
Probabilistic Graphical Models for Semi-Supervised Traffic
Classification ∗

Charalampos Rotsos
Computer Laboratory,

University of Cambridge
cr409@cam.ac.uk

Jurgen Van Gael
Engeneering Department,
University of Cambridge
jv279@cam.ac.uk

Andrew W. Moore
Computer Laboratory,

University of Cambridge
awm22@cam.ac.uk

Zoubin Ghahramani
Engineering Department,
University of Cambridge

zoubin@eng.cam.ac.uk

ABSTRACT
Traffic classification using machine learning continues to be
an active research area. The majority of work in this area
uses off-the-shelf machine learning tools and treats them as
black-box classifiers. This approach turns all the modelling
complexity into a feature selection problem. In this paper,
we build a problem-specific solution to the traffic classifica-
tion problem by designing a custom probabilistic graphical
model. Graphical models are a modular framework to de-
sign classifiers which incorporate domain-specific knowledge.
More specifically, our solution introduces semi-supervised
learning which means we learn from both labelled and un-
labelled traffic flows. We show that our solution performs
competitively compared to previous approaches while using
less data and simpler features.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS Network Operations[Network
monitoring]

General Terms
Measurements, Algorithms

Keywords
∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. “IWCMC’10, June
28- July 2, 2010, Caen, France. Copyright c©2010 ACM
978-1-4503-0062-9/10/06/...$5.00”

Traffic classification, Semi-supervised learning, probabilistic
graphical models

1. INTRODUCTION
Application identification is the task of identifying the type
of application that generates a particular network flow. With
the increase in the complexity of computer networks and ex-
plosion of the number of network applications, application
identification has become an increasinly important problem
for the research community. Lightweight and accurate appli-
cation identification methods can make resource allocation
more effective, since this variability in applications creates
conflicting resource requirements that are difficult to fulfill.
Additionally, the increase in the diversity of applications
makes network tasks like administration, network planning
and policing difficult.

For many years, the main method to infer the application
of a network flow was the port number of the server. This
approach requires that hosts use specifically assigned ports
for each application. Research shows that simple port-based
application identification have poor results for some appli-
cations, like Skype and p2p-filesharing [11].

In order to overcome the deficiency of port-based methods,
complex application-identification frameworks have been dis-
cussed in the literature that try to incorporate extended in-
formation sources from the network in order to increase their
accuracy [8, 12]. The majority of such work uses packet level
information, requiring e.g. expensive hardware for network
measurements. Additionally, most of the methods require
both expensive manual tagging of training datasets and ex-
tensive monitoring of applications for protocol changes.

In this work, we use flow record data (e.g. NetFlow) for ap-
plication identification. ISPs have flow-level measurement
infrastructure in place for billing and anomaly detection
purposes. Hence, this type of data makes for an appeal-
ing information source to build our application identification
framework. Additionally, previous work on the problem has
shown that simple machine learning algorithms can achieve
good identification accuracies [7].

We present a solution based on probabilistic graphical mod-

els [9]. Probabilistic graphical models have a number of
advantages over off-the-shel classifiers such as SVM’s, de-
cision trees, etc. a) they are modular and hence can be
re-used and easily extended, b) their visual representation
helps clarifying the model assumptions, and c) all necessary
computations involved in the analysis can be expressed as
simple manipulations of graphs.

In this work we build a semi-supervised learning algorithm
using probabilistic graphical models. Where traditional clas-
sifiers learn only from labelled data, a semi-supervised clas-
sifier learns from both labelled and unlabelled data. This
is particularly relevant for application identification as it is
easy to gather large sets of flows but expensive to label them.
More specifically, we extend the Naive Bayes classifier by al-
lowing it to incorporate unlabelled data. We introduce and
compare two algorithms to learn our semi-supervised clas-
sifier. The learning algorithms differ by how they integrate
unlabelled data. As far as we know, this is the first at-
tempt to extend traditional classifiers using the framework
of probabilistic graphical models in the field of application
identification.

2. METHODOLOGY
Classification is the process by which one is given a set of
training examples for various different classes and the goal
is to build an algorithm which classifies previously unseen
datapoints.

When training a classifier from data, we can choose between
a supervised learning approach or an unsupervised learning

approach. In the former, we are given a labelled dataset
to train the classifier. Although establishing ground truth
is expensive, the labels provide valuable information. In
unsupervised learning setting, learning purely from data, the
lack of labels means that gathering the data is cheap but the
classifier might be much less accurate.

In our setting, we ask the question whether we can use un-
labelled network flows to improve the accuracy of a classi-
fier that is trained on a small set of labelled network flows.
This approach is commonly known as semi-supervised learn-

ing [15].

There are many powerful semi-supervised learning methods
available; we chose a method based on the following two
criteria:

• the method needs to be flexible enough so we can en-
code domain specific knowledge, and

• the method needs to scale to datasets with potentially
millions of datapoints.

The first point is crucial: initial experiments with a num-
ber of black box machine learning algorithms work well as
a baseline but are soon limited, being hard to improve with
domain expert knowledge. E.g., the IP address is treated as
a sequential number rather than incorporating its subnet-
work structure. The second point is a practical considera-
tion which excludes many advanced machine learning mod-
els; e.g., graph based semi-supervised learning is a very

powerful technique, but we have yet to find algorithms that
easily scale to hundreds of thousands of datapoints.

We chose to work within the framework of probabilistic
graphical models [9]1. This offers some unique advantages:

• modularity : it is easy to replace part of the graphical
model with a more sophisticated version that adapts
better to the data,

• iterative design: if we can identify the source of model
mis-specification, we can iteratively refine a graphical
model, and

• unifying framework : many machine learning models
can be cast into the language of graphical models,
hence we can build on the growing understanding and
expertisve of other approaches.

As we describe shortly, semi-supervised learning fits easily
into the framework. We do not have to change the model
for a lack of labels, only the algorithms used to infer labels
from the model.

Before we describe our particular model, we formalize the
classification task. We are given a set of datapoints X =
{x1, x2, · · · , xL} where xi represents network flow i, and a
set of corresponding class labels CX = {c1, c2, · · · , cL} where
each ci represents a particular application. Moreover, we
assume there is a set Y = {xL+1, · · · , xL+U} of unlabelled
network flows. Each datapoint xi consists of various mea-
surements with xij denoting the jth feature of flow i. Our
goal is to train a classifier f(·) using the sets X, Y, CX such
that for any network flow x∗ we can predict a good class la-
bel f(x∗). Using the graphical model formalism we will do
this in two steps: first we define a probability distribution
over all known and unknown variables in our application
and, second, we specify a rule which says how the probabil-
ity distribution relates to our decision rule f . The starting

(a) supervised classifier

(b) semi-supervised classifier

Figure 1: The graphical model of the classifier

1We refer to probabilistic graphical models and graphical
models interchangeably throughout the remaineder of this
paper.

point for our semi-supervised approach is the following gen-
erative process for the data: there is a random variable ci

which denotes the class label for flow i. This random vari-
able is drawn from a distribution over classes p(ci|φ) where
φ parametrizes the distribution over classes. Generally, we
choose p(ci|φ) to be a discrete distribution with probabil-
ity vector φ. In other words, p(ci = a|φ) = φa. Once
the variable ci is drawn, we draw each feature j for data-
point i independently from a distribution p(xij |θ, ci). We
choose p(xij |θ, ci) to be a discrete distribution with prob-
ability vector θci,j . In the case where xij is a continuous
quantity, we divide the range of xij into buckets (perhaps
after a log transformation) and each bucket is now a discrete
value. This assumption implies that we are learning a his-
togram for each continuous quantity. Figure 1(a) illustrates
the graphical model for our classifier. This type of model is
commonly known as the Naive Bayes model.

The main assumption of the Naive Bayes model is the in-
dependence of the features. This is certainly not the case
in our network flow context: e.g. IP addresses and ports
are strongly correlated. Nonetheless, this assumption works
sufficiently well, provides mathematical tractability and per-
mits a comparison baseline.

To summarize the model so far, we have defined a joint
probability distribution over the class labels and features
p(ci, xi|φ, θ) = p(ci|φ)

Q

j
p(xij |θ, ci). Moreover, we assume

that all flow datapoints are generated independently and
identically distributed, according to this distribution. In
other words, the joint distribution over all datapoints and
labels is

p(CX , X, CY , Y |φ, θ) =

L+U
Y

i=1

p(ci|φ)
Y

j

p(xij |θ, ci)

!

. (1)

We do not know the values for φ and θ but we can learn
them from data. Although there are various ways to do
so, we will take a Bayesian approach, introduce prior dis-
tributions on these parameters and average over their pos-
sible values. Since both random variables φ and θ repre-
sent probability vectors, we choose a distribution over prob-
ability vectors called the symmetric Dirichlet distribution:
φ ∼ Dirichlet(αφ) and θcj ∼ Dirichlet(αθ) for each class la-
bel c and feature j. The symmetric Dirichlet distribution is
the most common distribution over probability vectors and
has the property that Dirichlet(α) will tend to be close to
uniform when α is large and sparse when α is small. In other
words, α decides whether all or only a few components of the
drawn probability vector get probability mass. For our ap-
plication, a small αφ encodes our belief that few classes will
get all the probability mass. This could, for example, encode
that on a particular network, we mostly see web traffic.

Our end goal is to find good settings of the parameter φ and
θ such that we can use them to predict the label of a new
datapoint. The Bayesian approach makes this particularly
elegant. First we learn the posterior distribution over our pa-
rameter φ and θ conditional on the data: p(φ, θ|X, Y, CX).
This distribution captures our belief about the parameter of
our Naive Bayes model after processing the data. Then, we
use the posterior distribution over φ and θ to predict the
class label of a new network flow by applying Bayes’ rule.

Given a new network flow x∗, we can compute p(c∗|x∗, X, Y, CX)
by integrating over the posterior distribution of parameters
p(c∗|x∗, X, Y, CX) ∝

R

p(c∗|φ)p(x∗|θ, c∗)p(φ, θ|X, Y, CX)dφdθ.
The distribution p(c∗|x∗) captures everything we know from
our labelled and unlabelled data.

Finally, for the purpose of this paper we classify x∗ in the
class with the highest probability f(x∗) = maxc(p(c|x∗)).
Note that one can easily apply a more general decision the-
oretic approach by introducing different mis-classification
cost for different classes.

Naive Bayes Training
In a completely supervised setting with no datapoints in
Y, CY , (left plot in Figure 1(a)) computing the posterior
p(φ, θ|X, Y, CX) reduces to a simple counting problem. We
leave the derivation out for brevity and just describe the
posterior computations: the posterior of φ is Dirichlet(αθ,1+
n1, · · · , αθ,N +nN) where αθ,i is the prior for class i and ni is
the number of datapoints in class i. Similarly, the posterior
for θij is a Dirichlet distribution where the parameter is the
sum of the prior and the number of occurrences of feature j

in class i.

In our setting, by introducing unlabelled datapoints Y , the
computation of the posterior over our parameters p(φ, θ|X, Y, CX)
is intractable. More specifically, using Bayes’ rule we find
that

p(φ, θ|X, Y, CX) ∝
X

CY

p(CX , X, CY , Y |φ, θ)p(φ)p(θ). (2)

This equation requires computing all possible label assign-
ments for the unlabelled flows in Y . A brute force way
of computing this exponentially large sum is prohibitively
expensive. In the following paragraphs we introduce two
algorithms which approximate this sum.

The first algorithm, The hard assignment variant is an algo-
rithm in which we compute the posterior distribution based
on the labelled data, p(φ, θ|X, CX), and we iteratively add
one unlabelled datapoint as follows: for each x∗ ∈ X we
compute the posterior class label p(c∗|x∗, X, CX). We then
assign x∗ to the class with the highest probability mass and
include it in our labelled set X and CX while recomput-
ing the posterior p(φ, θ|X, CX). This algorithm is easy to
implement, has the same computational overhead as the su-
pervised Naive Bayes classifier, but unfortunately ignores
the uncertainty in class label c∗.

The second algorithm which we tested, the soft assignment

variant, takes the uncertainty of c∗ into account. The algo-
rithm is exactly the same as the hard assignment algorithm,
except that when we include one new datapoint, we update
the posterior for each parameter according to the predicted
weight of the datapoint. E.g. if a datapoint is in class 1 with
probability 0.3 and in class 2 with probability 0.7, we will
partially update θ1 and partially update θ2. This approach
has a solid theoretical foundation and is commonly known
as the Online Expectation Maximization algorithm [10].

3. RESULTS
3.1 Experimental Data

Table 1: Composition of dataset

app % app % app %
DB
(mysql)

0.0430 SERV
(time)

0.0003 P2P
(file-
share)

0.1147

MAIL 0.0250 SPAM 0.0048 WEB 0.7233
FTP 0.0625 STREAM

(rtp)
0.0031 VPN 0.001

IM 0.0060 VOIP 0.0016 ACCESS
(ssh)

0.0061

Table 2: Features of flow records.
features Explanations
srcIP/dstIP source/destination IP address
srcPort/dstPort source/destination port address
tos IP type of service
sTime/eTime flow start/end timestamp
tcpFlag cumulative OR of TCP flags
bytes total number of bytes observed
pkts number of packets observed
length duration of flow (eTimeA֒|sTime)
pktSize average packet size (bytes/pkts)
byteRate average flow rate (bytes/length)
pktRate average packet rate (pkts/length)
tcpFxxx xxx=syn/ack/fin/rst/psh/urg flag

For the evaluation of the proposed methods, we use a single
network trace from a large multi thousand user research in-
stitute. The trace covers two consecutive weekdays in 2006.
For the labeling process we used GTVS[1] on the full pay-
loaded trace. Table 3 shows the frequencies of application
labels in the trace.

For the extraction of the flow records, we used nProbe [3], a
software implementation of a NetFlow record extractor. The
resulting dataset contains approximately 6 million NetFlow
records. For the extraction, we use the configuration for a
Tier-1 ISP network and no packet sampling was applied.

3.2 Experiments
We implemented both the hard and soft semi-supervised
classifiers in C#, which, for brevity, we call hard and soft

respectively. In addition, we used the Naive Bayes imple-
mentation from the Weka framework, with Kernel density
estimation for modeling the numeric features [6], in order to
build NBK, a model for baseline comparison. We call the
last classifier NBK. Table 2 shows the feature list that we
used in order to represent every datapoint. In order to ad-
dress the capabilities of our approach we consider: 1) How
good is our approach in terms of accuracy? 2) How efficient
is our approach for small training datasets? and 3) How
does our model perform when we vary model parameters?.

3.2.1 Baseline model comparison
Figure 2 shows the accuracy of the different approaches over
the full trace. All the classifiers which are presented have
been trained over the first 30 minutes of the trace and the

Figure 2: Comparison of classifier using the same

training dataset

resulting model is used to classify the rest of the trace. For
the computation of the accuracy we segment the trace into
non-overlapping slices of 30 minutes and plot the accuracy
over each subtrace.

In Figure 2 we can see that the NBK classifier is constantly
less in accuracy than all other classifiers. The low accuracy
of the NBK model becomes more apparent during out of
hours, where its performance has higher variance. This is a
result of the changes in observed application mix. Because
the NBK model has low accuracy on some classes, the over-
all performance for times 00:00 to 4:00 in Day 1 is below 85%.
At the same time, the effect of these changes is reduced in
the accuracy of the other classifiers. In order for the NBK

model to be optimized, we used kernel estimation for the
modeling of the numeric features. This modeling approach
has been applied in previous work [7] and proves to be highly
effective. The kernel estimation approach models the vari-
ous features of the trace as an infinite sum of Gaussians. We
predict that the kernel estimation is probably overfitting the
model on the data. While this approach can be beneficial
to some features like duration, it results in bad modeling of
features like IP addresses and ports, because the use of a
specific port does not imply the usage of near-by ports from
the same application. Without kernel estimation, the Naive
Bayes model assumes that a numeric value is generated by
a single Gaussian process and this results in an even lower
performance of the classifier.

In Table 3, we provide a per-class accuracy of the differ-
ent classifiers we compare. We observe that the majority
of the classes have only small differences between the differ-
ent semi-supervised algorithms. Although some applications
have better performance with one of the two algorithms; this
can partially be explained because of the way that the two
algorithms perform their updates. The hard approach per-
forms better for STREAM and NEWS. These applications
have more static features (port number, well known hosts
etc.) and the hard assignment increases faster the certainty
over these values. The soft approach performs better for
the classes of VPN and IM. These classes are less common
and have high variance over the feature values.

Table 3: Average accuracy for each application class

DB MAIL FTP IM P2P ACCESS

Hard 1 0.58 1 0.39 1 0.95
Hard-ss 1 0.59 1 0.82 1 0.77
Soft 1 0.55 1 0.42 1 0.96
Soft-ss 1 0.61 1 0.42 1 0.81
NBK 0.84 0.26 0.42 0.76 0.91 0.11

SERV SPAM STREAM WEB VPN VOIP

Hard 0 1 0.97 0.99 0.82 0.24
Hard-ss 0 1 0.91 0.99 0 0.44
Soft 0 1 0.96 0.99 1 0.77
Soft-ss 0 1 0.96 0.99 0.03 0.21
NBK 0.24 0.95 0.1 0.89 0.35 0.12

Figure 3: Comparison of classifiers using variable

size training dataset

Figure 2 illustrates how inaccurate the hard and soft as-
signment algorithms are near the end of the trace. The
intuition behind this performance degradation is that the
classifier doesn’t readily adapts to new datapoints as the
training dataset grows. For this reason we develop a com-
plementary model for each algorithm which uses a reduced
training dataset which are called hard-ss and small-ss re-
spectively. The reduced dataset contains the initial half hour
labelled subtrace and the latest half hour of data, labelled
by the classifier. The resulting models can be seen in Figure
2. The ss (small set) models seems to overcome the prob-
lem of accuracy reduction near the end of the trace, but
such an approach is inefficient because it discards impor-
tant information. We are although currently studying ways
that could compress the initial dataset so that the model
can adjust to new datapoints after some time without any
information loss.

3.2.2 Training dataset sizes
One of the main qualities of the semi-supervised approach,
as it is described in Section 2, is its ability to achieve high ac-
curacy when trained on a relatively small labelled dataset.
In order to test this we trained the semi-supervised algo-
rithms with a reduced training dataset and compared the

Figure 4: Comparison of classifier with different

Dirichlet parameters

accuracies over time, shown in Figure 3. We used three
training datasets to build a model for each semi-supervised
algorithm: the first half hour of the trace (which contains
approximately 130000 flow records), 10000 and 20000 ran-
domly selected flows. The flows that are included in the
training process are excluded from the classification process.
We also include the results of the NBK model trained on
the first 30 minutes of the trace.

As we can see in Figure 3, the semi-supervised algorithms
achieve high accuracy — above 90% most of the time —
regardless of the size of the prior knowledge. The classi-
fiers trained with smaller datasets have a small degradation
on their performance of around 1-5%, but they compensate
by requiring only a small amount of labelled data. The re-
sulting models also manage to outperform the NBK model
throughout the whole trace, even though the NBK model
uses a larger training dataset.

3.2.3 Parametrization of the model
As we discussed in Section 2, the Bayesian approach which
we employ allows easy adaptation of the model to different
environments by providing a simple mechanism for the ex-
pression of prior knowledge that we might have from the
problem domain. This can be achieved by controlling the
type and the parameters of the distributions of the priors
for the random variables of the problem. In Figure 4, we
plot the accuracy of two hard assignment classifiers over
time in a way similar to the previous experiments, but only
for the classes of WEB and MAIL. The difference between
the two models is that the hard-20000 model has a Dirich-
let prior for the parameter of the class membership variable
with parameter αθ = 20000, while the hard-1 model has a
Dirichlet prior with parameter αθ = 1. The parameter of
the Dirichlet distribution αφ for the parameter of the fea-
ture distribution of each class is the same for both models
and equal to 1.

The choice of high αθ parameters for the hard-20000 model
expresses our assumption of uniformity with high confidence
for the distribution of the labels. Variation in the label fre-
quencies in the training mix will have small impact in the
posterior distribution of the label distribution, and frequent

labels will be less favoured in the classification process. As
a result, the WEB class has a slightly lower accuracy in
the hard-20000 model, but the same model has better per-
formance for the MAIL class, which is less frequent. From
this small experiment, it can be seen that the Bayesian ap-
proach to data modeling can be a powerful tool when we
know some of the statistical properties of the data we are
classifying, or when we want to exhibit specific capabilities
from our model.

4. RELATED WORK
Although probabilistic graphical models are quite common
in language processing and bio-informatics, they have not
yet been explicitly applied for application identification prob-
lems. A series of papers has been written covering a wide
range of other machine learning techniques, both using the
supervised and unsupervised paradigm [12, 8]. Most of this
work is focused on modeling packet level information. An
early literature review on the specific subject can be found
in [13]. The work most relevant to our approach can be
found in [5], in which the authors present a semi-supervised
approach to the problem of traffic classification using a K-

means clustering algorithm on both labelled and unlabelled
data that casts a majority vote in order to define the label
of a cluster.

The first paper that discussed the problem of traffic classi-
fication using flow records was [7], a Naive Bayes classifier
with kernel estimation is used on labelled data, and reports
very high accuracy. The paper concludes that the accuracy
of a Naive Bayes model can increase when it is combined
with smart feature engineering even on sampled data. An
extension of this approach can be found in [2]. The author
build a C4.5 classifier over NetFlow data and report good
results. In addition they discuss problems that may occur
when data are sampled.

5. CONCLUSIONS AND FUTURE WORK
In this paper we present a semi-supervised approach to a
NetFlow-based traffic classification methodology. We ex-
plore two algorithms for training the semi-supervised clas-
sifier. The model described exports a set of well defined
parameters that allow, unlike methods like SVM, the easier
adaptation of the model to the requirements of the classifi-
cation process and achieves very good results with a signif-
icantly reduced training dataset. We intend this to be our
first step towards a system for traffic classification focused
on information poor data-sources.

Although our results are encouraging, we see two main limi-
tations. First of all, we don’t model the effects of packet
sampling. We know from theory that random sampling
would increase variance in measurements [4] and make dis-
crimination more difficult. Secondly, we are aware that our
model might behave badly when testing and training en-
vironment are different, because a portion of its accuracy
depends on the stability of the IP address.

Luckily the probabilistic graphical model approach is flexi-
ble and we are currently working to extend our solution by
incorporating more of our domain structure. E.g. we are
currently trying to fuse the initial information with extra
fields by aggregating flows on different levels and incorporat-

ing in the existing model collective inference [14] techniques
that exploit the connection patterns of the hosts.

6. REFERENCES
[1] Canini, M. et al.. GTVS: Boosting the collection of

application traffic ground truth. In TMA ’09: Proc. of

the First International Workshop on Traffic

Monitoring and Analysis. Springer-Verlag.

[2] Carela-Espanol, V. et al.. Traffic classification with
sampled netflow. Technical report, Universitat
Politecnica de Catalunya, 2009.

[3] L. Deri. nProbe: an open source netflow probe for
gigabit networks. In In Proc. of Terena TNC 2003.

[4] Duffield, N. et al.. Estimating flow distributions from
sampled flow statistics. In SIGCOMM ’03: Proc. of

the 2003 conf. on Applications, technologies,

architectures, and protocols for computer

communications. ACM.

[5] Erman, J. et al.. Semi-supervised network traffic
classification. In SIGMETRICS ’07: Proc. of the 2007

ACM SIGMETRICS international conf. on

Measurement and modeling of computer systems.
ACM.

[6] Hall, M. et al.. The WEKA data mining software: an
update. SIGKDD Explor. Newsl., 11(1), 2009.

[7] Jiang, H. et al.. Lightweight application classification
for network management. In INM ’07: Proc. of the

2007 SIGCOMM workshop on Internet network

management. ACM.

[8] Kim, H. et al.. Internet traffic classification
demystified: myths, caveats, and the best practices. In
CONEXT ’08: Proc. of the 2008 ACM CoNEXT

Conf. ACM, 2008.

[9] D. Koller and N. Friedman. Probabilistic Graphical

Models: Principles and Techniques. MIT Press, 2009.

[10] P. Liang and D. Klein. Online em for unsupervised
models. In NAACL ’09: Proc. of Human Language

Technologies: The 2009 Annual Conf. of the North

American Chapter of the Association for

Computational Linguistics. Association for
Computational Linguistics.

[11] Maier, Gr. et al.. On dominant characteristics of
residential broadband internet traffic. In IMC ’09:

Proc. of the 9th ACM SIGCOMM conf. on Internet

measurement conference. ACM.

[12] A. W. Moore and D. Zuev. Internet traffic
classification using bayesian analysis techniques. In
SIGMETRICS ’05: Proc. of the 2005 ACM

SIGMETRICS international conf. on Measurement

and modeling of computer systems. ACM.

[13] T. Nguyen and G. Armitage. A survey of techniques
for internet traffic classification using machine
learning. Communications Surveys and Tutorials,

IEEE, 10(4), Quarter 2008.

[14] Sen, P. et al.. Collective classification in network data.
AI Magazine, 29(3), 2008.

[15] X. Zhu. Semi-Supervised learning literature survey.
Technical Report 1530, Computer Sciences, University
of Wisconsin-Madison, 2005.

