accessibilities. A improvement in
classification performance when using predicted sec-
ondary structure and residue accessibilities was obtained
by incorporating the confusion matrix for secondary struc-
ture and residue accessibility prediction into the Bayesian
network model (BN2) (although with the caveat that
most of the SCOP 1.53 sequences used in this test have
probably been previously ‘seen’ during the training of
the neural network used in the JNET secondary structure
prediction method). We find that all methods significantly
outperform BLAST2. One possible explanation for the
superiority of network BN2 versus BN1-JNET when
using known secondary structure and residue accessibility
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Fig. 7. Maximum rate of false positives (rfp) for each support vector
method used, and for Blast2. The rfp of a positive test sequence is
defined as the fraction of negative test sequences that have score
greater than or equal to the score of the positive test sequence. The
maximum is taken over all test sequences in a superfamily. The y-
axis gives the number of superfamilies that have less than or equal
to the corresponding maximum rfp on the x-axis. The higher a curve
is on this graph, the better its overall performance.

data for training, but predicted structural data for testing,
is that model BN2 cannot be lured into putting too much
faith in the structural data, because of the confusion
matrices which model errors in secondary structure and
residue accessibility prediction. For instance, in a region
with highly conserved structural features, BN1-JNET will
be trained to put high emphasis on these, and so will be
vulnerable to mispredictions of these structural features.
This suggests an alternative strategy for training our
BN1 networks; to use predicted secondary structure and
residue accessibility data for training, instead of known
data. In this case, network BN1 might actually learn
which structural features are hard to predict. To test this
hypothesis, we re-trained all the BN1 models using JNET
predicted secondary structure and accessibility data. We
call this network model BN1-PRED. The classification
results are given in Table 4 and Figure 5, and the ROC
curve in Figure 6. These results demonstrate that model
BN1-PRED has almost identical performance that ob-
tained using known (ideal) structural data (model BN1).
This exciting result suggests that our method is generally
applicable to any protein sequence of unknown structure,
and we propose to test this hypothesis in future work.

Scoring experiments using an K -way classifier based
on a Fisher kernel derived from the Fisher score vector
with respect to the posteriors of a mixture model resulted
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in poorer overall performance for all models than when
using maximum posterior classification, as measured
by the maximum RFP (Figure 7). We note that the
maximum RFP measure is sensitive to domination by a
few outliers (the median RFP continues to be zero for
all cases studied). In general, the problem of multiclass
discrimination using support vector machines is an open
one and largely driven by heuristic techniques, although
recent advances (Crammer and Singer, 2002) may provide
a useful approach to multiclass generalizations of support
vector machines. We are investigating the use of combina-
tions of Fisher score vectors for the posterior probabilities
and amino acid and structural model parameters (emis-
sion matrices for the secondary structure and residue
accessibility). Our present implementation of the Fisher
kernel is based on the procedure outlined in Jaakkola et
al. (1999), using a fixed bias and without adding terms
to the diagonal elements of the Fisher kernel matrix that
could compensate for imbalances between like and unlike
training data (the soft-margin approach; see, for example,
Cristianini and Shawe-Taylor (2000)). We believe that
this is a possible reason for the poorer performance of
the Fisher kernel method, as measured by the maximum
RFP, and are currently in the process of implementing a
soft-margin version of the Fisher kernel method.

Our Bayesian network models combine features of the
3D profile alignment approach to fold recognition, in that
they incorporate both sequence, secondary structure and
residue accessibility information, with a HMM formalism.
This allows us to use the forward algorithm to sum the
probabilities of all possible sequence-to-structure-model
alignments as proposed by White et al. (1994) and Lathrop
et al. (1998a,b) rather than relying on the optimal or most
probable sequence–structure alignment as produced by
the dynamic programming algorithms used in the 3D pro-
file alignment approach. The Bayesian network structures
we have explored in this paper can be seen as extensions
of HMMs to incorporate multiple observations and
confusion matrices. In particular, the parameters of these
Bayesian networks can be estimated using a simple mod-
ification of the Baum–Welch algorithm for HMMs. One
of the main limitations of our models is that the hidden
states have a first-order Markov dependency which cannot
model the longer range interactions which influence
protein folding. Extensions of these Bayesian networks
to incorporate multiple hidden variables and long-range
interactions would require more sophisticated exact and
approximate inference and learning algorithms. In future
work we will examine various architectures for the incor-
poration of longer range interactions into our Bayesian
network models, and the use of mean field potentials and a
combination of Gibbs sampling and exact inference meth-
ods from the Bayesian network community to perform
inference and parameter learning in these models.
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