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Preface

This thesis contributes to the field of Bayesian machine learning. Familiarity with
most of the material in Bishop [2007], MacKay [2003] and Hastie et al. [2009] would
thus be convenient for the reader. Sections which may be skipped by the expert
reader without disrupting the flow of the text have been clearly marked with a
“fast-forward” ([..]) symbol. It will be made clear in the text which parts represent
core contributions made by the author.
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Abstract

The generic inference and learning algorithm for Gaussian Process (GP)
regression has O(N3) runtime and O(N2) memory complexity, where N
is the number of observations in the dataset. Given the computational
resources available to a present-day workstation, this implies that GP
regression simply cannot be run on large datasets. The need to use non-
Gaussian likelihood functions for tasks such as classification adds even
more to the computational burden involved.

The majority of algorithms designed to improve the scaling of GPs are
founded on the idea of approximating the true covariance matrix, which
is usually of rank N , with a matrix of rank P , where P � N . Typically,
the true training set is replaced with a smaller, representative (pseudo-)
training set such that a specific measure of information loss is minimized.
These algorithms typically attain O(P 2N) runtime and O(PN) space
complexity. They are also general in the sense that they are designed to
work with any covariance function. In essence, they trade off accuracy
with computational complexity. The central contribution of this thesis
is to improve scaling instead by exploiting any structure that is present
in the covariance matrices generated by particular covariance functions.
Instead of settling for a kernel-independent accuracy/complexity trade
off, as is done in much the literature, we often obtain accuracies close to,
or exactly equal to the full GP model at a fraction of the computational
cost.

We define a structured GP as any GP model that is endowed with a
kernel which produces structured covariance matrices. A trivial example
of a structured GP is one with the linear regression kernel. In this case,
given inputs living in RD, the covariance matrices generated have rank D
– this results in significant computational gains in the usual case where
D � N . Another case arises when a stationary kernel is evaluated on
equispaced, scalar inputs. This results in Toeplitz covariance matrices
and all necessary computations can be carried out exactly inO(N logN).

This thesis studies four more types of structured GP. First, we compre-
hensively review the case of kernels corresponding to Gauss-Markov pro-
cesses evaluated on scalar inputs. Using state-space models we show how



(generalised) regression (including hyperparameter learning) can be per-
formed in O(N logN) runtime and O(N) space. Secondly, we study the
case where we introduce block structure into the covariance matrix of a
GP time-series model by assuming a particular form of nonstationarity a
priori. Third, we extend the efficiency of scalar Gauss-Markov processes
to higher-dimensional input spaces by assuming additivity. We illustrate
the connections between the classical backfitting algorithm and approx-
imate Bayesian inference techniques including Gibbs sampling and vari-
ational Bayes. We also show that it is possible to relax the rather strong
assumption of additivity without sacrificing O(N logN) complexity, by
means of a projection-pursuit style GP regression model. Finally, we
study the properties of a GP model with a tensor product kernel eval-
uated on a multivariate grid of inputs locations. We show that for an
arbitrary (regular or irregular) grid the resulting covariance matrices are
Kronecker and full GP regression can be implemented in O(N) time and
memory usage.

We illustrate the power of these methods on several real-world regression
datasets which satisfy the assumptions inherent in the structured GP
employed. In many cases we obtain performance comparable to the
generic GP algorithm. We also analyse the performance degradation
when these assumptions are not met, and in several cases show that it is
comparable to that observed for sparse GP methods. We provide similar
results for regression tasks with non-Gaussian likelihoods, an extension
rarely addressed by sparse GP techniques.
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It is remarkable that a science which began with the con-
sideration of games of chance should have become the most
important object of human knowledge. [...] The most im-
portant questions of life are indeed, for the most part, really
only problems of probability. [...] Probability theory is noth-
ing but common sense reduced to calculation.

— Pierre-Simon, marquis de Laplace, Théorie Analytique des Proba-
bilités, 1812.

vi



Contents

Preface i

Contents vii

List of Figures ix

List of Algorithms xi

List of Tables xii

Notation xiii

1 Introduction & Motivation 1
1.1 Gaussian Process Regression [..] . . . . . . . . . . . . . . . . . . . . 1
1.2 Generalised Gaussian Process Regression [..] . . . . . . . . . . . . . . 12
1.3 The Computational Burden of GP Models . . . . . . . . . . . . . . . 16
1.4 Structured Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Gauss-Markov Processes for Scalar Inputs 22
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Translating Covariance Functions to SDEs . . . . . . . . . . . . . . . 24
2.3 GP Inference using State-Space Models . . . . . . . . . . . . . . . . . 36
2.4 Generalised Gauss-Markov Process Regression . . . . . . . . . . . . . 44
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Gaussian Processes with Change Points 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 The BOCPD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Hyper-parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 GP-based UPMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Improving Efficiency by Pruning . . . . . . . . . . . . . . . . . . . . . 63

vii



CONTENTS

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Additive Gaussian Processes 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Efficient Additive GP Regression . . . . . . . . . . . . . . . . . . . . 75
4.3 Efficient Projected Additive GP Regression . . . . . . . . . . . . . . . 92
4.4 Generalised Additive GP Regression . . . . . . . . . . . . . . . . . . 97
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Gaussian Processes on Multidimensional Grids 126
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 The GPR GRID Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Conclusions 146

A Mathematical Background 149
A.1 Matrix Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Gaussian Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.3 Tensor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B MATLAB Code Snippets 156

References 162

viii



List of Figures

1.1 50 linear function draws. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Samples from the parametric posterior. . . . . . . . . . . . . . . . . . 5
1.3 Functions drawn from squared-exponential and Matérn(3) covariance

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 An example GP regression with the squared-exponential kernel. . . . 13

2.1 Scalar GP Regression as a vector Markov process. . . . . . . . . . . . 25
2.2 LTI system of the vector Markov process. . . . . . . . . . . . . . . . . 26
2.3 Comparison of two alternative approximations to the squared-exponential

kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Graphical illustration of an individual EP update. . . . . . . . . . . . 47
2.5 Graphical illustration of the EP approximation to the SSM. . . . . . 48
2.6 Runtime comparison of full GP and the Gauss-Markov process for a

classification task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Example of inference using Gauss-Markov process classification. . . . 53
2.8 Example of inference using Gauss-Markov process classification on

Whistler snowfall data. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Data drawn from simple BOCPD model and its inferred runlength
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Comparison of runtimes for the Stationary GP and the nonstationary
GP with high hazard rate. . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 The posterior runlength distribution for synthetic nonstationary GP
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 The output of applying the nonstationary GP model to the Nile dataset. 68
3.5 The output of applying the nonstationary GP model to the Bee

Waggle-Dance angle-difference time series. . . . . . . . . . . . . . . . 71

4.1 Graphical Model for Additive Regression. . . . . . . . . . . . . . . . . 76
4.2 Graphical Model for fully-Bayesian Additive GP Regression. . . . . . 81
4.3 Graphical Model of Additive Regression using a sum of SSMs. . . . . 90
4.4 Graphical model for Projected Additive GP Regression. . . . . . . . . 95

ix



LIST OF FIGURES

4.5 A comparison of runtimes for efficient Bayesian additive GP regres-
sion algorithms and generic techniques for full and sparse GP regres-
sion (varying N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6 A comparison of runtimes for efficient Bayesian additive GP regres-
sion algorithms and generic techniques for full and sparse GP regres-
sion (varying D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Inference results using Synthetic, additive data. . . . . . . . . . . . . 118
4.8 Inference results for the Pumadyn-8fm dataset. . . . . . . . . . . . . 120
4.9 Inference results for the kin40k dataset. . . . . . . . . . . . . . . . . . 121
4.10 A Comparison of runtimes for efficient Bayesian additive GP clas-

sification algorithms and generic techniques including the SVM and
IVM (varying N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.11 A Comparison of runtimes for efficient Bayesian additive GP clas-
sification algorithms and generic techniques including the SVM and
IVM (varying D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.12 Performance of efficient additive GP classification using Laplace’s ap-
proximation on synthetic data. . . . . . . . . . . . . . . . . . . . . . . 123

5.1 A comparison of runtimes for GP regression on a grid using the stan-
dard algorithm versus GPR GRID. . . . . . . . . . . . . . . . . . . . . . 141

x



List of Algorithms

1 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . 17
2 Gaussian Process Regression using SSMs . . . . . . . . . . . . . . . . . 43
3 Learning the hyperparameters using EM . . . . . . . . . . . . . . . . . 44
4 Generalized Gaussian Processs Regression using SSMs . . . . . . . . . 51
5 BOCPD Algorithm (with derivatives). . . . . . . . . . . . . . . . . . . 60
6 The Classical Backfitting Algorithm . . . . . . . . . . . . . . . . . . . 75
7 Efficient Computation of Additive GP Posterior Mean . . . . . . . . . 77
8 Sampling a GP using FFBS . . . . . . . . . . . . . . . . . . . . . . . . 83
9 Efficient Computation of Standardised Squared Error using SSMs . . . 85
10 Additive GP Regression using Gibbs Sampling . . . . . . . . . . . . . 87
11 Additive GP Regression using VBEM . . . . . . . . . . . . . . . . . . 93
12 Projection Pursuit GP Regression . . . . . . . . . . . . . . . . . . . . 97
13 Generalised Additive GPR using Laplace’s Approximation . . . . . . . 100
14 Gaussian Process Interpolation on Grid . . . . . . . . . . . . . . . . . 135
15 kron mvprod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16 Gaussian Processs Regression on Grid . . . . . . . . . . . . . . . . . . 140

xi



List of Tables

3.1 Performance comparison of stationary and nonstationary GPs on a
set of synthetic and real-world datasets. . . . . . . . . . . . . . . . . . 69

4.1 Performance comparison of efficient Bayesian additive GP regression
algorithms with generic techniques for full and sparse GP regression
on synthetically-generated datasets. . . . . . . . . . . . . . . . . . . . 109

4.2 Performance comparison of efficient Bayesian additive GP regression
algorithms with generic techniques for full and sparse GP regression
on large, benchmark datasets. . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Performance comparison of efficient Bayesian additive GP classifi-
cation algorithms with commonly-used classification techniques on
synthetic and small datasets. . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Performance Comparison of efficient Bayesian additive GP classifi-
cation algorithms with commonly-used classification techniques on
larger datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 Performance of GPR GRID on the very large Record Linkage dataset. . 145

xii



Notation

We write a scalar as x, a vector as x, a matrix as X. The ith element of a vector is
in the typeface of a scalar xi. The ith row and jth column of X is X(i, j) or Xi,j.
The ith row of X is Xi,: or xi. The ith column of X is X:,i or xi. We represent an
inclusive range between a and b as a : b. If an Equation refers to another Equation
in square brackets (“[·]”), this means that the referred Equation has been used
to derive the referring Equation. By standard convention, even though Gaussian
Process hyperparameters form a vector, we represent them with the typeface of a
scalar, θ.

Symbols used
R The real numbers.
R+ Positive real numbers.
C The complex numbers.
Q The rational numbers.
Z The integers.
Z+ Positive integers.
x∗ The complex conjugate of x.
X⊗Y The Kronecker product of X and Y.
1 A vector of ones.
0 A vector of zeros or a matrix of zero, depending on context.
ID The identity matrix of size D.
vec(X) The vectorization of a matrix X.
KL(p||q) The Kullback-Leibler (KL) divergence between distributions p and q.
H(p) The entropy of distribution p.
E(X) Expectation of a random variable X.
V(X) Variance of a random variable X.
Median(X) Median of a random variable X.
Ep(·)(X) Expectation of a random variable X with respect to p.
Vp(·)(X) Variance of a random variable X with respect to p.
Cov(X) Covariance of a vector random variable X.
p−→ Convergence in probability.
N (µ,Σ) A Gaussian distribution with specified mean µ and (co-)variance Σ.

Random variable symbol is omitted.
N (x;µ,Σ) A Gaussian distribution with specified mean µ and (co-)variance Σ.

Random variable symbol not omitted.
Student-tν(µ,Σ) A multivariate Student’s t distribution with mean µ, covariance Σ,

and ν degrees of freedom.

xiii



Γ(α, β) A gamma distribution with shape α and inverse scale β.
Poisson(λ) A Poisson distribution with mean λ.
GP(µ, k) A Gaussian process (GP) with mean function µ(·) and kernel k(·, ·).
x ≡ y x defined as y.
O(·) The big-O asymptotic complexity of an algorithm.
← An assignment operation in an algorithm.
ne(·) Returns neighbours of a variable or factor in a factor graph.
w.r.t. Shortening of the phrase “with respect to”.
IID Shortening of the phrase “independent, identically distributed”.
p.d.f. Shortening of the phrase “probability density function”.
c.d.f. Shortening of the phrase “cumulative distribution function”.
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Chapter 1

Introduction & Motivation

1.1 Gaussian Process Regression [..]

Regression is the task of returning predictions of a continuous output variable at

any input location, given a training set of input-output pairs. The inputs can be

any type of object which is hoped to provide some predictability of the response,

although more often that not, they are a set of real-valued features living in RD,

and will be assumed to be so in this thesis.

As a direct consequence of the definition of regression, it is clear that inference

must revolve around a function mapping inputs to outputs, because only by inferring

a function can we predict the response at any input location. In the case of Bayesian

inference, this implies that one needs to define a prior distribution over functions.

Learning will occur as a result of updating the prior in light of the training set {X,y},
where X ≡ {xn}Nn=1 ,xn ∈ RD are the training inputs and y ≡ {yn}Nn=1 , yi ∈ R are

the training targets, to obtain a posterior distribution over functions. The question

then is, how can one place a distribution over an infinite dimensional object such as

a function?

Bayesian Parametric Regression

Conceptually, the simplest way is to parameterise the function with a finite set of

parameters w and place a prior over them. This implicitly results in a prior over

functions. In other words, we assume a parametric form for the unknown function,
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f(x; w). Clearly, placing a prior p(w|θ) induces a distribution over functions, where

the type of functions supported depends on the relationship of w to the function

value. For example, if one expects a linear input-output relationship to exist in the

data then a good choice would be f(x; w) = w>x. The functions supported by the

prior, and thus the posterior, will then only include functions linear in the input.

A set of functions drawn from such a “linear function” prior is illustrated in Figure

1.1.

−1 −0.5 0 0.5 1
−4

−3

−2

−1

0

1

2

3

4

Figure 1.1: 50 functions over {−1, 1} drawn from the prior induced by w ∼ N (0, I2).

Notice how the marginal standard deviation increases with distance from origin – this is

a direct result of the prior supporting linear functions only. The greyscale highlights a

distance of 2 standard deviations from 0.

Representing functions with a finite number of parameters allows function learn-

ing to take place via the learning of w:

p(w|y,X, θ) =
p(y|w,X, θ)p(w|θ)

Z(θ)
, (1.1)

where

Z(θ) = p(y|X, θ) =

∫
p(y|w,X, θ)p(w|θ)dw, (1.2)

is the normalizing constant, also known as the marginal likelihood of the model spec-

ified by hyperparameters θ, because it computes precisely the likelihood of observing

the given dataset given the modelling assumptions encapsulated in θ. As a result,

it also offers the opportunity to perform model adaptation via optimization with

2



respect to θ. Of course, if the problem at hand requires averaging over models with

different hyperparameters to improve predictions (e.g. if the dataset is small), it is

possible to add another layer to the hierarchy of Bayesian inference.

The posterior in Equation 1.1 can be used directly to compute both the expected

value of the underlying function f(x?; w) and its variance at input location x?,

through evaluating

µ? = Ep(w|y,X,θ) (f(x?; w)) , (1.3)

σ2
? = Ep(w|y,X,θ)

(
f(x?; w)2

)
− µ2

?. (1.4)

Thus, we can predict the function value and, perhaps equally importantly, report

how certain we are about our prediction at any input location, as is required for the

task of regression.

An example of Equations 1.1 through 1.4 in action is given by Bayesian linear

regression, for which:

• f(x; w) = w>x.

• p(w|θ) = N (w; 0,Σ).

• p(y|w,X, θ) =
∏N

i=1N (yi; w
>x, σ2

n).

The prior covariance Σ is usually a diagonal matrix with D independent parame-

ters. The likelihood term p(y|w,X) encodes the assumption that the observations

are the true function values corrupted with zero mean IID Gaussian noise with vari-

ance σ2
n. The hyperparameters include the parameters in Σ and the noise variance.

Because both the prior and the likelihood are Gaussian it follows that the posterior

p(w|y,X, θ) is also Gaussian and Z(θ) can be calculated analytically:

p(w|y,X, θ) = N (µN ,ΣN), (1.5)

logZ(θ) = −1

2

(
y>Σ−1

E y + log(det(ΣE)) +N log(2π)
)
, (1.6)
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where

µN =
1

σ2
n

ΣNX>y, (1.7)

ΣN =

(
Σ−1 +

1

σ2
n

X>X

)−1

, (1.8)

ΣE = XΣX> + σ2
nIN . (1.9)

The predictive distribution at x? also becomes a Gaussian and is fully specified by

µ? and σ2
?

µ? = µ>Nx?, (1.10)

σ2
? = x?

>ΣNx?. (1.11)

For a list of standard Gaussian identities, see Appendix A. The posterior distribution

over functions implied by Equation 1.5 given a synthetic dataset is shown in Figure

1.2. Note how the predictive mean in Equation 1.10 is linear in the training targets,

and how the predictive variance in Equation 1.11 does not depend on the targets

at all – these are hallmark properties of analytically tractable regression models. In

addition, it can be seen from Equation 1.6 that Z(θ) is a complicated non-linear

function of the hyperparameters, indicating that attempts to integrate them out

will have to resort to approximate inference techniques such as MCMC (for a recent

example, see Murray and Adams [2010]). Hyperparameter optimization is an easier

and well-justified alternative as long as there is enough data. As shown in O’Hagan

and Forster [1994] and Jaynes [2003], the hyperparameter posterior will tend to a

Gaussian distribution (i.e., a unimodal one) in the infinite data limit, given certain

conditions which are usually satisfied by the standard GP setup. Furthermore,

asymptotic Gaussianity applies because:

p(θ|y) ∝
N∏

i=1

p(yi|θ, y1, . . . yi−1)p(θ), (1.12)

4



and it is usually the case that

1

N

N∑

i=1

∂2 log p(yi|θ, y1, . . . yi−1)

∂θ2

p−→ k, as N →∞, k 6= 0. (1.13)

The condition in Equation 1.13 can be interpreted as requiring that the observations

do not get less and less “informative” about θ. Suppressing dependence on input

locations and integrating out the latent function, Equation 1.12 can be viewed as

describing the GP hyperparameter posterior, given that the likelihood terms corre-

spond to the GP marginal likelihood evaluated using the chain rule of probability.

For GP models, it is usually the case that every observation is informative about

the hyperparameters, except in cases where, for example, we have coincident inputs.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

Figure 1.2: The bold line shows the posterior mean, and the greyscale errorbars show

2 times the marginal posterior standard deviation, given the data (shown as magenta

points). The coloured lines represent 5 samples from the posterior.

The flexibility of the linear regression model can be increased by mapping the

inputs x into some possibly higher-dimensional feature space through some feature

mapping φ, although linearity in the parameters w must be retained to ensure ana-

lytic tractability. Furthermore, the expressions for the posterior, marginal likelihood

and predictive distributions remain mainly unchanged – all that is required is to re-

place every occurrence of an input location xi with its feature mapping φ(xi) ≡ φi.
If the underlying function f(x; w) is assumed to be nonlinear in w, then Equations

1.1 through 1.4 become analytically intractable and one must resort to approximate

5



inference methods.

Bayesian Nonparametric Regression

While conceptually simple, the parametric way of placing a distribution over func-

tions suffers from several shortcomings. Firstly, the parameters in w are simply

coefficients, so it is difficult in practice to specify a prior over them which correctly

captures our intuitive beliefs about functional characteristics such as smoothness

and amplitude. For example, let’s imagine we are employing the linear model out-

lined above in some feature space. It is hard to map a prior over the coefficient of say

a polynomial feature φ(x) = xai x
b
jx
c
k for a, b, c ∈ Z+ to properties such as smoothness

and differentiability. As a result, both the prior and the posterior over w can get

difficult to interpret. Secondly, when attempting to model complex input-output

relationships the number of parameters can get large. Of course, we avoid the risk

of overfitting by integrating over the parameter vector, however, a large parameter

vector can result an uncomfortably large number of hyperparameters. The hyper-

parameter vector may grow even further as a result of using hand-crafted features

with their own internal parameters. Hence, overfitting can return to haunt us during

hyperparameter optimization.

It is natural to therefore ask whether there is an direct way of placing a prior over

the underlying function f . The answer lies in the use of stochastic processes, which

are distributions over functions, by definition1. For regression the simplest stochas-

tic process which serves the purpose is the Gaussian process (GP). The method for

describing a distribution over functions (which are infinite dimensional) is accom-

plished through specifying every finite dimensional marginal density implied by that

distribution. Conceptually the distribution over the entire function exists “in the

limit”. This leads us to the following definition of the GP:

Definition 1. The probability distribution of f is a Gaussian process if any finite

selection of input locations x1, . . . ,xN gives rise to a multivariate Gaussian density

over the associated targets, i.e.,

p(f(x1), . . . , f(xN)) = N (mN ,KN), (1.14)

1Stochastic processes were originally conceived to be distributions over functions of time, how-
ever, it is possible to extend the idea to multidimensional input spaces.
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where mN is the mean vector of length N and KN is the N -by-N covariance

matrix. The mean and covariance of every finite marginal is computed using the

mean function and the covariance function of the GP respectively. As is the case

for the Gaussian distribution, the mean and covariance functions are sufficient to

fully specify the GP. The mean function µ(x) gives the average value of the function

at input x, and is often equal to zero everywhere because it usually is the case

that, a priori, function values are equally likely to be positive or negative. The

covariance function k(x,x′) ≡ Cov(f(x), f(x′)) specifies the covariance between the

function values at two input locations. For the prior over functions to be proper, the

covariance function has to be a positive definite function satisfying the property that∫∫
h(x)k(x,x′)h(x′)dxdx′ > 0 for any h except h(x) = 0. For any finite marginal

of the GP as defined above we have that, for i, j = 1, . . . , N :

mN(i) = µ(xi), (1.15)

KN(i, j) = k(xi,xj). (1.16)

This is a consequence of the marginalization property of the Gaussian distribution,

namely that if:

p

([
a

b

])
= N

([
µa

µb

]
,

[
Ka,a Ka,b

Kb,a Kb,b

])
, (1.17)

then the means and covariances of marginals are simply the relevant subvectors and

submatrices of the joint mean and covariance respectively, i.e., p(a) = N (µa,Ka,a)

and p(b) = N (µb,Kb,b). Indeed, this is exactly what is happening in Equations

1.15 and 1.16 – we are simply reading out the relevant subvector and submatrix of

the infinitely long mean function and the infinitely large covariance function. Of

course, we will never need access to such infinitely large objects in practice because

we only need to query the GP at training and test inputs, which form a finite set.

For a rigorous introduction to the theory of GPs, see Doob [1953].

The definition of a GP allows function learning to take place directly through

distributions over function values and not through surrogate parameter vectors,

namely

p(f |y,X, θ) =
p(y|f ,X, θ)p(f |X, θ)

Z(θ)
, (1.18)
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and

Z(θ) = p(y|X, θ) =

∫
p(y|f ,X, θ)p(f |X, θ)df . (1.19)

Conditioning the GP prior over f on the input locations X restricts attention to the

finite marginal of the GP evaluated at X. Therefore, p(f |X, θ) = N (mN ,KN), where

θ now includes any parameters that control the mean and covariance function. In the

following the mean function will always be assumed to equal the zero function, so we

can further write p(f |X, θ) = N (0,KN). Note also that the integral used to compute

the marginal likelihood in Equation 1.19 reduces to an N -dimensional integral. We

assume the same noise model for the targets as we did for the parametric linear

regression model – they are the true function values corrupted by IID Gaussian

noise. Thus, the likelihood is simply p(y|f ,X, θ) = N (f , σ2
nIN). As we once again

have a Gaussian prior with a Gaussian likelihood we can evaluate the expression in

Equations 1.18 and 1.19 analytically:

p(f |y,X, θ) = N (mN |y,KN |y), (1.20)

logZ(θ) = −1

2

(
y>K−1

E y + log(det(KE)) +N log(2π)
)
. (1.21)

The expressions for the posterior mean and covariance and that for the marginal

likelihood are quite similar to their parametric counterparts:

mN |y =
1

σ2
n

KN |yy, (1.22)

KN |y =

(
K−1
N +

1

σ2
n

IN

)−1

, (1.23)

KE = KN + σ2
nIN . (1.24)

Note that the posterior over f is also an N -dimensional Gaussian as it is also con-

ditioned on the training inputs X.

Given the posterior over the underlying function values, we can make predictions

at M test inputs X? ≡ [x
(1)
? , . . . ,x

(M)
? ] jointly. So far the equations derived have

all assumed M = 1, however, with GPs we can predict jointly almost as easily as

predicting individual test points so our predictive equations will be slightly more

general than usual. Let f? be the random vector representing the function values at

8



X?. Then,

p(f?|X?,X,y, θ) =

∫
p(f?|X?,X, f , θ)p(f |X,y, θ)df , (1.25)

where the term p(f?|X?,X, f , θ) can be derived directly from the definition of a GP.

Furthermore, since

p

([
f

f?

])
= N

([
0

0

]
,

[
KN KNM

KMN KM

])
, (1.26)

where KMN is the cross-covariance of the training and test inputs and KM the

covariance of the latter, standard Gaussian conditioning (see Appendix A) shows

that

p(f?|X?,X, f , θ) = N
(
KMNK−1

N f ,KM −KMNK−1
N KNM

)
. (1.27)

Equation 1.25 is once again an integral of a product of two Gaussian densities. Thus,

the predictive density is a Gaussian:

p(f?|X?,X,y, θ) = N (µ?,Σ?). (1.28)

It can be shown, using identities in Appendix A, that

µ? = KMN

(
KN + σ2

nIN
)−1

y, (1.29)

Σ? = KM −KMN

(
KN + σ2

nIN
)−1

KNM . (1.30)

The marginal likelihood expression in Equation 1.21 and the predictive mean and

covariances in Equations 1.29 and 1.30 are the bread and butter of Gaussian process

regression and are summarized below:
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Gaussian Process Regression Equations

logZ(θ) = −1

2

(
y>(KN + σ2

nIN)−1y + log(det((KN + σ2
nIN))) +N log(2π)

)
.

µ? = KMN

(
KN + σ2

nIN
)−1

y.

Σ? = KM −KMN

(
KN + σ2

nIN
)−1

KNM .

Covariance functions

Although we have introduced GP regression for any valid covariance function1, many

of the results in this thesis will involve a couple of frequently used kernels. The

common characteristic of the covariance functions used is that they are all functions

of a (scaled) distance δ between inputs x and x′, where

δ2 = (x− x′)>Λ(x− x′), (1.31)

where Λ is a diagonal matrix with Λ(d, d) ≡ 1/`2
d for d = 1, . . . , D. Covariance

functions which are a function of absolute distance between input locations are

known as stationary, isotropic kernels because they are invariant to translating

or rotating the observations in input space. The squared exponential covariance

function2 is probably the most popular example because it gives rise to very smooth

(infinitely mean-square differentiable) functions, and is defined as follows3:

k(x,x′) ≡ k(δ) = σ2
f exp

(
−δ

2

2

)
. (1.32)

The Matérn(ν) family of covariance functions are used when control over differ-

entiability is required. The functions generated by the Matérn kernel are k-times

1Also referred to in the literature as a kernel in order to highlight the connection to frequentist
kernel methods.

2 In order to remain consistent with the literature we will stick to the term “squared exponen-
tial”, while noting that a better name would be exponentiated quadratic.

3 If the covariance function is isotropic we will “overload” it in the text by sometimes referring
to as a function of δ only.
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mean-square differentiable if and only if ν > k. Expressions for the Matérn kernel

for ν = 1
2
, 3

2
, 5

2
, 7

2
are given below (at half-integer values of ν, the expressions become

considerably simpler):

kν=1/2(x,x′) = σ2
f exp(−δ), (1.33)

kν=3/2(x,x′) = σ2
f (1 +

√
3δ) exp

(
−
√

3δ
)
, (1.34)

kν=5/2(x,x′) = σ2
f

(
1 +
√

5δ +
1

3
(
√

5δ)2

)
exp

(
−
√

5δ
)
, (1.35)

kν=7/2(x,x′) = σ2
f

(
1 +
√

7δ +
2

5
(
√

7δ)2 +
1

15
(
√

7δ)3

)
exp

(
−
√

7δ
)
. (1.36)

The kernel in Equation 1.33 is also known as the exponential covariance function and

gives rise to the Ornstein-Uhlenbeck process which is not mean-square differentiable

yet mean-square continuous. It can be shown that in the limit where ν → ∞ the

Matérn kernel converges to the squared-exponential. In practice, since it is hard to

learn high frequency components from noisy observations, the performance of a prior

supporting infinitely-differentiable functions will not be significantly different from

one supporting up to, say, three-times differentiable functions. For formal definitions

of mean-square differentiability and continuity refer to Papoulis et al. [2002].

Figure 1.3 shows samples of function values drawn from GP priors implied by

the squared-exponential and Matérn kernels for different values of σ2
f and `1 over

a scalar input space. Clearly, [`1, . . . , `D] control the characteristic lengthscales of

the function along each input dimension – i.e., how rapidly they wiggle in each

direction. The parameter σ2
f is simply a scaling of the covariance and thus controls

the amplitude of the functions generated. Notice how, with D + 1 parameters, we

have been able to capture most intuitive functional properties succinctly. This is

a major advantage of GP regression. An example regression with synthetic data is

shown for the squared-exponential covariance in Figure 1.4.

Many standard regression models can be cast as a GP with a specific covariance

function. This is because any regression model which implicitly assigns a Gaussian

density to latent function values is by definition doing what a GP does. Looking

back at the previous section one can easily see (e.g. from Equation 1.9) that the

parametric linear model is assigning the Gaussian N (0,Φ>ΣΦ) to the functions

values at the training inputs, where Φ ≡ [φ1, . . . ,φN ]. Thus this model is a GP

11
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Figure 1.3: Functions drawn from squared-exponential (in black) and Matérn(3/2) (in

blue) covariance functions for different hyperparameter values. Matérn(3/2) kernels give

rise to “rougher” function draws as they are only once-differentiable.

with covariance function k(x,x′) = φ(x)>Σφ(x). Many more examples linking a

variety of regression techniques (ranging from neural networks to splines) to GPs is

given in Rasmussen and Williams [2006].

1.2 Generalised Gaussian Process Regression [..]

In the standard GP regression setting, it is assumed that the likelihood is a fully-

factorized Gaussian, i.e.:

p(y|f ,X, θ) =
N∏

i=1

N (yi; fi, σ
2
n). (1.37)

We will refer to the problem where the likelihood is fully-factorized but non-Gaussian

as generalised GP regression, i.e.:

p(y|f ,X, θ) =
N∏

i=1

p(yi|fi, η)︸ ︷︷ ︸
Non-Gaussian factor

. (1.38)
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Figure 1.4: An example GP regression with the squared-exponential kernel. The bold

black line shows the marginal posterior means and their 95% confidence intervals are show

in greyscale. The coloured lines represent 5 samples from the posterior.

This extension captures a very large number of modelling tasks. For example, in

the case of binary classification, where the targets yi ∈ {−1, 1} one cannot use a

Gaussian. Instead we would like to be able to use likelihoods such as:

p(yi = 1|fi, η) = 1− p(yi = −1|fi, η) =
1

1 + exp(−fi)
, (1.39)

or

p(yi = 1|fi, η) = Φ(yifi), (1.40)

where Φ is the Gaussian CDF and η is empty. In a task where we would like to

model count data, we may want a likelihood such as:

p(yi|fi, η) = Poisson(exp(fi)), (1.41)

and so on.

Much as in the case for standard regression, we would like to be able to compute

the following key quantities. The first is the posterior distribution of f at the training

inputs:

p(f |y,X, θ) =
p(y|f)p(f |X, θ)
p(y|X, θ) , (1.42)
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where p(y|X, θ) is the marginal likelihood of the data, used for the purposes of model

comparison to select suitable θ:

p(y|X, θ) =

∫
p(y|f)p(f |X, θ)df . (1.43)

In addition, we would like to have a predictive distribution at unseen input locations

X?:

p(y?|X,y,X?, θ) =

∫
p(y?|f?)p(f?|X,y,X?, θ)df?, (1.44)

where

p(f?|X,y,X?, θ) =

∫
p(f?|f ,X?, θ)p(f |y,X, θ)df . (1.45)

It is sometimes deemed sufficient to compute

f̂? ≡ E (f?|X,y,X?, θ) , (1.46)

and the associated predictive probabilities p̂ ≡ p(y?|f̂?). For certain tasks, such as

binary classification, labelling test cases using p̂ gives the same test error rate (i.e.,

the proportion of cases mislabelled) as that computed using Equation 1.44, so we

do not lose much by using p̂ instead of the “correct” predictive probabilities given

in Equation 1.44.

Given the likelihood p(y|f) is non-Gaussian, one has to resort to approximate

inference techniques for the computation of all these quantities. The field of approx-

imate inference is a very large one, ranging from MCMC to variational Bayes. Two

of the most commonly used approximate inference techniques for generalised GP

regression include Laplace’s Approximation, which we summarize below, and the

Expectation Propagation (EP) algorithm due to Minka [2001], which is introduced

in Chapter 2 in the context of efficient generalised Gauss-Markov processes. For a

good reference on how to use both these techniques in the context of (unstructured)

GP regression, see Rasmussen and Williams [2006]. For an in-depth comparison of

the approximations provided by these two methods, see Nickisch and Rasmussen

[2008]. We will apply both Laplace’s approximation and EP in the context of sev-

eral structured GP models in Chapters 2 and 4. In this thesis, we will be focussing

primarily on the generalised regression task involving binary classification, although
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most of the techniques presented will be applicable in the general case.

Laplace’s Approximation

In Laplace’s approximation, the non-Gaussian posterior in Equation 1.42 is approx-

imated as follows:

p(f |y,X, θ) u N (f̂ ,Λ−1), (1.47)

where f̂ ≡ arg maxf p(f |y,X, θ) and Λ ≡ −∇∇ log p(f |y,X, θ)|f=f̂ . Let’s define the

following objective:

Ω(f) ≡ log p(y|f) + log p(f |X, θ). (1.48)

Clearly, f̂ can be found by applying Newton’s method to this objective. The central

iteration of Newton’s method is:

f (k+1) ← f (k) −
(
∇∇Ω(f (k))

)−1

∇Ω(f (k)). (1.49)

Given KN is the training set covariance matrix, it is straightforward to show that:

∇Ω(f) = ∇f log p(y|f)−K−1
N f , (1.50)

∇∇Ω(f) = ∇∇f log p(y|f)︸ ︷︷ ︸
≡−W

−K−1
N , (1.51)

f (k+1) ← f (k) +
(
K−1
N + W

)−1
(
∇f log p(y|f)|f (k) −K−1

N f (k)
)
. (1.52)

Convergence is declared when there is a negligible difference between f (k+1) and

f (k). Newton’s method is guaranteed to converge to the global optimum, given the

objective in Equation 1.48 represents a convex optimisation problem w.r.t. f . This is

true for many cases of generalised GP regression, as the log-likelihood term is usually

concave for many standard likelihood functions, and the prior term is Gaussian and

therefore log-concave, giving a typical example of a convex optimisation problem,

as illustrated in Boyd and Vandenberghe [2004].

Notice that we can use the second-order Taylor expansion of exp (Ω(f)) about f̂

to obtain the following approximation to the true marginal likelihood given in 1.43:
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p(y|X, θ) =

∫
exp(Ω(f))df (1.53)

u exp(Ω(f̂))

∫
exp

(
−1

2
(f − f̂)>Λ(f − f̂)

)
df . (1.54)

Thus,

log p(y|X) u Ω(f̂)− 1

2
log det Λ +

N

2
log(2π). (1.55)

Also, note that since we have a Gaussian approximation to p(f |y,X, θ), the predic-

tive distribution in Equation 1.45 can be computed using standard Gaussian iden-

tities, although further approximations may be required to compute the expression

in Equation 1.44. For further details on these issues, see Rasmussen and Williams

[2006].

1.3 The Computational Burden of GP Models

Gaussian Process Regression

GPs achieve their generality and mathematical brevity by basing inference on an

N -dimensional Gaussian over the latent function values f . Algorithm 1 gives the

pseudo-code used for computing the marginal likelihood Z(θ) and the predictive

density N (µ?,Σ?), and shows that the computational cost of working with an N -

dimensional Gaussian is O(N3) in execution time and O(N2) in memory.

The complexity of the Cholesky decomposition central to GP regression1 is quite

severe for large datasets. For example, a dataset containing 20,000 observations

(this is not even classed as large nowadays) will take hours to return. Of course,

this is assuming that it runs at all – 20,000 observations will require roughly 7GB

of memory, and many operating systems will refuse to run a program with such

memory requirements! One can argue that the exponential increase in computing

power will allow computational resources to catch up with the complexity inherent

in GP models. However, typical dataset sizes in industry are also experiencing

1The Cholesky decomposition is the preferred way to compute K−1y due to its numerical
stability.

16



Algorithm 1: Gaussian Process Regression

inputs : Training data {X,y}, Test locations X?, Covariance Function
covfunc, hyperparameters θ = [σ2

f ; `1 . . . `D;σ2
n]

outputs: Log-marginal likelihood logZ(θ), predictive mean µ? and
covariance Σ?

KN ← covfunc(X,θ); //Evaluate covariance at training inputs1

KN ← KN + σ2
nIN ; //Add noise2

L← Cholesky(KN); //O(N3) time, O(N2) memory3

α← Solve(L>, Solve(L, y)); //α = (KN + σ2
nIN)−1y4

[KM ,KMN ]← covfunc(X, X?, θ);5

V← Solve(L, KMN);6

µ? ← KMNα;7

Σ? ← KM −V>V;8

logZ(θ)← −1
2

(
y>α+

∑N
i=1 L(i, i) + N

2
log(2π)

)
;9

rapid growth as more and more aspects of the physical world are computerized

and recorded. As a result, there is a strong incentive for applied machine learning

research to develop techniques which scale in an acceptable way with dataset size

N .

A significant amount of research has gone into sparse approximations to the full

GP regression problem. In the full GP, N function values located at the given input

locations give rise to the dataset. Most sparse GP methods relax this by assuming

that there are actually P latent function values, f̄ , located at “representative” input

locations1, X̄, giving rise to the N input-output pairs, where P � N . The training

targets y are used to derive a posterior distribution over f̄ and this posterior is used

to perform model selection and predictions. This has the effect of reducing run-time

complexity to O(P 2N) and memory complexity to O(PN), a noteworthy improve-

ment. The pseudo-input locations are learned, manually selected or set to be some

subset of the original input locations, depending on the algorithm. A good example

of this type of method is given by the FITC approximation, see Snelson and Ghahra-

mani [2006]. Other sparse GP techniques involve low-rank matrix approximations

for solving the system (KN + σ2
nIN)−1y (e.g., see Williams and Seeger [2001]) and

frequency domain (e.g., Lázaro-Gredilla [2010]) methods. For an excellent review of

1also known as pseudo-inputs.
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sparse GP approximations, see Quiñonero-Candela and Rasmussen [2005].

The improved computational complexity of sparse GPs comes at the expense of

modelling accuracy, and, at present, an increase in the number of failure modes.

The former is inevitable: we are throwing away information, albeit intelligently. An

example of the latter can be seen in the FITC algorithm. The need to select or

learn X̄ runs the risk of pathologically interacting with the process of hyperparam-

eter learning and reviving the problem of overfitting as explained in Snelson and

Ghahramani [2006]. A very clear advantage of these methods however is their gen-

erality – they work with any valid covariance function, and with an arbitrary set of

inputs from RD.

Generalised Gaussian Process Regression

The runtime complexity of generalised GP regression isO(N3) although usually with

a constant that is a multiple of the one for the standard regression task. The memory

complexity is similar and O(N2). Thus, unsurprisingly, generalised GP regression

suffers from similar scaling limitations. For example, referring to Equation 1.52, we

can see that each Newton iteration of Laplace’s approximation runs in O(N3) time

and O(N2) space. A similar iterative scheme comes about as a result of applying

EP – see Rasmussen and Williams [2006].

Despite suffering from higher computational demands, there is a much smaller

number of techniques in the literature that deal with improving the complexity of

generalised GP regression. It is fair to say that this is an active area of GP re-

search. Current solutions can be characterized as attempts to combine the idea of

sparse GP methods with approximate inference methods necessary to handle non-

Gaussian likelihoods. A good example is the Informative Vector Machine (IVM),

which combines a greedy data subset selection strategy based on information the-

ory and assumed density filtering (which is used to deal with non-Gaussianity)

Lawrence et al. [2003]. Another example is the Generalised FITC approximation of

Naish-Guzman and Holden [2007] which combines FITC with EP. Similar to their

regression counterparts, these methods trade-off modelling accuracy with reduced

complexity, although arguably they suffer from a larger array of failure modes. Fur-

thermore, these methods do not assume any structure in the underlying covariance,
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and thus are, in a sense, orthogonal to the approaches we will use in this thesis to

improve efficiency in the generalised regression setting.

1.4 Structured Gaussian Processes

The central aim of this thesis is to demonstrate that there exist a variety of useful

structured GP models which allow efficient and exact inference, or at the very least

allow a superior accuracy/run-time trade-off than what is currently available for

generic GP regression. We define what we mean by a structured GP as follows:

Definition 2. A Gaussian process is structured if its marginals p(f |X, θ) contain

exploitable structure that enables reduction in the computational complexity of per-

forming regression.

A somewhat trivial example is given by the GP with the linear regression co-

variance function introduced in the previous section, for which k(x,x′) = φ>Σφ

and thus KN = Φ>ΣΦ. Let’s assume the size of Φ is F × N with F � N and

that, as usual, Knoise is diagonal. We can then compute the troublesome quantities

(KN + Knoise)
−1y, (KN + Knoise)

−1KNM and det(KN + Knoise) in O(NF 2) time and

O(NF ) memory by appealing to the matrix inversion lemma and the associated

matrix determinant lemma:

(KN + Knoise)
−1 = K−1

noise −K−1
noiseΦ

> (Σ−1 + ΦK−1
noiseΦ

>)−1
ΦK−1

noise, (1.56)

det(KN + Knoise) = det
(
Σ−1 + ΦK−1

noiseΦ
>) det(Σ) det(Knoise). (1.57)

Clearly, exact inference can be performed for such a structured GP model much more

efficiently. The reduction in complexity is clearly a result of the low-rank nature

of the (noise-free) covariance function. In the special case where φ(x) = x the

covariance function gives rise to covariance matrices of rank D. The improvement

in computation comes as a direct consequence of the rather strong assumption that

the input-output relationship is linear.

In this thesis, we present a set of algorithms that make different types of assump-

tions, some of which turn out to be strong for certain datasets, and some which are

perfectly suitable for a host of applications.
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1.5 Outline

Over the course of the thesis we will make four different types of assumptions which

turn out to have significant efficiency implications for standard and generalised GP

regression.

The first is where we consider Gaussian processes which are also Markovian.

This assumption results in a computationally far more attractive factorization of the

marginal p(f |X, θ), as demonstrated in Hartikainen and Särkkä [2010]. As Gauss-

Markov processes are strictly defined over “time” (or any scalar input space) we

will initially restrict attention to regression on R (Chapter 2), although we will also

explore GP models which allow the efficiency gains to be carried over to regression

on RD in Chapter 4. We will show that, especially in 1D, the Markovian assumption

is indeed a very weak one and that, as a result, we do not lose much in terms of

generality. Despite this generality, the Markovian assumption allows us to construct

exact (or near-exact) algorithms that have O(N logN) runtime and O(N) memory

requirements, for both standard and generalised GP regression.

Secondly, we attempt to introduce block structure into covariance matrices by

means of assuming nonstationarity. Note that nonstationarity generally adds to

the computational load, as is apparent in many case studies such as Adams and

Stegle [2008] and Karklin and Lewicki [2005]. However, by limiting attention to a

product partition model, as introduced in Barry and Hartigan [1992], we can exploit

the nonstationary nature of the problem to improve complexity. Furthermore, a

product partition model allows us to partition the input space into segments and fit

independent GPs to each segment, in a manner similar to Gramacy [2005]. Dealing

with nonstationarity can have the added benefit of actually producing predictions

which are more accurate than the usual stationary GP, although approximations

will be needed when working with the posterior over input space partitionings.

We restrict attention to sequential time-series modelling in this thesis (Chapter

3), although, again, extensions as in Chapter 4 are applicable for nonstationary

regression on RD. The assumption of nonstationarity is suitable to many real-world

applications.

In Chapter 4 we use the assumption of additivity to extend the efficiency gains

obtained in Chapter 2 to input spaces with dimension D > 1. This assumption
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would be suitable to cases where the underlying function values can be modelled

well as a sum of D univariate functions. Somewhat unsurprisingly, inference and

learning for a GP with an additive kernel can be decomposed into a sequence of

scalar GP regression steps. As a result, with the added assumption that all additive

components can be represented as Gauss-Markov processes, additive GP regression

can also be performed in O(N logN) time and O(N) space. Similar efficiency gains

can be also be obtained for Generalised GP regression with Laplace’s approximation.

The assumption of additivity frequently turns out to be too strong an assumption for

many large-scale real-world regression tasks. It is possible to relax this assumption

by considering an additive model over a space linearly-related to the original input

space. We will show that learning and inference for such a model can be performed by

using projection pursuit GP regression, with no change to computational complexity

whatsoever.

Another interesting route to obtaining structured GPs involves making assump-

tions about input locations. It is a well-known fact that GP regression can be done

in O(N2) time1 and O(N) memory when the inputs are uniformly spaced on R
using Toeplitz matrix methods (see, e.g. Zhang et al. [2005] and Cunningham et al.

[2008]). What has been unknown until now is that an analogue of this result ex-

ists for regression on RD for any D. In this case one assumes that the inputs lie

on a multidimensional grid. Furthermore, the grid locations need not be uniformly

spaced as in the 1D case. We demonstrate how to do exact inference in O(N) time

and O(N) space for any tensor product kernel (most commonly-used kernels are of

this form). This result is proved and demonstrated in Chapter 5.

We conclude the thesis in Chapter 6 by discussing some interesting extensions

one could follow up to build more GP implementations which scale well.

1More involved O(N logN) algorithms also exist!
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Chapter 2

Gauss-Markov Processes for

Scalar Inputs

In this chapter, we firstly aim to drive home the message that Gauss-Markov pro-

cesses on R can often be expressed in a way which allows the construction of highly

efficient algorithms for regression and hyperparameter learning. Note that most the

ideas we present for efficient Gauss-Markov process regression are not new and can

be found in, e.g., Kalman [1960], Bar-Shalom et al. [2001], Grewal and Andrews

[2001], Hartikainen and Särkkä [2010], Wecker and Ansley [1983]. Due in part to

the separation between systems and control theory research and machine learning,

the SDE viewpoint of GPs has not been exploited in commonly used GP software

packages, such as Rasmussen and Nickisch [2010]. We are thus motivated to provide

a concise and unified presentation of these ideas in order to bridge this gap. Once

this is achieved, we contribute an extension that handles non-Gaussian likelihoods

using EP. The result is a scalar GP classification algorithm which runs inO(N logN)

runtime and O(N) space. For appropriate kernels, this algorithm returns exactly

the same predictions and marginal likelihood as the standard GP classifier (which

also uses EP).

2.1 Introduction

The goal of this chapter is to demonstrate that many GP priors commonly employed

over R can be used to perform (generalised) regression with efficiency orders of

22



magnitude superior to that of standard GP algorithms. Furthermore, we will derive

algorithms which scale as O(N logN) in runtime and O(N) in memory usage. Such

gains come about due to the exact (or close to exact) correspondence between the

function prior implied by a GP with some covariance function k(·, ·), and the prior

implied by an order-m linear, stationary stochastic differential equation (SDE), given

by:
dmf(x)

dxm
+ am−1

dm−1f(x)

dxm−1
+ · · ·+ a1

df(x)

dx
+ a0f(x) = w(x), (2.1)

where w(x) is a white-noise process with mean 0 and covariance function kw(xi, xj) =

qδ(xi−xj). Since white-noise is clearly stationary, we will also refer to its covariance

function as a function of τ ≡ xi−xj, i.e., k(τ) = qδ(τ). q is the variance of the white-

noise process driving the SDE. Note that x can be any scalar input, including time.

Because w(x) is a stochastic process, the above SDE will have a solution which

is also a stochastic process, and because the SDE is linear in its coefficients, the

solution will take the form of a Gaussian process. This is not an obvious result and

we will expand on it further in Section 2.3. Furthermore, the solution function f(x)

will be distributed according to a GP with a covariance function which depends on

the coefficients of the SDE. We can rewrite Equation 2.1 as a vector Markov process :

dz(x)

dx
= Az(x) + Lw(x), (2.2)

where z(x) =
[
f(x), df(x)

dx
, . . . , d

m−1f(x)
dxm−1

]>
, L = [0, 0, . . . , 1]>1, and

A =




0 1 · · · 0 0
...

. . . · · · . . .
...

0 0 · · · 1 0

−a0 · · · · · · −am−2 −am−1



. (2.3)

Equation 2.2 is significant because it dictates that given knowledge of f(x) and

its m derivatives at input location x, we can throw away all information at any

other input location which is smaller than x. This means that by jointly sorting

1Note that in the exposition of the state-space representation of a GP, we will use capital letters
for some vectors in order to remain consistent with the SDE literature. The motivation behind
this stems from the fact that in a more general state-space model these objects can be matrices.
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our training and test sets and by augmenting our latent-space to include derivatives

of the underlying function in addition to the function value itself, we can induce

Markovian structure on the graph underlying GP inference. All efficiency gains

demonstrated in this chapter will arise as a result of the Markov structure inherent

in Equation 2.2. In fact, the efficiency gains are so significant that the asymptotic

runtime cost is dominated by the operation of sorting the training and test inputs!

Figure 2.1 illustrates the reformulation of GP regression into a Markovian state-space

model (SSM).

In order to construct the SSM corresponding to a particular covariance function,

it is necessary to derive the implied SDE. In Section 2.2 we illustrate the SDEs cor-

responding to several commonly used covariance functions including all kernels from

the Matérn family and spline kernels, and good approximate SDEs corresponding

to the squared-exponential covariance function. Once the SDE is known, we can

solve the vector differential equation in Equation 2.2 and therefore compute the

time and measurement update equations that specify all the necessary conditional

distributions required by the graph in Figure 2.1. The Kalman filtering and Rauch-

Tung-Striebel (RTS) smoothing algorithms, which correspond to performing belief

propagation on the graph using forward filtering and backward smoothing sweeps,

can then be used to perform GP regression efficiently, see Kalman [1960] and Rauch

et al. [1965]. Because we are dealing with Gaussian processes, all the conditional

distributions involved are Gaussian. We will present the details on how to compute

these given a GP prior in the form of an SDE in Section 2.3.

2.2 Translating Covariance Functions to SDEs

In Chapter 1 we described the GP prior in terms of its covariance function (and

assumed its mean function be to be zero). In this Chapter, we would like to view

the same prior from the perspective of Equation 2.1. In order to analyze whether

or not it is possible to write down a SDE for a given covariance function and, if so,

how to derive it, requires that we understand how to go in the opposite direction.

In other words, given an SDE as in Equation 2.1, what is the implied covariance

function of f(x) given that the covariance function of w(x) is kw(τ) = qδ(τ)?

The first step is to view the SDE as representing a linear, time-invariant (LTI)
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Figure 2.1: Illustrating the Transformation of GP Regression into Inference on a vector

Markov process using Graphical Models. Unshaded nodes indicate latent variables, shaded

ones are observed variables and solid black dots are variables treated as known in advance.

In standard GP regression (illustrated in the top half) the hidden state variables are

the underlying function values. They are fully connected as illustrated by the bold line

connecting them. By augmenting the latent state variables to include m derivatives, we

derive a chain-structured graph (illustrated in the bottom half). Reduction from a fully

connected graph to one where the maximal clique size is 2 results in large computational

savings. x and y are x̃ and ỹ sorted in ascending order. We see that in this example that

the test point is the second smallest input location in the whole dataset.

system, driven by white-noise, as shown in Figure 2.2. For a good introduction to

LTI systems, refer to Oppenheim et al. [1996]. Conceptually, for every sample of

white-noise with variance q, the LTI system produces a sample from a GP with
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�
+L H

w(x)

LTI system : f(x) = T {w(x)}

z(x) f(x)

A

Figure 2.2: The LTI system equivalent to the SDE in Equation 2.2. The components

represent the vectors L and H and the matrix A in Equation 2.2. Conceptually, the

“integrator” integrates the system in Equation 2.2 over an infinitesimal interval.

some covariance function. In order to determine what this covariance function is,

it is necessary to characterize the output produced for an arbitrary, deterministic

input function, φ(x).

Because the internals of the black-box producing f(x) from w(x) are a sequence

of linear operations, it is clear from this figure that, under appropriate initial con-

ditions, T {∑i αiφi(x)} =
∑

i αiT {φi(x)} for any αi and any input function φi(x).

As T does not change as function of x, “time-invariance” is also satisfied.

Every LTI system is fully characterized by its impulse response function, which

is the output of the system when we input a unit impulse at time 0, i.e.:

h(t) = T {δ(t)} . (2.4)

The reason we can fully characterize an LTI system using h(t) is a consequence of

the following theorem:

Theorem 2.1. For any deterministic input φ(x),

T {φ(x)} = φ(x) ? h(x). (2.5)

Proof. Since we can trivially write φ(x) =
∫∞
−∞ φ(x − α)δ(α)dα for any φ(x), we

have
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T {φ(x)} = T

{∫ ∞

−∞
φ(x− α)δ(α)dα

}
,

=

∫ ∞

−∞
φ(x− α)T {δ(α)} dα, [linearity]

=

∫ ∞

−∞
φ(x− α)h(α)dα, [time-invariance]

≡ φ(x) ? h(x).

Taking the Fourier transform of both sides Equation 2.5 and using the convolu-

tion property, we can write:

F (T {φ(x)}) ≡ F (ω) = Φ(ω)H(ω), (2.6)

where Φ(ω) is Fourier transform of the (arbitrary) input, F (ω) that of the output

and H(ω) that of the impulse response function, which is commonly known as the

frequency response function.

Using Theorem 2.1 it is straightforward to prove the following:

Theorem 2.2. The covariance function of the output of an LTI system driven with

a stochastic process with kernel kw(τ) is given by:

kf (τ) = kw(τ) ? h(τ) ? h(−τ). (2.7)

Proof. Given that the system is linear and the mean function of the white-noise

process is 0, it is clear that the mean function of the output process is also zero.

Hence,

kf (τ) ≡ E (f(x)f(x+ τ)) ,

= E
[(∫ ∞

−∞
w(x− α)h(α)dα

)
f(x+ τ)

]
, [2.1]

=

∫ ∞

−∞
E (w(x− α)f(x+ τ))h(α)dα,
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=

∫ ∞

−∞
E
(
w(x− α)

∫ ∞

−∞
w(x+ τ − β)h(β)dβ

)
h(α)dα, [2.1]

=

∫ ∞

−∞

∫ ∞

−∞
E (w(x− α)w(x+ τ − β))h(β)h(α)dβdα,

≡
∫ ∞

−∞

∫ ∞

−∞
kw(τ − β − γ)h(β)h(−γ)dβdγ, [γ ≡ −α]

≡ kw(τ) ? h(τ) ? h(−τ).

Taking the Fourier transform of both sides of Equation 2.7 we can write:

Sf (ω) = Sw(ω)H(ω)H∗(ω), (2.8)

= Sw(ω)|H(ω)|2. (2.9)

where Sw(ω) and Sf (ω) are the respective Fourier transforms of kw(τ) and kf (τ), also

known as the spectral density functions of the input and output processes. Since, for

a white-noise process, Sw(ω) = q 1, the spectral density of the output GP becomes:

Sf (ω) = qH(ω)H∗(ω) = q|H(ω)|2. (2.10)

For linear, constant coefficient SDEs we can derive H(ω) analytically by taking the

Fourier transform of both sides of Equation 2.1.

m∑

k=0

ak
dkf(x)

dxk
= w(x).

m
m∑

k=0

ak(iω)kF (ω) = W (ω).

Using Equation 2.6 we see directly that:

H(ω) =
F (ω)

W (ω)
=

(
m∑

k=0

ak(iω)k

)−1

. (2.11)

Combining Equations 2.10 and 2.11 we see that if the spectral density of our GP

1As the name implies!
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can be written in the form

Sf (ω) =
q

polynomial in ω2
. (2.12)

then we can immediately write down the corresponding SDE and perform all neces-

sary computations in O(N logN) runtime and O(N) memory using the techniques

described in Section 2.3.

2.2.1 The Matérn Family

The covariance function for the Matérn family (indexed by ν) for scalar inputs is

given by:

kν(τ) = σ2
f

21−ν

Γ(ν)
(λτ)ν Bν (λτ) , (2.13)

where Bν is the modified Bessel function (see Abramowitz and Stegun [1964]) and

we have defined λ ≡
√

2ν
`

. We had already seen examples of this family in Equations

1.33 through to 1.36. Recall that ` is the characteristic lengthscale and σ2
f the signal

variance. The Fourier transform of this expression and thus the associated spectral

density is (see Rasmussen and Williams [2006]):

S(ω) = σ2
f

2π1/2Γ(ν + 1/2)λ2ν

Γ(ν)(λ2 + ω2)ν+1/2
⇔ q

polynomial in ω2
. (2.14)

The spectral density of the Matérn kernel is precisely of the form required to allow

an SDE representation. All we have to do is to find the frequency response H(ω)

giving rise to this spectral density and then use Equation 2.11 to find the coefficients

ak. Note that Equation 2.14 implies that

q = σ2
f

2π1/2Γ(ν + 1/2)λ2ν

Γ(ν)
. (2.15)

Using Equation 2.10 and 2.14 we can write:
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H(ω)H∗(ω) =
S(ω)

q
,

= (λ2 + ω2)−(ν+1/2),

= (λ+ iω)−(ν+1/2)(λ− iω)−(ν+1/2).

Thus,

H(ω) = (λ+ iω)−(ν+1/2). (2.16)

For example, when ν = 7/2, the resulting SDE is given, in vector form, as follows:

dz(x)

dx
=




0 1 0 0

0 0 1 0

0 0 0 1

−λ4 −4λ3 −6λ2 −4λ




z(x) +




0

0

0

1



w(x). (2.17)

where the variance of w(x) is q given by Equation 2.15.

Note that the Matérn kernel is well-defined for ν ∈ R+, although it may not

be possible to derive an analytic expression for its corresponding SDE for non-half-

integer values of ν.

2.2.2 Approximating the Squared-Exponential Covariance

The squared-exponential is a kernel which is frequently used in practice, due in part

to its intuitive analytic form and parameterisation. For completeness, we present

ways in which one could approximate this covariance with an SDE, while noting that

its support for infinitely differentiable functions makes it computationally rather

unattractive.

The Fourier transform of a squared-exponential kernel is itself a squared-exponential

of ω, i.e.:

k(τ) = σ2
f exp

(
− τ 2

2`2

)
⇔ S(ω) =

√
2πσ2

f` exp

(
−ω

2`2

2

)
. (2.18)

We can write the spectral density in a form similar to Equation 2.12 using the Taylor
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expansion of exp(x).

S(ω) =

√
2πσ2

f`(
1 + ω2`2

2
+ 1

2!

(
ω2`2

2

)2
+ . . .

) . (2.19)

As the denominator is an infinitely long polynomial we cannot form an SDE which

exactly corresponds to the SE kernel. This should come as no surprise since the SE

covariance gives rise to infinitely differentiable functions. Therefore, conceptually,

we would need to know an infinite number of derivatives to induce Markov structure.

However, we can obtain an approximation by simply truncating the Taylor expansion

at some maximum order M . By doing so, the approximate spectral density becomes

a special case of Equation 2.12, and we can proceed to compute the frequency

response function:

H(ω)H∗(ω) =
S(ω)

q
,

=

(
1 +

ω2`2

2
+

1

2!

(
ω2`2

2

)2

+ · · ·+ 1

M !

(
ω2`2

2

)M)
.

H(ω) is thus a polynomial of iω, however, unlike the case for the Matérn kernel, we

cannot find the coefficients of this polynomial analytically and will therefore have to

resort to numerical methods (for further details, see Hartikainen and Särkkä [2010]).

Alternatively, one may choose to assume that a member of the Matérn family

with high enough ν (e.g. ν ≥ 7/2) is an acceptable approximation. This has the

advantage of avoiding numerical routines for computing the SDE coefficients, at

the expense of a small loss in approximation quality. Figure 2.3 illustrates the two

alternatives for approximating the squared-exponential covariance.

2.2.3 Splines

Splines are regression models which are popular in the numerical analysis and fre-

quentist statistics literatures (for a good introduction see Hastie et al. [2009]). Fol-

lowing Wahba [1990] and Rasmussen and Williams [2006], a connection can be made

between splines of arbitrary order m and GPs. The frequentist smoothing problem
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Figure 2.3: (Left) Spectral density of the Matérn kernels (with unit lengthscale and

amplitude) for ν = [1/2, 3/2, . . . , 11/2] in shades of red; true squared-exponential spec-

tral density in black. (Right) Spectral density of the Taylor approximations (with unit

lengthscale and amplitude) for M = [1, . . . , 6] in shades of red; true squared-exponential

spectral density in black. For a given order of approximation the Taylor expansion is

better, however, we cannot find coefficients analytically.

is to minimize the cost-functional

Ω(f(·)) ≡
N∑

i=1

(f(xi)− yi)2 + λ

∫ b

a

(f (m)(x))2dx. (2.20)

where λ is a regularization parameter (usually fit using cross-validation) which con-

trols the trade-off between how well the function fits the targets (first term) and how

wiggly/complex it is (second term). The minimization is over all possible functions

f(x) living in a Sobolev space of the interval [a, b]. For an excellent introduction

on functional analysis see Kreyszig [1989]. Interestingly, one can obtain a unique

global minimizer which can be written as a natural spline: a piecewise polynomial

of order 2m − 1 in each interval [xi, xi−1] and a polynomial of order m − 1 in the

intervals [a, x1] and [xN , b]. A spline is generally not defined over all of R but over

a finite interval from a to b, where a < min(x1, . . . , xN) and b > max(x1, . . . , xN).

Therefore, without loss of generality, we can assume a = 0 and b = 1, requiring that
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inputs be scaled to lie between 0 and 1. The natural spline solution is given by:

f(x) =
m−1∑

j=0

βjx
j +

N∑

i=1

γi(x− xi)2m−1
+ , where (z)+ ≡




z if z > 0,

0 otherwise.
(2.21)

The parameters β ≡ {βj} and γ ≡ {γi} can be determined in O(N logN) time

and O(N) space due to the Reinsch algorithm described in Green and Silverman

[1994] and Reinsch [1967]. This algorithm also requires the sorting of inputs and the

attains its efficiency by re-expressing the optimization as a linear system which is

band-diagonal (with a band of width 2m + 1). The representer theorem Kimeldorf

and Wahba [1971] indicates that the solution can be written in the following form:

f(x) =
m−1∑

j=0

βjx
j +

N∑

i=1

αiR(x, xi), (2.22)

where R(x, x′) is a positive definite function, as shown in Seeger [1999].

Both the nature of the solution and the complexity of attaining it have analogues

in an equivalent GP (Bayesian) construction. The key to obtaining an efficient al-

gorithm again lies in the SDE representation of GP priors, although in this case it

won’t be possible to represent the SDE as an LTI system due to the nonstationar-

ity of the spline kernel (see below). Let’s consider the following generative model

representing our prior:

β ∼ N (0,B), (2.23)

fsp(x) ∼ GP(0, ksp(x, x′)), (2.24)

f(x) =
m−1∑

j=0

βjx
j + fsp(x), (2.25)

yi = f(xi) + ε, where ε ∼ N (0, σ2
n). (2.26)

This setup is different from the standard GP prior introduced in Chapter 1 for

two reasons. First, all inputs are assumed to be between 0 and 1. Secondly, it is

a combination of a parametric model with a polynomial feature mapping φ(x) =

[1, x, . . . , xm−1] and a separate GP prior which is effectively modelling the residuals
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of the parametric component. In fact, it is an instance of an additive model (see

Chapter 4). Due to the additive nature of the prior and the fact that we can represent

the parametric component as a GP (as in Chapter 1), it is clear that the function

prior implied by Equation 2.25 also gives rise to a GP. Its covariance function is

given by the sum of the covariance functions of the two components, namely:

kf (x, x
′) = ksp(x, x

′) + φ(x)>Bφ(x). (2.27)

Note that we haven’t yet specified ksp(x, x
′). We would like to set it so that after

observing a dataset of size of N our maximum-a-posteriori (MAP) function estimate

is in line with the frequentist solution presented in Equation 2.22. For GPs the MAP

estimate is given by the posterior mean function, which we derived in Equation 1.29:

µ(x) = k(x)>
(
KN + σ2

nIN
)−1

y, (2.28)

where k(x) is the KMN matrix evaluated at the singleton test location, x, and

KN is the training covariance matrix associated with the kernel in Equation 2.27.

After some rearrangement, we can rewrite Equation 2.28 in a form consistent with

Equation 2.22

µ(x) = φ(x)>β̂ + k>sp(x) K̃
−1

sp

(
y −Φ>β̂

)

︸ ︷︷ ︸
≡α̂

, (2.29)

where ksp(x) is the cross-covariance vector associated with the kernel ksp(x, x′),

K̃sp ≡ Ksp + σ2
nIN and Φ is the feature mapping applied to all training inputs. β̂ is

the posterior mean of the parameters of the linear component of the model and is

given by:

β̂ =
(
B−1 + ΦK̃

−1

sp Φ>
)−1

ΦK̃
−1

sp y. (2.30)

Because the coefficients β are assumed to be arbitrary in the frequentist setup, we

would like to consider the limit where B−1 → 0, thus obtaining the posterior over

β given an improper prior:

β̂ =
(
ΦK̃

−1

sp Φ>
)−1

ΦK̃
−1

sp y. (2.31)

Equation 2.29 makes intuitive sense since it states that the mean prediction at x is
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the sum of the mean prediction of the linear component and the mean prediction of

a GP which models the residuals y −Φ>β̂.

Wahba [1990] showed that the mean function in Equation 2.29 is in line with

the solution implied by the representer theorem if and only if we set ksp(·, ·) as the

covariance function of the (m − 1)-fold-integrated Wiener process of amplitude σ2
f

1. From a computational perspective this is great news because the (m − 1)-fold-

integrated Wiener process is the solution to the following SDE:

dmf(x)

dxm
= w(x). (2.32)

For example, a quintic spline prior gives rise to the following vector-Markov process:

dz(x)

dx
=




0 1 0

0 0 1

0 0 0


 z(x) +




0

0

1


w(x), (2.33)

where the variance of w(x) is q ≡ σ2
f . It is thus possible to compute the expressions

in Equations 2.29 and 2.31 inO(N logN) time andO(N) space, using the techniques

described in the following section. Additionally, given our Bayesian approach, we

can compute the uncertainty in our regression estimate, using the standard equations

in Chapter 1, at close to no additional computational cost. The predictive variance

at test location x? can be written as follows:

σ2(x?) = ksp(x?, x?)− k>sp(x?)K̃
−1

sp ksp(x?) + ρ>
(
ΦK̃

−1

sp Φ>
)
ρ, (2.34)

where

ρ = φ(x?)−ΦK̃
−1

sp ksp(x?). (2.35)

1These are fundamental nonstationary stochastic processes.
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2.3 GP Inference using State-Space Models

2.3.1 The State-Space Model

In the previous section we showed how many different GP priors can be written as

a vector Markov process, with state dynamics described by the equation:

dz(x)

dx
= Az(x) + Lw(x). (2.36)

Strictly, Equation 2.36 should be written in its integral form:

dz(x) = Az(x)dx+ L
√
qdβ(x), (2.37)

where dβ(x) ≡ w(x)dx is the infinitesimal increment of standard Brownian motion

β(x) (also known as the Weiner process). For our purposes, Equation 2.37 is equiv-

alent to 2.36 because we are only interested in integrating the SDE forward in time.

Let’s assume that z(x) is Gaussian distributed with z(x) ∼ N (µ(x),Σ(x)). Taking

the expectation of both sides of Equation 2.37 we can derive the ordinary linear

differential equation describing the evolution of the mean:

dµ(x)= Aµ(x)dx,

⇒dµ(x)

dx
= Aµ(x), (2.38)

where we have used the fact that E(dβ(x)) = 0. Similarly, we can derive the

evolution of the covariance matrix by considering the covariance of both sides of

Equation 2.37.

dΣ(x)=
(
AΣ(x) + (AΣ(x))>

)
dx+ qLL>dx

⇒dΣ(x)

dx
= AΣ(x) + Σ(x)A> + qLL> (2.39)

where we have used Cov(dβ(x)) = Imdx and the fact that the Brownian motion is

independent of z(x). This matrix differential equation is commonly referred to as

the matrix Riccati differential equation (see, e.g., Willems [1971]). We can now use
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Equations 2.38 and 2.39 to derive analytic expressions for µ(x) and Σ(x) given the

initial conditions µ(x0) = µ0 and Σ(x0) = 0 (i.e., at x0 the process is deterministic).

Furthermore, using the standard results in Riley et al. [2006] and Arnold [1992] we

have:

µ(x) = exp(A(x− x0))µ0, (2.40)

where we have used a matrix exponential. The matrix exponential is the exponential

function generalized to square matrix arguments. Formally it is defined as follows:

exp(X) =
∞∑

k=0

1

k!
Xk, (2.41)

where Xk is the matrix X matrix-multiplied with itself k times. For the covariance,

we have the following unique and non-negative definite solution:

Σ(x) = q

∫ x

x0

exp(−A(x− s))LL> exp(−A(x− s))ds, (2.42)

where we have used the identity (exp(X))−1 = exp(−X). The integral in this

Equation is over a matrix and is defined as the element-wise integral of its argument.

Given the deterministic starting condition (which we have limited ourselves to) the

density of z(x) is Gaussian for all x, and therefore µ(x) and Σ(x) capture all the

uncertainty about z(x). See Arnold [1992] for a proof of this.

Thus, all the conditional distributions in Figure 2.1 are Gaussians for the GP

regression task and are listed below:

Initial state : p(z(x1)) = N (z(x1);µ,V). (2.43)

State update : p(z(xi)|z(xi−1))= N (z(xi); Φi−1z(xi−1),Qi−1). (2.44)

Emission : p(y(xi)|z(xi)) = N (y(xi); Hz(xi), σ
2
n). (2.45)

where we assume that the inputs xi are sorted in ascending order and may include

test inputs, in which case we simply do not consider the emission distribution at

that location. Using the above, we can write:
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Φi−1 = exp(Aδi), (2.46)

Qi−1 = q

∫ δi

0

ci−1(δi − h)c>i−1(δi − h)dh, (2.47)

where δi ≡ xi − xi−1 and ci−1 is the last column of the matrix exp(A(δi − h)).

The form of the emission distribution is very simple. H simply picks out the first

element of the vector z(xi) which corresponds to the latent function value inferred

at location xi.

In the case of the Matérn family and spline kernels, where we have obtained

an analytic expression for A, it is also possible to derive an analytic expression for

exp(At) using the following identity:

exp(At) = L−1
{

(sIM −A)−1
}
, (2.48)

where L−1 denotes the inverse Laplace transform and s ∈ C is a complex num-

ber. Equation 2.48 can be derived straightforwardly using properties of the Laplace

transform. As a result, we can compute both the expressions in Equation 2.46 and

2.47 in closed form. For example, for the Matérn(3/2) kernel we obtain:

Φi−1 =
1

exp (λδi)

[
(λδi + 1) δi

−(λ2δi) (1− λδi)

]
. (2.49)

Note that closed form expressions can be obtained for any Matérn order using a

symbolic math package such as MATLAB’s Symbolic Math Toolbox (see Appendix

B for code to generate these expressions automatically). Furthermore, when analytic

expressions exist, the Symbolic Math Toolbox can also be used to to compute the

integrals involved in computing Qi−1 (see Equation 2.47). In fact, there is a neat

trick called matrix fraction decomposition which obviates the use of integrals for

computing covariance matrices, as shown in Särkkä [2006]. Let’s return to the matrix

Riccati differential equation in Equation 2.39. Assuming Σ(x) can be written as:

Σ(x) = C(x)D(x)−1, (2.50)
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then by simply plugging in Equation 2.50 into both sides of the differential equation

in 2.39, it can be seen that:

dC(x)

dx
= AC(x) + qLL>D(x), (2.51)

dD(x)

dx
= −A>D(x). (2.52)

Amazingly, these system of equations can be expressed as one larger linear ODE,

which in turn can be solved using matrix exponentials only :

[
dC(x)
dx

dD(x)
dx

]
=

[
A qLL>

0 −A>

][
C(x)

D(x)

]
. (2.53)

For a spline kernel of order m we can derive analytic expression for both the

Φi−1 and the Qi−1. Using Equations 2.46 and 2.47 we obtain:

Φi−1 =




1 δi
δ2i
2!

. . .
δm−1
i

(m−1)!

0 1 δi . . .
δm−2
i

(m−2)!

. . .
. . . . . . . . .

...

0 0 0 . . . 1



, (2.54)

Qi−1(j, k) = q

∫ δi

0

(δi − h)m−j

(m− j)!
(δi − h)m−k

(m− k)!
dh (2.55)

=
qδ

(m−j)+(m−k)+1
i

((m− j) + (m− k) + 1)(m− j)!(m− k)!
. (2.56)

These expressions are consistent with those derived in Wecker and Ansley [1983],

who do not use the SDE representation of splines explicitly.

If we do not have an analytic expression for A, as was the case for the Taylor-

expansion based technique for approximating the squared-exponential kernel, then

it is necessary to compute Φi−1 and Qi−1 numerically. As the coefficients in A

are also found numerically (by solving polynomial equations), there is a tendency

for numerical errors to propagate (causing, for example, matrices to become non-

positive definite). Indeed, we find that, in practice, this is a major disadvantage of

using the Taylor-expansion based approximation, and will therefore stick to using

high-order Matérn kernels for this task. In addition, one should be be wary of the
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fact that computing derivatives of hyperparameters analytically becomes impossible

if Φi−1 and Qi−1 are computed numerically.

For SDEs described by LTI systems, µ = 0, because the starting state of the

SDE (at x = −∞) is assumed to be 0 and because it is generally the case that

limt→∞ exp(At) = 0, a property which is easily verified for Equation 2.49. More

generally, the stability of a linear system implies non-positivity of the eigenvalues

of A, so for any stable linear system it must be that µ = 0. We can compute V

by considering what the process covariance tends to after running for an infinite

interval, i.e.,

V = q

∫ ∞

0

c(h)c>(h)dh, (2.57)

where c is the last column of the matrix exp (Ah). The integral in Equation 2.57

always converges for LTI systems with absolutely integrable impulse response, i.e.,

for which ∫ ∞

−∞
|h(τ)|dτ <∞. (2.58)

It can be shown that the Matérn family and approximations to the squared-exponential

covariance all give rise to LTI systems which satisfy this property. Alternatively, it

is also possible to obtain V by solving the matrix Riccati equation, as in Bar-Shalom

et al. [2001]:
dV

dx
= AV + VA> + LqL> = 0. (2.59)

Recall that for the spline kernel we limited the evolution of the SDE between input

locations 0 and 1. To remain consistent with the literature, it suffices to set µ = 0

and

V = q

∫ x1

0

c(h)c>(h)dh. (2.60)

Intuitively, we are starting the integrated Wiener process at the origin at x = 0 and

considering its dynamics until x = 1.

2.3.2 Inference and Learning [..]

Now that we have specified how to compute all the necessary conditionals forming

the state-space model, GP regression becomes a special case of performing infer-

ence on the chain-structured graph in Figure 2.1. After sorting the inputs, this
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can be done in O(N) runtime and space using the filtering-smoothing algorithm,

which corresponds to running the generic belief propagation algorithm on our chain-

structured graph. We would like to compute p(zk|y,x, θ) for k = 1 . . . K, where

K = N +M as we have jointly sorted our training and input locations to form the

vector x. The inference procedure consists firstly of a “forward” filtering run where

p(zk|y1, . . . , yi(k),x, θ) are computed from k = 1, . . . , K in a recursive manner. i(k)

gives the index of the target corresponding to state k in the Markov chain. The re-

cursion is commonly known as the Kalman filter Kalman [1960]. The key equations

are given below:

p(zk−1|y1, . . . , yi(k−1),x, θ) = N (µ
(f)
k−1,V

(f)
k−1),

w� “Time” update

p(zk|y1, . . . , yi(k−1),x, θ) = N (Φk−1µ
(f)
k−1,Φk−1V

(f)
k−1Φ

>
k−1 + Qk−1︸ ︷︷ ︸

≡Pk−1

),

w� Measurement update

p(zk|y1, . . . , yi(k),x, θ) = N (µ
(f)
k ,V

(f)
k ),

where µ
(f)
k = Φk−1µk−1, and V

(f)
k = Pk−1 if i(k) = i(k − 1). In the case where

i(k) = i(k − 1) + 1, we have

µ
(f)
k = Φk−1µ

(f)
k−1 + Gk[yi(k) −HΦk−1µ

(f)
k−1], (2.61)

V
(f)
k = Pk−1 −GkHPk−1, (2.62)

where Gk is known as the Kalman gain matrix :

Gk = Pk−1H
> (H>Pk−1H + σ2

n

)−1
. (2.63)

The recursion is initialized with µ
(f)
1 = µ and V

(f)
1 = V. Once the filtering densities

are known, a backward recursive procedure, commonly known as the RTS smoother,

updates p(zk|y1, . . . , yi(k),x, θ) to p(zk|y,x, θ) ≡ N (µk,Vk) for k = K, . . . , 1, as

follows:
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µk = µ
(f)
k + Lk

(
µk+1 −Φkµ

(f)
k

)
, (2.64)

Vk = V
(f)
k + Lk (Vk+1 −Pk) L>k , (2.65)

where Lk ≡ VkΦ
>
k P−1

k is known as the Lyapunov matrix. The recursion is initialized

using µK = µ
(f)
K and VK = V

(f)
K . Note that the predictive density p(f(xk)|y,x, θ)

has mean and variance given by µk = µk(1) and σ2
k = Vk(1, 1). Algorithm 2 gives

the pseudo-code for performing GP regression using state-space models. Note that

this algorithm has been presented in the case where we know the locations of the

test points in advance. This may not be the case in practice. Fortunately, due to

the Markovian structure of the state-space model, we can predict at any new test

input using the posterior distributions over the latent states at neighbouring training

inputs (and there can be at most 2 neighbours).

Recall that in the standard GP regression algorithm, the hyperparameters were

learned by maximizing the marginal likelihood p(y|x, θ). When we can represent the

GP model in state-space form, it is possible to use the Expectation-Maximization

(EM) algorithm Dempster et al. [1977] to maximize the marginal likelihood with

respect to the hyperparameters. The purpose of the EM algorithm is to avoid the

direct maximization of the marginal likelihood, since finding analytic expressions

for this quantity and its derivatives is often too difficult (or, indeed, not possible).

Instead, one iteratively alternates between computing the expected complete data

log-likelihood (EC) (E-step) and optimising it w.r.t. the hyperparameters (M-step).

Both these steps are often analytically tractable, which explains the wide-spread use

of the EM algorithm. EC is given by:

EC(θ) ≡ Ep(Z|y,x,θold) (p(Z,y|x, θ)) , (2.66)

where Z ≡ {zk}Kk=1. Referring to the graph in Figure 2.1 we can see that

p(Z,y|x, θ) = log p(z(x1), θ) +
K∑

t=2

log p(z(xt)|z(xt−1), θ) +
K∑

t=1

log p(y(xt)|z(xt)).

(2.67)

As we can push the expectation in Equation in 2.66 to the individual summands in
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Algorithm 2: Gaussian Process Regression using SSMs

inputs : Jointly sorted training and test input locations x. Targets y
associated with training inputs. State transition function stfunc

that returns Φ and Q matrices. Hyperparameters θ
outputs: Log-marginal likelihood logZ(θ). Predictive means µ? and

variances v?. E-step moments: E(ztz
>
t ), E(ztz

>
t−1)

µ
(f)
0 ← µ; V

(f)
0 ← V; Z(θ) = 0;1

for t← 1 to K do2

if t > 1 then [Φt−1,Qt−1]← stfunc(θ, x(t)− x(t− 1));3

else [Φt−1,Qt−1]←stfunc(θ, ∞); //Prior process covariance4

Pt−1 ← Φt−1V
(f)
t−1Φ

>
t−1 + Qt−1;5

if is train(t) then6

logZ(θ)← logZ(θ)+ gausslik(y(i(t)), HΦt−1µ
(f)
t−1, HPt−1H

> + σ2
n);7

µ
(f)
t = Φt−1µ

(f)
t−1 + Gt[y(i(t))−HΦt−1µ

(f)
t−1];8

V
(f)
t = Pt−1 −GtHPt−1;9

else10

µ
(f)
t ← Φt−1µ

(f)
t−1; V

(f)
t ← Pt−1;11

end12

end13

µK ← µ
(f)
K ; VK ← V

(f)
K ; µ?(K)← HµK ; v?(K)← HVKH>;14

E(zKz>K)← VK + µKµ
>
K ;15

E(zKz>K−1)← (ID −GKH)ΦK−1VK−1;16

for t← K − 1 to 1 do17

Lt ← VtΦ
>
t P−1

t ;18

µt ← µ
(f)
t + Lt

(
µt+1 −Φtµ

(f)
t

)
; µ?(t)← Hµt;19

Vt ← V
(f)
t + Lt (Vt+1 −Pt) L>t ; v?(t)← HVtH

>;20

E(ztz
>
t )← Vt + µtµ

>
t ;21

if t < K − 1 then22

E(ztz
>
t−1)← V

(f)
t+1L

>
t + Lt+1

(
E(zt+1z

>
t )−Φt+1Vt+1

)
L>t ;23

end24

end25
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Equation 2.67, the expectations computed in Algorithm 2 are sufficient to compute

EC , and constitute the E-step of the EM algorithm. In the M-step we maximize

Equation 2.66 with respect to θ, and repeat the process until convergence, as shown

in Algorithm 3. The minimization can be accomplished using any off-the-shelf func-

tion minimizer, such as the one found in Rasmussen and Nickisch [2010].

Algorithm 3: Learning the hyperparameters using EM

inputs : Training data {x,y}. Initial hypers θinit.
outputs: Learned hyperparameters θopt.

θold ← θinit;1

while (Z(θold)− Z(θopt)) > ε do2

Compute E-step moments using Algorithm 2 for θold; //E-step3

Use E-step moments to evaluate and minimize −EC(θ) w.r.t θ; //M-step4

θold ← θopt;5

end6

2.4 Generalised Gauss-Markov Process Regression

So far, we have focussed on the case where the state-space representation of the

GP prior has a Gaussian emission density (Equation 2.45). For many practical ap-

plications this assumption would not be appropriate, be it because the targets are

categorical (as in classification) or represent counts (as in Poisson regression) or sim-

ply because Gaussian errors cannot handle outliers (in which case a Student-t error

model would be a better choice). All of these cases can be dealt with by replacing

the Gaussian emission density with a suitable likelihood function for p(y(xi)|z(xi)).

For example, for 2-class classification where y(xi) ∈ {−1, 1} one can use a probit

likelihood:

p(y(xi)|z(xi)) = Φ((Hz(xi))yi), (2.68)

where Φ(·) is the standard Gaussian CDF. Inference and learning with non-Gaussian

emissions necessitates the use of approximations to the true posterior over the latent-

state Markov chain in Figure 2.1. There exist many algorithms for performing

such an approximation, including variational inference and sequential Monte Carlo

methods (for a thorough introduction, see Doucet et al. [2001]). However, we will
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focus on Expectation propagation (EP), due to its superior approximation qualities

(see e.g. Nickisch and Rasmussen [2008]) for GPs with non-Gaussian likelihoods.

Moreover, it is shown in Minka [2001] that EP performs well for tree-structured

graphs (it basically boils down to a “projected” Gaussian belief propagation) and

we have spent most of this Chapter converting the GP regression graph into a chain

structure!

2.4.1 Expectation Propagation [..]

The EP algorithm falls under the general framework of approximating an analyt-

ically and/or computationally intractable posterior distribution p(Z|D, θ) with a

“simpler” distribution q(Z|D, θ), where Z represents all latent variables, D is the

observed data and θ is a set of fixed hyperparameters. q is usually simpler than p

in two ways. First, it is deemed to belong to the exponential family (for analytic

convenience), and second, it is assumed to have a simpler factorization than p (for

computational reasons). In this section, we will first present the EP algorithm for

an arbitrary factor graph representing p, and assume that q is a fully-factorized

Gaussian distribution over Z. We will illustrate the ideas using the application of

EP to the graph in Figure 2.1, which is presented as a factor graph in Figure 2.5.

Generally, the exact posterior will be proportional to a product of factors:

p(Z|D, θ) ∝
∏

i

φi(Zne(φi)), (2.69)

where Zne(φi) is the subset of latent variables which are neighbours of factor φi. Our

aim is to approximate this posterior using a product of Gaussian factors, each of

which is a neighbour to only a single latent variable zk, i.e.:

q(Z|D, θ) ∝
∏

i

∏

k∈ne(φi)

φ̃ik(zk). (2.70)

Ideally we would like to be able minimize

KL


 1

p(D|θ)
∏

i

φi(Zne(φi))
∥∥∥ 1

Zapprox

∏

i

∏

k∈ne(φi)

φ̃ik(zk)


 , (2.71)
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by matching the first and second moments of the marginals over the zk of the

right-hand-side to those of the left-hand-side. The approximation to the evidence

p(D|θ), given by Zapprox, can then be computed by normalising the unnormalised

product of Gaussians on the right-hand-side. However, this ideal KL minimisation is

intractable because it requires performing marginalization over the true posterior. In

EP, we instead iterate across the individual factors φi according to a pre-determined

schedule 1 and minimize, at each iteration, the following:

KL




[∏
j 6=i
∏

k∈ne(φj)
φ̃old
jk (zk)

]
φi(Zne(φi))

Zi

∥∥∥ 1

Zapprox

∏

i

∏

k∈ne(φi)

φ̃new
ik (zk)


 ,

(2.72)

where ne(·) returns the variable neighbours of one or more factor variables, and vice

versa. In many applications of EP, minimizing the divergence in Equation 2.72 via

the matching of first and second moments is a tractable operation. Furthermore,

marginals over the variables that are not in the neighbourhood of φi are unchanged.

For variables which are in the neighbourhood of φi we have the following update

equation:

∀k ∈ ne(φi) (2.73)

φ̃new
ik (zk) ∝

proj



∏

j∈ne(zk)
j 6=i

φ̃old
jk (zk)

∫

Z¬k

φi(Zne(φi))
∏

zm∈Z¬k

∏

`∈ne(zm)

φ̃old
`m(zm) dZ¬k




∏

j∈ne(zk)
j 6=i

φ̃old
jk (zk)

.

where we have defined Z¬k to be the set of variables connected to factor φi, excluding

zk. This update is illustrated in Figure 2.4.

The proj [·] operator takes a non-Gaussian argument and projects it to a Gaussian

so that first and second moments of the Gaussian match those of the argument. If the

argument turns out to be Gaussian then proj [·] is the identity. The proj [·] operator

also computes the zeroth moment of its argument (since it is usually unnormalized)

1In practice, the performance of EP is, unsurprisingly, sensitive to the choice of schedule, as
discussed in Kuss and Rasmussen [2005].
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φi

����
∼ ∼

zk

����
φ̃old

jk (zk)

. . .......

...

{φ̃old
�m(Zm

¬k)}
����

{φ̃old
�m(Z1

¬k)}

Z1
¬k Zm

¬k

proj[·]

∼
φ̃new

ik (zk)

Figure 2.4: Graphical illustration of an individual EP update. The arrows conceptually

represent the flow of information during the update. The boxes with the ∼ sign represent

an approximate factor: φ̃old. Recall that, as in standard belief propagation, variable nodes

multiply the messages sent to them by neighbouring factors, and factor nodes “multiply-

and-marginalise” the messages sent to them by neighbouring variables.

as this quantity is necessary to evaluate the new normalisation constant of the

updated factor φ̃new
ik (zk). The normalisation of each updated factor is then used to

compute Zapprox. Looking more closely at Equation 2.73, we can see that every step

of EP involves multiplication and division of (multivariate) Gaussian distributions.

Equations for implementing these operations are given in Appendix A. Notice that

if the argument to proj [·] is a Gaussian then Equation 2.73 simplifies to:

φnew
ik (zk) =

∫

Z¬k

φi(Zne(φi))
∏

zm∈Z¬k

∏

`∈ne(zm)

φ̃old
`m(zm) dZ¬k, (2.74)

which is precisely the expression for the message factor φi would send to variable zk

in (loopy) belief propagation (with the messages sent by neighbouring variables to φi

folded in). Indeed, it is a well-known result that when the approximating distribution

is fully-factorized and projections are not needed then EP reduces to loopy belief

propagation, see Minka [2001] and Bishop [2007]. In practice, when projections are

involved and/or the graph is not a tree, it is necessary to run multiple passes over
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all the φi to achieve improved accuracy. Usually, one runs EP until the change in

the φ̃ is below some threshold (or indeed, the change in Zapprox is negligible).

z1 z2 zN

p(z1)

p(y1|z1)

p(z2|z1) p(zN |zN−1). . .

p(yN |zN )p(yN−1|zN−1)

z1 . . .z2 zN

φ̃→(z1)

φ̃↑(z1)

φ̃←(z1) φ̃→(z2)

φ̃↑(z2)

φ̃←(z2) φ̃→(zN )

φ̃↑(zN )

�
p(y2|z2)

Figure 2.5: (Top) True factor graph for the SSM. Likelihood factors are non-Gaussian.

(Bottom) Fully-factorised approximate factor graph used by EP. Likelihood factors are

Gaussian.

Applying EP to the State-Space Model

We now derive the EP update equations for the graph in Figure 2.1. The approxi-

mation process is illustrated in Figure 2.5. In this example the data D consists of

the target vector y. As p(Z|y, θ) ∝ p(Z,y|θ) we can write:

p(Z|y, θ) ∝ p(z1)p(y1|z1)
N∏

n=2

p(zn|zn−1)p(yn|zn). (2.75)

We would like to approximate 2.75 with a fully-factorized Gaussian as in Equation

2.70. Using the general relation given in Equation 2.73, it is possible to show that
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the update equations are given by:

φ̃→(z1) = p(z1), (2.76)

φ̃→(zn) =

proj

[
φ̃↑(zn)φ̃←(zn)

∫
p(zn|zn−1)φ̃→(zn−1)φ̃↑(zn−1)dzn−1

]

φ̃↑(zn)φ̃←(zn)

=

∫
p(zn|zn−1)φ̃→(zn−1)φ̃↑(zn−1)dzn−1, n = 2, . . . , N. (2.77)

φ̃←(zN) = 1, (2.78)

φ̃←(zn) =

proj

[
φ̃→(zn)φ̃↑(zn)

∫
p(zn+1|zn)φ̃↑(zn+1)φ̃←(zn+1)dzn+1

]

φ̃→(zn)φ̃↑(zn)

=

∫
p(zn+1|zn)φ̃↑(zn+1)φ̃←(zn+1)dzn+1, n = 1, . . . , N − 1. (2.79)

φ̃↑(zn) =
proj

[
φ̃→(zn)p(yn|zn)φ̃←(zn)

]

φ̃→(zn)φ̃←(zn)
, n = 1, . . . , N. (2.80)

Note that in these update equations we have used the notation given in Figure 2.5.

2.4.2 Inference and Learning

In Equations 2.77 and 2.79, we have used the fact that the state transition function

is still a Gaussian on the previous state, and that therefore the whole argument to

the proj[·] operator is a Gaussian. As a consequence, these updates are consistent

with standard Kalman filtering and smoothing, although, strictly, the Kalman re-

cursions are defined over φ̃→(zn)φ̃↑(zn) for filtering and over φ̃→(zn)φ̃↑(zn)φ̃←(zn)

during smoothing, so that when the run is complete we are left with the marginals

over the zn (see Algorithm 2). The difference between the regression and generalized
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regression settings presents itself only in Equation 2.80. For the fully-Gaussian SSM

we have φ̃↑(zn) = p(yn|zn), which, due to the nature of the emission density, is a

message which only affects the first element of zn. This property also applies to

Equation 2.73, so, in practice, we only need to do Gaussian multiplications, divi-

sions and projection over the first component of zn. The resulting first and second

moments (which are scalar) can be treated as continuous pseudo-targets and Gaus-

sian pseudo-noise variables that can be plugged straight into routine presented in

Algorithm 2! This allows the practitioner to extend standard Kalman filtering and

smoothing code to handle, in principle, any likelihood function for which Equation

2.73 has been implemented, with only minor alterations to the core code. Exam-

ple implementations for cases where the targets represent class labels are given in

Appendix B. Of course, the approximate inference code will require more than one

pass over all factors unlike the fully-Gaussian case where only one pass is required

to compute the exact posterior. These ideas are illustrated in Algorithm 4. As

mentioned, the performance of EP is sensitive to the schedule one uses to update

messages. Algorithm 4 illustrates a schedule which works well in practice. In the

first iteration the likelihood messages are updated using the only forward filtering

messages as the context, i.e., none of the backward messages are updated until the

end of the first run of filtering. In future iterations we alternate between performing

full forward-backward message passing using fixed likelihood messages, and a pass

where we update all likelihood messages given a fixed posterior over the latent chain.

Finally, notice that the expected sufficient statistics for the latent variables are

computed in exactly the same way for generalized GP regression. Therefore, for the

purposes of hyperparameter learning nothing needs to be changed – we simply use

the output of Algorithm 4 as part of the EM routine given in Algorithm 3.

2.5 Results

In this section, we report the runtimes of Algorithm 4 for a sequence of synthetic

binary classification datasets with lengthN = [500, 1000, 2000, . . . , 128000] and com-

pare it to those of the standard GP classification routine, which also uses the EP

approximation. The synthetic data is generated according to the following genera-

tive model:
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Algorithm 4: Generalized Gaussian Processs Regression using SSMs

inputs : Jointly sorted training and test input locations x. Targets y
associated with training inputs. stfunc returns Φ and Q matrices.
likfunc implements Equation 2.73. Hypers θ.

outputs: Approximate log-marginal likelihood logZ(θ). Predictive means µ?
and variances v?. E-step moments: E(ztz

>
t ), E(ztz

>
t−1).

µ
(f)
0 ← µ; V

(f)
0 ← V; P0 ← V; logZ(θ) = 0; j ← 1;1

while ∆ logZ(θ) > ε do2

for t← 1 to K do3

if t > 1 then [Φt−1,Qt−1]← stfunc(θ, x(t)− x(t− 1));4

else [Φt−1,Qt−1]←stfunc(θ, ∞); //Prior process covariance5

Pt−1 ← Φt−1V
(f)
t−1Φ

>
t−1 + Qt−1;6

if is train(t) then7

µc ← HΦt−1µ
(f)
t−1; vc ← HPt−1H

> ;8

if first EP iter then9

[ỹ(j), σ̃2
n(j)]←likfunc(y(i(t)), µc, vc);10

end11

logZ(θ)← logZ(θ)+ gausslik(ỹ(j), µc, vc + σ̃2
n(j));12

Gt ← Pt−1H
>/(vc + σ̃2

n(j)) ;13

µ
(f)
t = Φt−1µ

(f)
t−1 + Gt[ỹ(j)− µc];14

V
(f)
t = Pt−1 −GtHPt−1; j ← j + 1;15

else16

µ
(f)
t ← Φt−1µ

(f)
t−1; V

(f)
t ← Pt−1;17

end18

end19

//Smoothing is as presented in Algorithm 2

//Update likelihood messages

j ← 1;20

for t← 1 to K do21

if is train(t) then22

[ỹ(j), σ̃2
n(j)]←likfunc(y(i(t)), µ?(i(t)), v?(i(t)));23

j ← j + 1;24

end25

end26

end27
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yi ∼ pi i = 1, . . . , N,

pi = Φ (f(Xi)) , (2.81)

f(·) ∼ GP (0; k(x, x′)) ,

where we set k(·, ·) to be the Matérn(7/2) kernel, and use the state-space model to

sample the GP for all N . The input locations are sampled over a grid between -5

and 5. In order to reduce fluctuations in runtime we averaged empirical runtimes

over 10 independent runs and we also set the number of EP iterations to be fixed

at 10 for both algorithms. The results, shown in Figure 2.6, clearly illustrates the

improvement from cubic runtime complexity to O(N logN).
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Figure 2.6: Runtime comparison of the full GP and the Gauss-Markov process for syn-

thetic classification tasks of varying size. The slope of the full GP in the log-log plot above

is found to be 3.1 and that of the state-space model is 1.1. This clearly illustrates the

improvement in runtime complexity from cubic to O(N logN).

Figure 2.7 illustrates the results of inference for a synthetic binary classification

dataset of size N = 10000 (generated in the same way as the above).

Figure 2.8 illustrates the results of inference for a period in the Whistler snowfall
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Figure 2.7: Example of inference using Gauss-Markov process classification. The bold

blue line is the true function from which the binary labels are generated (via the probit

transformation). The black line and grayscale give the posterior means and 2 standard

deviation errorbars for the marginal predictions using the approximate posterior GP. Red

and green dots indicate negative and positive observations, respectively.

dataset where the amount of yearly snowfall shows a surprising increase. Note

that, although the Whistler snowfall data is ordinarily a regression dataset where

the target represents the amount of snowfall, it has been converted to a binary

classification task by thresholding at 0. Thus, the classes represent whether it snowed

on that day or not. The hyperparameters were optimised using EM and we found to

be 37 for the lengthscale (in days) and 2.3 for the signal amplitude. Note that the

full learning process took only circa 400 seconds for this large dataset (N = 13880).

For fixed hyperparameters, approximate inference is complete in around 8 seconds!

Note that Figure 2.8 shows the inference result for only a subset of the time series.

For the undisplayed part of the time series the periodicity is found to be far more

regular and similar to the shape seen in the first and last 500 input points in Figure

2.8.

For results specific to standard Gauss-Markov process regression (with Gaussian

emission density), refer to Hartikainen and Särkkä [2010]. The speedup attained for

this case will also be made apparent in Chapter 4 where we use Algorithm 2 as a

core routine for learning additive GP models.
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Figure 2.8: Result of running Algorithm 4 on the Whistler snowfall dataset. The time

interval corresponds to a sequence of years where snowfall is more frequent than usual.
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Chapter 3

Gaussian Processes with Change

Points

This chapter describes the combination of sequential GP models with the Bayesian

online changepoint detection algorithm of Adams and MacKay [2007], for the pur-

poses of handling nonstationarity in the underlying data stream. It is an adaptation

of the material already published in Saatçi et al. [2010]. As we have been focussing

on using improving the efficiency of GPs using problem-specific structure, we will fo-

cus more on cases where we can use nonstationarity to improve prediction accuracy

and computational complexity. In particular, we will use K-best pruning to curb

the growing size of the hypothesis space. We will also generally assume that the

underlying GP kernel cannot be represented as a Gauss-Markov process, and that

the inputs are not in discrete time, in which case one can additionally use Toeplitz

matrix methods, as done in Cunningham et al. [2008]. We note that if the GP ker-

nel does indeed have such additional structure, then it is reasonable to expect that

using GPs with change points will add to the overall complexity.

3.1 Introduction

In Chapter 2 we presented algorithms which exploited structured kernels that can be

represented as a finite order SDE. This enabled us to perform (generalised) regres-

sion in O(N logN) time and O(N) space – a significant improvement over standard

GP regression. However, there are many covariance functions that cannot be rep-
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resented as a Gauss-Markov process for scalar inputs. For example, no Markovian

representation could be found for the squared-exponential covariance, although, in

practice it is possible to approximate it with a high-order Matern kernel (see Section

2.2.2). Another example would be any kernel which has a periodic component, since

this would add a delta spike to the spectral density. It is not possible to accurately

model a spike with a polynomial in ω2 in the denominator of the spectral density.

In addition, more complicated kernels which have been constructed as functions of

more basic covariance functions often corrupt the Markovian structure which may

be present in their building blocks.

In this chapter, instead of making assumptions about the kernel, we will make

assumptions about the data. In particular we will analyze the case where we have

time-series data (i.e., our input space is time) which is expected to exhibit nonsta-

tionarity. Nonstationarity, or changes in generative parameters, is often a key aspect

of real world time series which is usually not modelled by a GP prior (since it is sta-

tionary). As an inability to react to regime changes can have a detrimental impact

on predictive performance, the aim of this chapter is to improve both runtime and

predictive performance by expecting the given time series to be nonstationary. We

will combine GP regression with Bayesian online change point detection (BOCPD)

in order to recognize regime change events and adapt the predictive model appro-

priately. We focus on online algorithms as many time series data arise as part of a

online stream of data. Examples of settings where such data arise includes automatic

trading systems, satellite security systems, and adaptive compression algorithms, to

name a few.

The Bayesian Online CPD (BOCPD) algorithm was recently introduced in Adams

and MacKay [2007], and similar work has been done by Barry and Hartigan [1993],

Barry and Hartigan [1992], Chib [1998], Ó Ruanaidh et al. [1994] and Fearnhead

[2006]. Central to the online predictor is the time since the last change point, namely

the run length. One can perform exact online inference about the run length for ev-

ery incoming observation, given an underlying predictive model (UPM) and a hazard

function. Given all the observations so far obtained, y(t1) . . . y(ti−1) ∈ R, the UPM

is defined to be p(y(ti)|y(ti−r), . . . , y(ti−1), θm) for any runlength r ∈ [0, . . . , (i− 1)].

θm denotes the set of hyperparameters associated with the UPM. The UPM can

be thought of as a simpler base model whose parameters change at every change
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point. Viewed from a generative perspective, during a change point these pa-

rameters change to be a different random sample from the parameter prior con-

trolled by hyperparameters θm. Therefore, in order to construct nonstationary

GPs using BOCPD, it is sufficient to simply implement predictions of the form

p(y(ti)|y(ti−r), . . . , y(ti−1), θm) where θm parameterizes a prior distribution over GP

hyperparameters. The other crucial ingredient of BOCPD is the hazard function

H(r|θh), which describes how likely we believe a change point is given an observed

run length r. Notice that throughH(r|θh) we can specify, a priori, arbitrary duration

distributions for parameter regimes. These duration distributions are parameterized

by θh.

The standard BOCPD algorithm treats its hyper-parameters, θ := {θh, θm}, as

fixed and known. It is clear empirically that the performance of the algorithm is

highly sensitive to hyperparameter settings and thus, we will extend the Algorithm

in Adams and MacKay [2007] such that hyperparameter learning can be performed

in a principled manner.

In the following, we will use the notation yi to mean y(ti) (and similarly for the

runlength variable). Notice that the time points ti are allowed to be located at any

point on the positive real line (i.e., they don’t have to be equispaced).

3.2 The BOCPD Algorithm

BOCPD calculates the posterior run length at time ti, i.e. p(ri|y1, . . . , yi−1), sequen-

tially. This posterior can be used to make online predictions robust to underlying

regime changes, through marginalization of the run length variable:

p(yi+1|y1, . . . , yi) =
∑

ri

p(yi+1|y1, . . . , yi, ri)p(ri|y1:i),

=
∑

ri

p(yi+1|y(ri))p(ri|y1:i) , (3.1)

where y(ri) refers to the last ri observations of y, and p(yi+1|y(ri)) is computed using

the UPM. The run length posterior can be found by normalizing the joint likelihood:

p(ri|y1:i) = p(ri,y1:i)∑
ri
p(ri,y1:i)

. The joint likelihood can be updated online using a recursive
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message passing scheme

γi ≡ p(ri,y1:i) =
∑

ri−1

p(ri, ri−1,y1:t),

=
∑

ri−1

p(ri, yi|ri−1,y1:i−1)p(ri−1,y1:i−1), (3.2)

=
∑

ri−1

p(ri|ri−1)︸ ︷︷ ︸
hazard

p(yi|y(ri−1))︸ ︷︷ ︸
UPM

p(ri−1,y1:i−1)︸ ︷︷ ︸
γi−1

. (3.3)

In the final step we have assumed that p(ri|ri−1,y1:i) = p(ri|ri−1), i.e., the hazard

function is independent of the observations y. The validity of such an assumption

will depend on the nature of the nonstationarity observed in the data1. Equation

3.3 defines a forward message passing scheme to recursively calculate γi from γi−1.

The conditional can be restated in terms of messages as p(ri|y1:i) ∝ γi. All the dis-

tributions mentioned so far are implicitly conditioned on the set of hyperparameters

θ.

Example BOCPD model. A simple example of BOCPD would be to use a con-

stant hazard function H(r|θh) := θh, meaning p(ri = 0|ri−1, θh) is independent of

ri−1 and is constant, giving rise, a priori, to geometric inter-arrival times2 for change

points. The UPM can be set to the predictive distribution obtained when placing

a Normal-Inverse-Gamma prior on IID Gaussian observations (i.e., a Student-t pre-

dictive):

yi ∼ N (µ, σ2), (3.4)

µ ∼ N (µ0, σ
2/κ), σ−2 ∼ Γ(α, β). (3.5)

In this example θm := {µ0, κ, α, β}. Figure 3.1 illustrates a dataset drawn from

the generative model of the example BOCPD model in Equations 3.4 and 3.5 (with

[µ0, κ, α, β] = [0, 0.01, 10, 1], and θh = 0.1), and the results of online runlength

inference using the true hyperparameter values.

1A good example of where this assumption may fail would be a bond yield time series, which
may exhibit a switch in volatility if it goes past an arbitrary psychological barrier such as 7%!

2Note that the Geometric inter-arrival is in terms of the number of observations which may
not be equidistant in time.
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Figure 3.1: (Top) Data drawn from the example BOCPD model, where there is a regime
change every 10 time steps. The time inputs are uniformly spaced in this particular
example. (Bottom) The resulting inferred runlength distribution, where the red dots give
Median(ri|y1:i), and the shading represents the marginal c.d.f. at time-step i.

3.3 Hyper-parameter Learning

It is possible to evaluate the (log) marginal likelihood of the BOCPD model at time

T , as it can be decomposed into the one-step-ahead predictive likelihoods (see (3.1)):

log p(y1:T |θ) =
T∑

t=1

log p(yi|y1:i−1, θ). (3.6)

Hence, we can compute the derivatives of the log marginal likelihood using the

derivatives of the one-step-ahead predictive likelihoods. These derivatives can be

found in the same recursive manner as the predictive likelihoods. Using the deriva-

tives of the UPM, ∂p(yi|ri−1,y
ri−1 ,θm)

∂θm
, and those of the hazard function, ∂p(rt|rt−1,θh)

∂θh
,

the derivatives of the one-step-ahead predictors can be propagated forward using the

chain rule. The derivatives with respect to the hyper-parameters can be plugged

into a conjugate gradient optimizer to perform hyper-parameter learning. The full

BOCPD algorithm is given in Algorithm 5.
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Algorithm 5: BOCPD Algorithm (with derivatives).

inputs : UPM U and Hazard function H. Online feed of targets y.
outputs: Runlength distributions {p(ri|y1:i)}i=1,...,T .

Marginal likelihood and derivatives.

for i = 1, . . . , T do1

// Define γ̄i as γi[2 : i+ 1]

π
(r)
i ← U(yi|y1:i−1);2

h← H(1 : i);3

γ̄i ← γi−1π
(r)
i (1− h); //Update messages: no new change point.4

∂hγ̄i ← π
(r)
i (∂hγi−1(1− h)− γi−1∂hh);5

∂mγ̄i ← (1− h)(∂mγi−1π
(r)
i + γi−1∂mπ

(r)
i );6

γi[1]←∑
γi−1π

(r)
i h; //Update messages: new change point.7

∂hγi[1]←∑
π

(r)
i (∂hγi−1h + γi−1∂hh);8

∂mγi[1]←∑
h(∂mγi−1π

(r)
i + γi−1∂mπ

(r)
i );9

p(ri|y1:i)← normalise γi;10

end11

p(y|θ)←∑
γT ; //Marginal likelihood.12

∂p(y|θ)← (
∑
∂hγT ,

∑
∂mγT ); //...and its derivatives.13
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3.4 GP-based UPMs

In this chapter, we are primarily concerned with online, GP-based time-series predic-

tion problems where standard GP hyperparameters (e.g., lengthscales) are assumed

to switch at every change point. If one desires to model changes in GP hyperparam-

eters at every change point, then the BOCPD algorithm dictates that one should

integrate them out within the UPM. As a result, the desired UPM is given by:

p(yi|yri−1 , θm) =

∫
p(yi|yri−1 , λ)p(λ|yri−1) dλ, (3.7)

=
1

Z

∫
p(yi|yri−1 , λ)p(yri−1|λ)p(λ|θm) dλ , (3.8)

where Z :=
∫
p(yri−1|λ)p(λ|θm) dλ. λ are the standard (scalar) GP hyperparame-

ters, e.g. λ ≡ {`, σ2
f , σ

2
n} for the squared-exponential kernel. Notice that the density

p(yi|yri−1 , λ) = N (µi, vi) is the standard GP predictive density given in Chapter 1.

p(yri−1|λ) is simply the marginal likelihood of the GP. As the log marginal likelihood

is a nonlinear function of λ, both the integrals present in (3.8) are intractable, even

if one sets p(λ|θm) to be a Gaussian prior over λ. Consequently, we approximate

these integrals using two methods, each with their own set of pros and cons. In the

first technique we place a grid ({λg}) over a subspace of GP hyper-parameters that

is assumed to be reasonable for the problem at hand (assigning uniform prior mass

for each grid point). The integrals can then be approximated with sums:

p(yi|yri−1 , θm) ≈
∑

λg

p(yi|yri−1 , λg)

(
p(yri−1|λg)∑
λg
p(yri−1|λg)

)
. (3.9)

Recall that it is tricky to apply more sophisticated quadrature algorithms for (3.8)

as the target function is positive, and the interpolant runs the risk of becoming

negative, although there are cases in the literature where one does interpolate despite

this risk, see Rasmussen and Ghahramani [2003] and Garnett et al. [2009]. The

grid method does not scale with increasing dimensionality, however, it offers the

opportunity to use rank-one updates for computing predictive means and variances

as one only considers a fixed set of hyper-parameter settings (see Appendix A). In

addition, it is generally possible to integrate out the signal variance hyperparameter
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1/σ2
f analytically. Thus, for a kernel such as the squared-exponential, it is possible

to perform hyperparameter integration using a grid over a two-dimensional space.

This makes the grid method much more manageable in practice. The trick is to

rewrite the kernel as follows:

k(ti, tj) = σ2
f exp

(
−(ti − tj)2

`2

)
+ σ2

nδ(ti, tj), (3.10)

=
1

τ

[
exp

(
−(ti − tj)2

`2

)
+ ξδ(ti, tj)

]
. (3.11)

where τ ≡ 1
σ2
f

and ξ ≡ σ2
n

σ2
f
. Notice that ξ can be interpreted as a signal-to-noise-

ratio hyperparameter. Full hyperparameter integration can now be performed by

analytically integrating out τ using a Γ(α0, β0) prior and integrating out λg = {`, ξ}
using a grid. Referring back to Equation 3.9, we can compute p(yri−1 |λg) using:

p(y|λg) =
p(y|τ, λg)p(τ)

p(τ |y)
, (3.12)

=
N (y|0, K(λg)/τ)Γ(τ |α0, β0)

Γ(τ |αN , βN)
, (3.13)

∝ Student-t2α0

(
0,
β0

α0

K(λg)

)
, (3.14)

where αN = α0+N
2

and βN = β0+1
2
y>K(λg)

−1y. Similarly, we compute p(yi|yri−1 , λg)

using the posterior predictive given by:

p(y?|y, λg) =

∫
p(y?|y, τ, λg)p(τ |y, λg)dτ, (3.15)

=

∫
N (y?|µ?, σ?/τ)Γ(τ |αN , βN)dτ, (3.16)

= Student-t2αN

(
µ?,

βN
αN

σ2
?

)
. (3.17)

µ? and σ2
? are given by the standard GP predictive means and variances for given τ

and λg. Note that in the above we have omitted conditioning on the input locations

on the time axis in order to reduce clutter. Also note that, in practice, we do not

use Equation 3.14 explicitly. Rather, given the sequential nature of the BOCPD

algorithm, we use the chain rule to calculate p(y|λg) by repeatedly using Equation
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3.17. In a similar vein, we use standard rank-one update equations to calculate µ?

and σ2
? (see Appendix A).

An alternative to the grid-based method which does scale with a higher number

of hyperparameters is to use Hamiltonian Monte Carlo (HMC), as introduced in

Duane et al. [1987]. Say we have computed samples {λs} representing the posterior

p(λ|yri−1). Then,

p(yi|yri−1 , θm) ≈
∑

λs

p(yi|yri−1 , λs) . (3.18)

The samples can be updated sequentially for each run length hypothesis considered.

The samples for rt = 0 are straightforward as they come from the Gaussian prior

p(λ|θm) = N (φm, φv): we can trivially obtain IID samples at this stage. Note

that, in this case θm ≡ {φm, φv}. As the posterior p(λ|y(t−τ):(t−1)), represented

by samples {λ(t−1)
s }, will look similar to p(λ|y(t−τ):t), we can initialize the HMC

sampler at {λ(t−1)
s } and run it for a short number of iterations for each sample. In

practice, we have found that 4 trajectories with a mean of 11 leapfrog steps give

respectable results. For the HMC algorithm it is not necessary to integrate out the

signal variance hyperparameter as the difference in performance between sampling

over a 3-dimensional hyperparameter space versus a 2-dimensional one is negligible.

Note that other Sequential Monte Carlo (SMC) methods could be used also, though

we have not explored these options.

3.5 Improving Efficiency by Pruning

The nonstationary GP model realised by using the UPMs in the previous section

will always run slower than the standard, stationary GP over the entire time-series,

in its vanilla form. This is because we need to update the runlength distribution at

time-step i (this requires i updates from the previous step) and because each update

requires an approximate integration over GP hyperparameters, as made evident by

Equation 3.8. Given a time-series of length T , the complexity of the nonstationary

GP would be O(T 4) if we are using the grid-based method and O(T 5) if we’re using

HMC. Indeed, this is not very surprising since the nonstationary GP model is much

more flexible than a stationary one, and it makes sense to pay in computation for
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the potential gains made in predictive accuracy. Nonetheless, it is common to find,

for many nonstationary datasets, that the runlength distributions are highly peaked.

This is evident for the toy example in Figure 3.1. There are many approximate

inference schemes one could attempt in order to exploit the peaked nature of the

runlength distributions. We will focus on the relatively simple strategy of pruning

out runlength hypotheses which become extremely unlikely during the online run of

the algorithm. We will consider two methods of pruning:

• Set all runlength hypotheses with mass less than a threshold ε to 0.

• Only consider the min(K, i) most probable runlength hypotheses at any time

step i.

With pruning, the runtime complexity will beO(TR̃2) for the grid-based method and

O(T 2R̃2) for HMC, where R̃ is the maximal run length not pruned out. Crucially, the

memory complexity will also be limited to O(R̃). Thus, for datasets which exhibit

significant nonstationarity, it is reasonable to expect an improvement in efficiency

in addition to improved accuracy, since typically R̃� T .

Note that there are more sophisticated pruning strategies one could use, such as

those used for infinite hidden Markov models (see Van Gael et al. [2008]), although

we do not consider them here.

3.6 Results

3.6.1 Experimental Setup

We will compare two alternative GP time-series models. The first is the stationary

GP with the squared-exponential kernel, adapted to perform sequential predictions

in an online manner using rank-one updates, as explained in Appendix A. The

hyperparameters are optimised on the first Ntrain observations using Algorithm 5,

and are kept fixed for the remainder of the time-series. The value of Ntrain will

depend on the length of the particular time-series involved. We will refer to this

method as Stationary-GP. The second model is a nonstationary GP where it is

assumed, a priori, that at every change point the hyperparameters of the underlying

GP undergo a switch. We focus on placing a uniform, discrete (i.e., grid-based) prior
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on the hyperparameters as described in the previous section. Thus, we use the UPM

given in Equation 3.9. We assume that the underlying GPs are well-modelled using

squared-exponential kernels. We integrate out the signal variance hyperparameter

analytically and place a grid on the rest, as explained in Section 3.4. Furthermore,

we set α0 = 1, β0 = 1 for the Gamma prior. We place a uniform grid of length 15

over log(`) between 0 and 10 and over log(ξ) between −5 and 0. We boost efficiency

by using K-best pruning, with K = 50. We will refer to the nonstationary GP

method as NSGP-grid. Recall that the complexity of NSGP-grid depends on

the maximal runlength not pruned out, which in turn depends on the amount of

nonstationarity present in the time-series, with respect to a GP-based UPM.

Note that all the results given here use the vanilla online GP algorithm either as

the predictive model itself or as the UPM. Since we are using the squared-exponential

kernel it would make sense to use the techniques of Chapter 2 to speed up compu-

tation significantly. In addition, for many of the real world time series analysed, the

inputs are in discrete time and this enables the use of a well-known structured GP

algorithm based on Toeplitz matrix methods (see Cunningham et al. [2008] for an

excellent reference). Again, we will ignore this structure in this particular section,

as we would like to focus on structure introduced by nonstationary data, as opposed

to any other aspect of the problem at hand.

We use three performance metrics to compare the two algorithms above:

• Runtime, in seconds.

• Mean-squared error, as evaluated on the test set:

MSE =
1

Ntest

Ntest∑

i=1

(yi − E(yi|y1:i−1,ytrain))2. (3.19)

This only tests the quality of the predictive means. In order to assess the

quality of predictive variances we use the measure below.

• Mean Negative Log Likelihood, as evaluated on the test set:

MNLL = − 1

Ntest

Ntest∑

i=1

log p(yi|y1:i−1,ytrain). (3.20)
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Recall that the predictive means and densities are calculated using Equation 3.6 for

NSGP-grid.

3.6.2 Runtimes on Synthetic Data
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Figure 3.2: Comparison of runtimes for Stationary-GP (in red) and NSGP-grid (in

black), using a log-log plot. Stationary-GP exhibits the familiar cubic scaling with T

(its slope is 2.4), whereas NSGP-grid has linear scaling since the hazard rate ensures

that regime lengths are extremely unlikely to exceed a length of around 500 (its slope is

1.2).

We measure the runtimes of Stationary-GP and NSGP-grid on time series of

length T = [100, 500, 1000, 2000, 5000, 10000, 20000, 50000]. We generate synthetic

nonstationary time series with GP-UPMs. We set the hazard rate to be constant at

0.01, so that the average segment length is 100. At every change point we sample

the hyperparameters according to:

log(`) ∼ N (0, 4), log(σf ) ∼ N (0, 2), log(σn) ∼ N (−3, 1), (3.21)

We sample the time points t1, . . . , tT according to the following scheme: if we are in
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the first regime we generate time points from Uniform(0, 1). For all other segments

we generate time points from tfinal + Uniform(0, 1) where tfinal is the time of the last

observation of the previous segment. For these segments, we also condition the GP

draw on the final observation of the previous segment, in order to avoid introducing

discontinuities. The longest segment length sampled in the entire experiment was

642, and accordingly the longest runlength considered by the K-best scheme was

685. Consequently, we expect NSGP-grid to scale well with T , and this is clearly

visible in Figure 3.2. Note that we have drawn data precisely from the generative

model corresponding to NSGP-grid so we also expect superior performance in

terms of MSE and MNLL. An example of this is given in Table 3.1. The posterior

runlength distribution for T = 500 is given in Figure 3.3.
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Figure 3.3: The posterior runlength distribution for synthetic nonstationary GP data

after running NSGP-grid. True changepoints are marked in magenta. The change points

arrive according to a constant hazard rate of 0.01.
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3.6.3 Performance on Real-World Nonstationary Datasets

We first consider the Nile data set,1 which has been used to test many change point

methods Garnett et al. [2009]. The data set is a record of the lowest annual water

levels on the Nile river during 622–1284 measured at the island of Roda, near Cairo,

Egypt. There is domain knowledge suggesting a change point in year 715 due to an

upgrade in ancient sensor technology to the Nilometer.
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Figure 3.4: The output of applying NSGP to the Nile data, 622–1284. The large black

cross marks the installation of the nilometer in 715. The small red crosses mark alert

locations. We define an alert to be the points in the time series where the posterior mass

corresponding to a change point is the highest in total over the entire run of the BOCPD

algorithm. In this Figure we mark the top ten highest alert points – as can be seen, one

of them is very close to the nilometer installation date.

We trained the (hyper) parameters of Stationary-GP on data from the first 200

years (622–821). The predictive performance of both the algorithms was evaluated

1http://lib.stat.cmu.edu/S/beran
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on the following years, 822–1284. The run length posterior of NSGP-grid on the

Nile data can be seen in Figure 3.4. The installation of the nilometer is the most

visually noticeable change in the time series. Quantitative results in predictive

performance are shown in Table 3.1.

Table 3.1: Performance on synthetic and real-world datasets. We see that NSGP-

grid usually outperforms Stationary-GP in terms of predictive accuracy, and for larger

datasets begins to dominate in terms of runtime as well.

Algorithm MNLP MSE Runtime (s)

Synthetic Nonstationary Data (Ntrain = 200, Ntest = 800)
Stationary-GP 2.641 0.930 36
NSGP-grid −1.415 0.708 311

Nile Data (Ntrain = 200, Ntest = 463)
Stationary-GP 1.373 0.873 13
NSGP-grid 1.185 0.743 268

Bee Waggle-Dance Data (Ntrain = 250, Ntest = 807)
Stationary-GP 1.587 0.786 327
NSGP-grid 1.231 0.698 838

Whistler Snowfall Data (Ntrain = 500, Ntest = 13380)
Stationary-GP 1.482 0.776 13273
NSGP-grid −1.985 0.618 6243

We also consider the Bee waggle-dance dataset as introduced in Oh et al. [2008].

Honey bees perform what is known as a waggle dance on honeycombs. The three

stage dance is used to communicate with other honey bees about the location of

pollen and water. Ethologists are interested in identifying the change point from

one stage to another to further decode the signals bees send to one another. The

bee data set contains six videos of sequences of bee waggle dances.1 The video files

have been preprocessed to extract the bee’s position and head-angle at each frame.

While many in the literature have looked at the cosine and sine of the angle, we

chose to analyze angle differences. Although the dataset includes the bee’s head

position and angle, we only consider running BOCPD on head angle differences, as

we would like to remain in the domain of univariate time series. A more thorough

1http://www.cc.gatech.edu/~borg/ijcv_psslds/
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treatment, where all the features are used as part of a multivariate time series

is given in Saatçi et al. [2010]. We illustrate applying NSGP to “sequence 1” of

the bee data in Figure 3.5. We trained Stationary-GP on the first 250 frames

(four change points) and tested both algorithms on the remaining 807 frames (15

change points). We see that there is a reasonable correspondence between the likely

change points identified by NSGP-grid and those marked by an expert. A more

rigorous comparison can be made by simply using the ground-truth change points

and evaluating the predictive performance of the resulting nonstationary GP model.

This gives an MNLP of 1.438 and an MSE of 0.723, which is slightly worse than

NSGP-grid. However, one must be wary of jumping to the conclusion that we are

beating the experts, since the expert change point locations are based on using all

features, not just the difference in head angle.

We also used historical daily snowfall data in Whistler, BC, Canada,1 to evaluate

our change point models. The models were trained on two years of data. We

evaluated the models’ ability to predict next day snowfall using 35 years of test

data. A probabilistic model of the next day snowfall is of great interest to local

skiers. In this data set, being able to adapt to different noise levels is key: there

may be highly volatile snowfall during a storm and then no snow in between storms.

Hence, NSGP-grid has an advantage in being able to adapt its noise level.

1http://www.climate.weatheroffice.ec.gc.ca/ (Whistler Roundhouse station, identifier
1108906).
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Figure 3.5: The output of applying NSGP to the Bee Waggle-Dance angle-difference time

series. The large black marks correspond to changepoint locations labelled by an expert.

The small red crosses mark alert locations. We define an alert to be the points in the

time series where the posterior mass corresponding to a change point is the highest in

total over the entire run of the BOCPD algorithm. In this Figure we mark the top twenty

highest alert points – as can be seen, there is a good correspondence between the manually

labelled changepoint locations and those inferred using BOCPD.
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Chapter 4

Additive Gaussian Processes

As made clear in Hastie et al. [2009], a nonparametric regression technique (such

as the spline smoother) which allows a scalable fit over a scalar input space can

be used to fit an additive model over a D-dimensional space with the same overall

asymptotic complexity. In this chapter we demonstrate that the same is true for

Bayesian nonparametric regression using GPs. Thus, the central contribution is the

synthesis of classical algorithms such as backfitting (Hastie and Tibshirani [1990])

and projection-pursuit regression (Friedman and Stuetzle [1981]) with efficient scalar

GP regression techniques introduced in chapter 2.

4.1 Introduction

Chapters 2 and 3 have focussed on scalable inference and learning techniques for GPs

defined on scalar input spaces. While there are many application domains for which

the assumption of scalar inputs is appropriate (e.g. time series modelling), for most

regression tasks it is usually the case that inputs are multidimensional. The central

issue addressed in this chapter (and, to a certain extent, in chapter 5) is whether it

is possible to incorporate and extend the ideas in previous chapters to multivariate

input spaces. It turns out that this is indeed possible, if one is prepared to make

some additional assumptions. In particular, we construct a number of GP regression

and classification algorithms that run in O(N logN) time and O(N) space (i.e., with

the same complexity as the scalar Gauss-Markov process), by assuming additivity.

Many of the algorithms presented in this chapter are founded on techniques used in
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classical nonparametric regression, including backfitting Hastie and Tibshirani [1990]

and Buja et al. [1989], projection-pursuit regression Friedman and Stuetzle [1981]

and Friedman et al. [1984] and the local scoring algorithm Hastie and Tibshirani

[1990] and Hastie et al. [2009]. The main contribution of this chapter is to introduce,

adapt and extend these ideas in the context of efficient (generalised) GP regression.

Additive GP regression can be described using the following generative model:

yi =
D∑

d=1

fd(Xi,d) + ε i = 1, . . . , N, (4.1)

fd(·) ∼ GP (0; kd(xd,x
′
d; θd)) d = 1, . . . , D, (4.2)

ε ∼ N (0, σ2
n).

θd represent the dimension-specific hyperparameters and σ2
n is the (global) noise

hyperparameter (θ = [θ1, . . . , θD, σ
2
n]). An additive model considers a restricted

class of nonlinear multivariate functions which can be written as a sum of univariate

ones. In terms of the flexibility of the functions supported, an additive prior lies

between a linear model (which is also additive) and a nonlinear regression prior where

arbitrary input interactions can be modelled (as is the case with, for example, the

ARD kernel). Although interactions between input dimensions are not modelled,

an additive model does offer interpretable results – one can simply plot, say, the

posterior mean of the individual fd to visualize how each predictor relates to the

target. The usual way to perform inference and learning for an additive GP is to

use the generic GP regression algorithm in Chapter 1. The covariance function can

be written as:

k(x,x′; θ) =
D∑

d=1

kd(xd,x
′
d; θd), (4.3)

as it is assumed that the individual univariate functions are independent, a pri-

ori. For example, for an additive squared-exponential GP, we have the following

covariance function:

k(x,x′; θ) =
D∑

d=1

vd exp

(
−(xd − x′d)

2

2`2
d

)
. (4.4)

Equation 4.3 can be used to compute the training set covariance matrix KN which
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is then plugged into Algorithm 1. Naturally, this approach suffers from the same

complexity as any other GP regression model. In Section 4.2, we will show that

inference and learning can be performed using a sequence of univariate GP regression

steps which can be executed efficiently using techniques presented in chapter 2,

assuming that the kernel has an SDE representation in 1D. The resulting set of

algorithms, all of which are novel adaptations of backfitting to GP regression, will be

shown to scale much like the univariate regression scheme they are based on, thereby

offering a significant improvement in complexity. Equation 4.4 provides an example

of a kernel for which fully-Bayesian learning can be performed in O(N logN) time

and O(N) space.

Additivity in the original space of the covariates is an assumption which many

real-world datasets do not satisfy, as predictors usually jointly affect the target

variable. It is possible to remain within the boundaries of tractability and relax this

assumption by considering a different feature space linearly related to the space in

which the inputs live. This corresponds to the following generative model which we

will refer to as the projected additive GP regression (PAGPR) model:

yi =
M∑

m=1

fm(w>mxi) + ε i = 1, . . . , N, (4.5)

fd(·) ∼ GP
(
0; km(w>mx,w>mx′; θd)

)
m = 1, . . . ,M, (4.6)

ε ∼ N (0, σ2
n).

M represents the dimensionality of the feature space and can be greater than or less

than D (these cases are referred to as overcomplete and undercomplete PAGPR,

respectively). In Section 4.3 we construct a greedy learning algorithm for PAGPR

which is as efficient as the case where the projection is simply the identity. The

resulting algorithm can be viewed as a novel Bayesian extension of the classical

projection-pursuit regression algorithm and will be referred to as projection-pursuit

GP regression (PPGPR).

Somewhat surprisingly, it is in fact possible to extend the efficiency of additive

GP regression to problems where non-Gaussian likelihoods are required, as is the

case with, for example, classification where the target vector y consists of class

labels rather than continuous quantities. In particular, we will be focussing on the
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setup where the targets are related to the underlying function values via some link

function, g(·). The generative model for such generalised additive regression models

is given by:

yi ∼ pi i = 1, . . . , N,

pi = g

(
D∑

d=1

fd(Xi,d)

)
, (4.7)

fd(·) ∼ GP (0; kd(xd,x
′
d; θd)) d = 1, . . . , D.

In Section 4.4 we present an algorithm which implements Laplace’s approximation

(see Chapter 1) for generalised additive GP regression in O(N logN) time and O(N)

space, and highlight its connection to the local scoring algorithm.

4.2 Efficient Additive GP Regression

4.2.1 Backfitting and Exact MAP Inference

The backfitting algorithm for fitting additive regression models was first introduced

in Breiman and Friedman [1985]. It is an intuitive iterative method for finding an

additive fit, and is presented in Algorithm 6. Notice that backfitting is strictly only

concerned with providing estimates of the underlying function values, as opposed to

computing a posterior over them which is the central task in Bayesian regression.

In practice, when running backfitting, it is necessary to zero-mean the targets as

Algorithm 6: The Classical Backfitting Algorithm

inputs : Training data {X,y}. Axis-aligned smoother parameters.
outputs: Smoothing Estimates : f̂d.

Zero-mean the targets y;1

Initialise the f̂d (e.g. to 0);2

while The change in f̂d is above a threshold do3

for d = 1, . . . , D do4

f̂d ← Sd
[
y −∑j 6=d f̂ j|X:,d

]
; //Use any 1D smoother as Sd5

end6

end7
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any deterministic non-zero offset adds a component which is not identifiable by

means of an additive model. The backfitting algorithm derives its efficiency from

the fact that the smoothing operation in Algorithm 6, Line 5 can be performed in

O(N logN) time and O(N) for a variety of smoothing schemes including spline and

wavelet smoothing. In general the complexity of such an update is, of course, cubic

in N . For a thorough exposition to the theory behind why backfitting is a valid

algorithm to fit an additive regression model (using functional analysis), see Hastie

and Tibshirani [1990].

In this chapter, we motivate the backfitting algorithm using a Bayesian perspec-

tive. Figure 4.1 gives the graphical model for additive GP regression. Note that

in the Bayesian setup, the fd are random variables, rather than quantities to be

estimated, as is the case in Algorithm 6. Algorithm 7 gives the backfitting-style

algorithm used to compute the posterior mean of an additive GP model. It is pos-

y

f1 f2 fD

X:,1 X:,2 X:,D

θ1 θ2

. . .

θD

σ2
n

Figure 4.1: Graphical Model for Additive Regression. The targets y are assumed to be
generated by means of a sum of D univariate functions, f1, . . . , fD, corrupted by IID noise
ε ∼ N (0, σ2

n).

sible to show that Algorithm 7 is nothing more than a block Gauss-Seidel iteration

that computes the posterior means E(fd|y,X:,d, θd, σ
2
n) for d = 1, . . . , D. We prove

this important observation below. Recall that Gauss-Seidel is an iterative technique

to solve the linear system of equations Az = b. The ith component of z is updated

by keeping all other zj, j 6= i, fixed and solving for zi in
∑

k Ai,kzk = bi, giving the
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Algorithm 7: Efficient Computation of Additive GP Posterior Mean

inputs : Training data {X,y}. Suitable covariance function. Hypers
θ =

⋃D
d=1{θd} ∪ σ2

n.

outputs: Posterior training means:
∑D

d=1µd, where µd ≡ E(fd|y,X, θd, σ2
n).

Zero-mean the targets y;1

Initialise the µd (e.g. to 0);2

while The change in µd is above a threshold do3

for d = 1, . . . , D do4

µd ← E(fd|y −
∑

j 6=dµj,X:,d, θd, σ
2
n); //Use methods of Chap. 25

end6

end7

following iterative update rule:

z
(k+1)
i ← 1

Ai,i

[
bi −

∑

j>i

Ai,jz
(k)
j −

∑

j<i

Ai,jz
(k+1)
j

]
. (4.8)

The algorithm keeps cycling through the zi until the change in z is negligible.

Theorem 4.1. Algorithm 7 computes the posterior mean of an additive Gaussian

Process given by

E(f1, . . . , fD|y,X, θ),

by means of a block Gauss-Seidel iteration, exactly.

Proof. Let F be a column-wise stacking of the individual fd, i.e. F ≡ [f1; . . . ; fD].

Let S similarly be defined as a column-wise stacking of D N -by-N identity matrices:

S ≡ [IN ; . . . ; IN ]. Define K as a block-diagonal matrix given by:

K =




K
(1)
N 0 . . . 0

0 K
(2)
N . . . 0

...
. . .

...

0 0 . . . K
(D)
N



,

where K
(d)
N is kd(·, ·) evaluated at the training inputs. We can then write:
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p(F|y, X, θ) ∝ p(y|F, θ)p(F|X, θ) (4.9)

= N
(
y; S>F, σ2

nIN
)
N (F; 0,K) . (4.10)

Thus, the posterior p(F|y,X, θ) is also Gaussian and the mean is given by:

E(F|X,y, θ) =
[
K−1 + S(σ−2

n IN)S>
]−1

S(σ−2
n IN)y, (4.11)

and is thus the solution to the following system of equations




(K
(1)
N )−1 + σ−2

n IN . . . σ−2
n IN

...
. . .

...

σ−2
n IN . . . (K

(D)
N )−1 + σ−2

n IN







E(f1)
...

E(fD)


 =




σ−2
n INy

...

σ−2
n INy


 . (4.12)

An individual Gauss-Seidel update is then given by:

E(k+1)(fd)←
(

(K
(d)
N )−1 + σ−2

n IN

)−1

σ−2
n IN

[
y −

∑

j>d

E(k)(f j)−
∑

j<d

E(k+1)(f j)

]

= K
(d)
N

(
K

(d)
N + σ2

nIN

)−1
[
y −

∑

j>d

E(k)(f j)
(k) −

∑

j<d

E(k+1)(f j)

]
, (4.13)

where in the final step we have used the matrix identity A.2.

Equation 4.13 is identical to the expression giving the posterior mean (evaluated

at input locations X:,d) of a univariate GP trained on targets
[
y −∑j 6=d E(f j)

]
.

Given that the kd(·, ·) are kernels which can be translated into an SDE, the expression

in Equation 4.13 can be evaluated efficiently using the techniques of Chapter 2. Note

that the posterior mean predictions of underlying function values at the training

inputs are given by
∑D

d=1µd (see Algorithm 7). Mean predictions at test inputs can

be included trivially by running the scalar GPs jointly over training and test inputs,

as in Algorithm 2.

The equivalence between the frequentist estimate of the f̂d and the posterior

mean of the corresponding GP-based Bayesian model occurs frequently in the do-

main of nonparametric regression. For example, in the case of splines, the 1D
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smoothing operation has been shown (see Section 2.2.3) to be equivalent to com-

puting the posterior mean of a spline-based GP prior, i.e.

Sd[y|X:,d] = E(fd|y,X:,d, θsp). (4.14)

As it is now clear that backfitting is a block Gauss-Seidel iteration, the con-

vergence properties relate to those of the Gauss-Seidel algorithm. In general, for a

linear system Az = b, Gauss-Seidel is guaranteed to converge, irrespective of ini-

tialisation, to the solution z = A−1b, given that A is a symmetric, positive definite

matrix. In the case of Equation 4.11, it is straightforward to show, given positive

definiteness of the individual Kd
N , that

v>
(
K + S(σ−2

n IN)S>
)

v > 0, (4.15)

where v is a column-wise stacking of D arbitrary, real-valued, length-N vectors. The

speed of convergence depends on the eigenvalues of the ND-by-ND linear mapping

G relating the estimated solution at iteration k+ 1 to that at iteration k given by:




E(k+1)(f1)
...

E(k+1)(fD)


 = G




E(k)(f1)
...

E(k)(fD)


 . (4.16)

Furthermore, the error in the solution at iteration k tends to zero as ρ(G) ≡
max(|λG|)k where λG is the set of eigenvalues of G. Note that ρ(G) < 1 given the

system of equations is positive definite. See Golub and Van Loan [1996] for more

details about the proofs of these properties. The proximity of ρ(G) to 1 depends on

the hyperparameters of the GP. Note, however, that convergence is improved sig-

nificantly by the fact that we are jointly updating blocks of N variables at a time.

Consequently, in practice, the number of iterations required is far less than updating

the unknowns one by one. We conjecture that the overall backfitting procedure in

Algorithm 7 can be completed in O((N logN)D3) time and O(N) space, given we

use the right type of additive kernel (in general, it would run in O((ND)3) time and

O(N2) space).
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4.2.2 Algorithms for a Fully-Bayesian Implementation

There are two important issues which we have not addressed so far. The first is the

task of learning the hyperparameters θ =
⋃D
d=1{θd}∪{σ2

n}. The second is computing

estimates of uncertainty about the underlying function values at training and test in-

puts, namely V(fd|y,X, θ) and V(f?d|y,X,X?, θ), for some fixed θ. In practice, one

is usually interested only in the marginal variances of these quantities, so attention

will be restricted to computing these only. As classical backfitting is non-Bayesian,

it suffices to compute the estimates f̂ as done in Algorithm 6, however tuning of the

hyperparameters is still required in practice. The classical solution uses generalised

cross-validation to learn the hyperparameters of the smoothing operators, however,

doing this without resorting to an O(N3) algorithm requires approximations. Fur-

ther details see, for example, the BRUTO algorithm in Hastie and Tibshirani [1990].

Similarly, for the Bayesian additive GP model, both hyperparameter learning and

the computation of predictive variances requires the use of approximate inference

techniques, if one is interested in preserving efficiency. In particular, we will resort

to MCMC and a deterministic approximation scheme based on variational Bayes.

Markov Chain Monte Carlo

Figure 4.2 shows the graphical model for an additive GP model where we have

additionally placed a prior over the hyperparameters θ. We have extended the model

to include a prior over the hyperparameters because for an MCMC algorithm it is

more natural to (approximately) integrate them out. This provides the additional

benefit of reduced overfitting at the hyperparameter level. Equations 4.17 through

to 4.21 give details of the generative model used.

log `d ∼ N (µ`, v`) d = 1, . . . , D, (4.17)

τd ∼ Γ(ατ , βτ ) d = 1, . . . , D, (4.18)

fd(·) ∼ GP (0; kd(xd,x
′
d; `d, τd)) d = 1, . . . , D, (4.19)

τn ∼ Γ(αn, βn), (4.20)

y ∼ N
(

D∑

d=1

fd(X:,d), σ
2
nIN

)
, (4.21)
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f1 f2 fD

X:,1 X:,2 X:,D. . .

σ2
n

µ� v� ατ βτ

{θd}

αn

βn

Figure 4.2: Graphical Model for fully-Bayesian Additive GP Regression. The hyperpa-
rameters for each univariate function fd are given a prior parameterised by {µl, vl, ατ , βτ}.
We also place a Γ(αn, βn) prior over the noise precision hyperparameter. Inference using
MCMC involves running Gibbs sampling over this graph.

where we have defined τd ≡ 1/vd and τn ≡ 1/σ2
n, and have assumed that the kd(·, ·)

are parameterized with amplitude and lengthscale parameters (this captures most

standard covariances). The overall algorithm runs full Gibbs sampling for this gen-

erative model. The parameters of the hyper-priors are set in advance and are kept

fixed. For a probabilistic model over V variables, X1, . . . , XV , Gibbs sampling runs

a Markov Chain whose stationary distribution is the joint distribution over all vari-

ables, i.e. p(X1, . . . , XV ). Each step of the Markov chain changes one variable at

a time. The updates are performed using the univariate conditional distribution

p(Xi|X¬i). Gibbs sampling can be viewed as a Metropolis-Hastings (MH) algorithm

with a proposal distribution which results in an acceptance probability of 1. It

has the advantage that there are no parameters to tune, unlike many MH proposal

distributions. For further details, see Neal [1993] and MacKay [2003]. Application

of Gibbs Sampling to the graph in Figure 4.2 results in the following conditional

densities that need to be sampled from:
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p(fd|f¬d,y,X, θ) ∝ p(y|fd, f¬d,X, θ)p(fd|X:,d, θd), (4.22)

p(`d|fd,X:,d, τd, µ`, v`) ∝ p(fd|X:,d, `d, τd)p(`d|µ`, v`), (4.23)

p(τd|fd,X:,d, `d, ατ , βτ ) ∝ p(fd|X:,d, `d, τd)p(τd|ατ , βτ ), (4.24)

p(τn|f1, . . . , fD,y, αn, βn) ∝ p(y|f1, . . . , fD, τn)p(τn|αn, βn), (4.25)

where f¬d ≡ {f j}j 6=d. Equation 4.22 can be implemented by sampling from the

posterior GP over X:,d with targets t = y −∑j 6=d f j and noise σ2
n, since

p(y|fd, f¬d, X, θ) ∝ exp


− 1

2σ2
n

(
y −

D∑

d=1

fd

)>(
y −

D∑

d=1

fd

)
 (4.26)

= exp

(
− 1

2σ2
n

(fd − t)>(fd − t)

)
. (4.27)

Somewhat unsurprisingly, this is similar to the central update in the Gauss-Seidel it-

eration used to compute the posterior means, as also noted in Hastie and Tibshirani

[1998]. Ordinarily, sampling from a GP over N input locations is an O(N3) oper-

ation with quadratic memory usage, however, using the SSM representation for a

univariate GP, this operation can be run in O(N logN) time and linear memory us-

age. The algorithm used to sample from the latent Markov chain in a SSM is known

as the forward-filtering, backward sampling algorithm (FFBS), used by, for example

Douc et al. [2009]. In FFBS, the forward filtering step is run much as in Algorithm

2 of Chapter 2. In the smoothing/backward recursion, instead of computing the

smoothed density p(zk|y,X:,d, θd), for k = K, . . . , 1, we sample sequentially, in the

backwards direction, using the conditionals p(zk|zsample
k+1 ,y,X:,d, θd). The sampling

is initialized by sampling from p(zK |y,X:,d, θd), which is computed in the final step

of the forward filtering run, to produce zsample
K . The FFBS algorithm, as applied

to produce a sample from a univariate posterior GP (over training and test input

locations), is outlined in detail in Algorithm 8. Note that Algorithm 8 generates

a sample of the entire state vector. The sample of function values are obtained by

reading out the first element of each of the zsample
k .

When sampling the hyperparameters, we make use of samples of {fd}, since these
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Algorithm 8: Sampling a GP using FFBS

inputs : Jointly sorted training and test input locations x. Targets y
associated with training inputs. State transition function stfunc

that returns Φ and Q matrices. Hyperparameters θ.
outputs: Log-marginal likelihood logZ(θ). Sample from the posterior:

{zsample
1 , . . . , zsample

N }.

//Forward Filtering as in Algorithm 2

zsample
K ∼ N (µ

(f)
K , V

(f)
K );1

for k ← K − 1 to 1 do2

Lk ← VkΦ
>
k P−1

k ;3

µk ← µ
(f)
k + Lt

(
zsample
k+1 −Φtµ

(f)
t

)
;4

Vk ← V
(f)
k + LkPkL

>
k ;5

zsample
k ∼ N (µk, Vk);6

end7

can be obtained by repeatedly using Equation 4.22 to cycle through sampling the

additive components. Indeed, it is not necessary to have a “burn-in” period when

obtaining these samples, since we can initialize this sampling process at the mode

(i.e., mean) of the posterior over the fd using Algorithm 7. This process is outlined

in further detail in Algorithm 10. In order to sample from the conditional given in

Equation 4.23 we have to resort to MCMC methods, as p(`d|µ`, v`) is log-Gaussian

and p(fd|X:,d, `d, τd) = N (0, Kd(θd)) is a nonlinear function of `d. Note that this

step of the sampling procedure is over a scalar space, so a simple MCMC algorithm

such as Metropolis-Hastings works well. The sampling is performed over log(`d),

with a symmetric univariate Gaussian proposal density whose width is adjusted in

a dataset-specific manner so that the rejection rate is close to 0.5.

In contrast to the lengthscale hyperparameter, we can derive the posteriors over

τd and τn analytically. For τd we have:

p(τd|fd,X:,d, `d, ατ , βτ )

∝ N
(
fd; 0, K̃d/τd

)
Γ(τd;ατ , βτ )
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∝ det(K̃d/τd)
−1/2 exp

(
−1

2
f>d (K̃d/τd)

−1fd

)

× τατ−1
d exp(−βττd)

∝ Γ(α, β), (4.28)

where K̃ is kd evaluated at the training inputs, with amplitude set to 1, and:

α = ατ +
N

2
. (4.29)

β = βτ +
1

2
f>d K̃

−1

d fd. (4.30)

On the face of it, Equation 4.30 looks like an operation which causes the cubic

matrix inversion operation to creep back into the MCMC scheme. However, the

quantity f>d K̃
−1

d fd can also be calculated straightforwardly using the Kalman filter.

In fact, it is equal to the standardised mean-squared error (SMSE) of the one-step-

head predictions made by the GP (on the noise-free targets fd). This can be shown

using the chain rule of probability:

N (y; 0,KN) =
N∏

i=1

N (yi;mi, vi),

where mi = k>i K−1
i−1y1:i−1,

and vi = ki,i − k>i K−1
i−1ki.

Therefore we can write

(
N∏

i=1

(2πvi)
− 1

2

)
exp

(
−1

2

N∑

i=1

(yi −mi)
2

vi

)
= (2π)−

N
2 det(KN)−

1
2 exp

(
−1

2
y>K−1

N y

)
.

(4.31)

As det(KN) =
∏N

i=1 vi, by repeated application of matrix identity A.4, it must be

that:
1

2
y>K−1

N y =
1

2

N∑

i=1

(yi −mi)
2

vi
. (4.32)

Since it involves one-step-ahead predictions, the SMSE for a GP can be calculated

quite naturally using SSMs, as illustrated in Algorithm 9.
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Algorithm 9: Efficient Computation of Standardised Squared Error using
SSMs

inputs : Sorted training input locations x. Noise-free function values f
associated with training inputs. State transition function stfunc

that returns Φ and Q matrices. Hyperparameters θ.
outputs: Log-marginal likelihood logZ(θ). Standardised Squared Error

SSE(θ).

µ
(f)
0 ← µ; V

(f)
0 ← V; logZ(θ) = 0;1

for t← 1 to K do2

if t > 1 then [Φt−1,Qt−1]← stfunc(θ, x(t)− x(t− 1));3

else [Φt−1,Qt−1]←stfunc(θ, ∞); //Prior process covariance4

Pt−1 ← Φt−1V
(f)
t−1Φ

>
t−1 + Qt−1;5

m← HΦt−1µ
(f)
t−1;6

v ← HPt−1H
>; //Add jitter in practice7

logZ(θ)← logZ(θ)− 1
2

(
log(2π) + log(v) + (f(t)−m)2

v

)
;8

SSE(θ)← SSE(θ) + (f(t)−m)2

v
;9

µ
(f)
t = Φt−1µ

(f)
t−1 + Gt[f(t)−HΦt−1µ

(f)
t−1];10

V
(f)
t = Pt−1 −GtHPt−1;11

end12
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Similarly, the posterior over the noise precision, given by

p(τn|{f1}, . . . , {fD},y, αn, βn) = Γ(α, β),

can be calculated analytically, as the Gamma distribution is conjugate to the preci-

sion of a Gaussian likelihood model (in this case, with zero mean). We thus obtain:

α = αn +
N

2
. (4.33)

β = βn +
1

2

(
y −

D∑

d=1

fd

)>(
y −

D∑

d=1

fd

)
. (4.34)

The pseudo-code for the full Gibbs Sampler is given in Algorithm 10.

Variational Bayesian EM

As an alternative to MCMC, we will consider a deterministic approximate inference

scheme based on the EM algorithm. In particular, we will approximate the E-step

using variational Bayes (VB). We first outline the generic algorithm for combining

VB with the EM algorithm and then apply it to the graphical model in Figure 4.1.

Notice that, in this case, we are viewing the hyperparameters θ as parameters that

need to be optimised, as opposed to treating them as random variables, as was the

choice made in the previous section.

The Generic VBEM Algorithm [..] Consider a graphical model with observed

variables Y, latent variables Z and parameters θ. The overall aim is to approximate

the posterior distribution p(Z|Y, θ) and to optimise the marginal likelihood of the

model w.r.t. the parameters, i.e., optimise p(Y|θ) as a function of θ. The standard

EM algorithm attacks the latter problem by making use of the following identity:

log p(Y|θ) =

∫
q(Z) log p(Y|θ)dZ for any p.d.f. q(Z) (4.35)

=

∫
q(Z) log

(
p(Y,Z|θ)
q(Z)

q(Z)

p(Z|Y, θ)

)
dZ (4.36)

≡ L(q(Z); θ) + KL (q(Z)||p(Z|Y, θ)) , (4.37)
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Algorithm 10: Additive GP Regression using Gibbs Sampling

inputs : Hyper-prior parameters : {µ`, v`, ατ , βτ , αn, βn}
Training set : {X,y}, Test inputs : X?

outputs: Hyperparameter samples : {`(s)
d , τ

(s)
d , τ

(s)
n }

E(f?|X?, θ) and V(f?|X?, θ) (marginal variances)

Zero-mean the targets y;1

//Sample hyperparameters from their prior:

log(`d) ∼ N (µl, vv); τd ∼ Γ(ατ , βτ ); τn ∼ Γ(αn, βn); d = 1, . . . , D;2

for each Gibbs sampling iteration do3

//Sample {fd} and {f?d}
//Burn-in using classical backfitting:

Initialise the [f sample
d ; f sample

?d ] (e.g. to 0);4

while The change in [f sample
d ; f sample

?d ] is above a threshold do5

for d = 1, . . . , D do6

[f sample
d ; f sample

?d ]← E([fd; f?d]|y −
∑

j 6=d f sample
j ,X:,d, θd, σ

2
n);7

end8

end9

for d = 1, . . . , D do10

t← y −∑j 6=d f sample
j ;11

[f sample
d ; f sample

?d ]← gpr ffbs([X:,d,X?d], t, θd);12

end13

//Sample hyperparameters:

log(`
(s)
d )← Metropolis({fd}, Xd, θd, µ`, v`);14

τ
(s)
d ∼ Γ

(
ατ + N

2
, βτ + 1

2
f>d K̃

−1

d fd

)
;15

τ
(s)
n ∼ Γ

(
αn + N

2
, βn + 1

2

(
y −∑D

d=1 fd

)> (
y −∑D

d=1 fd

))
;

16

Update estimates of E(f?|X?, θ) and V(f?|X?, θ) using {f?d};17

end18
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where

L(q(Z); θ) =

∫
q(Z) log

(
p(Y,Z|θ)
q(Z)

)
dZ (4.38)

= Eq (log p(Y,Z|θ)) +H(q(Z)). (4.39)

As KL divergences are always non-negative, L(q(Z); θ) is a lower-bound to log p(Y|θ).
Maximizing L(q(Z); θ) with respect to q(Z) (the E-step) is equivalent to minimizing

KL (q(Z)||p(Z|Y, θ)), as made clear by Equation 4.37. Maximization w.r.t. θ (the

M-step) is equivalent to optimizing the expected complete data log-likelihood (the

first term in Equation 4.39), since H(q(Z)) is independent of θ. Of course, standard

EM assumes that the E-step can be performed optimally by simply setting q(Z) to

be equal to the posterior p(Z|Y, θ) (i.e., when the KL divergences vanishes). For

many models, including the additive GP, the assumption that the full posterior over

latent variables can be computed tractably is clearly unrealistic.

The key idea behind variational Bayesian EM (VBEM) is to minimize the KL

divergence between q(Z) and p(Z|Y, θ) subject to the constraint that q(Z) belongs to

a family of distributions, with some specific factorization properties. By constraining

q(Z) to have a particular factorization over K disjoint subsets of latent variables,

i.e.,

q(Z) =
K∏

i=1

q(Zi), (4.40)

we can often attain a tractable minimization of the KL divergence, although the

minimum we can obtain now is usually positive (since q(Z) has limited flexibility).

As we would like to minimize over all the factors q(Zi), it is necessary to run an

iterative algorithm where we optimize each of the individual factors one by one

(while keeping the others fixed). By plugging Equation 4.40 into Equation 4.39 it

can be seen that:

L(q(Z); θ) =

∫
q(Zj)

[∫
log p(Y,Z|θ)

∏

i 6=j

q(Zi)dZi

]

︸ ︷︷ ︸
≡Ei 6=j(log p(Y,Z|θ))

−
∑

i

∫
q(Zi) log q(Zi)dZi.

(4.41)

When viewed as a function of an individual subset Zj, Equation 4.41 can be seen to
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be a negative KL divergence between q(Zj) and p̃(Zj) where

p̃(Zj) ∝ exp (Ei 6=j(log p(Y,Z|θ))) , (4.42)

and some constant terms which do not depend on Zj. Therefore, optimizing L w.r.t.

an individual q(Zj) amounts to simply equating it to p̃(Zj), or, equivalently:

log q?(Zj) = Ei 6=j(log p(Y,Z|θ)) + const. (4.43)

Equation 4.43 is the central update equation for the VB approximation to the E-

step. Convergence to an optimum is guaranteed because the lower-bound is convex

w.r.t. each of the q(Zi), see Bishop [2007].

Once the optimization for the E-step converges, the M-step updates the free

parameters θ, while keeping the q(Zi) fixed, much like standard EM. The M-step

is also typically easier than in standard EM because the factorization of q(Z) often

simplifies the optimization of Eq (log p(Y,Z|θ)).

Additive GP Regression using VBEM We now apply the VBEM algorithm

to the additive GP model. In this case, the observed variables are the targets y, the

latent variables Z consist of the D Markov chains as shown in Figure 4.3:

Z ≡


z1

1, . . . , z
N
1︸ ︷︷ ︸

≡Z1

, z1
2, . . . , z

N
2︸ ︷︷ ︸

≡Z2

, . . . , z1
D, . . . , z

N
D︸ ︷︷ ︸

≡ZD


 . (4.44)

Notice that we have made the SSM representation for the univariate regression

models explicit in this case. Indeed, the graphical model in Figure 4.3 is a more

detailed illustration of all the variables involved for an efficient implementation of the

additive GP model in general. In previous sections it was sufficient to keep track of

the distribution over the latent function values only, however, for a tractable VBEM

implementation it will be necessary to explicitly incorporate all the latent variables

of the SSMs involved. Note also that we could have placed a prior over θ, much like

in the MCMC setup, and then absorb θ into Z. Indeed, this would be the full VB

solution to additive GP regression. However, the updates for the hyperparameters

(e.g., the lengthscales) cannot be computed analytically, using Equation 4.43. Thus,
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for the sake of simplicity we stick with a VBEM-style approach and optimize θ w.r.t.

the marginal likelihood.

. . . zN
1z1

1 z2
1

. . . . . .z2
2 zN

2 z1
D z2

D zN
D

y

X:,1 X:,2 X:,D

θ1 θ2 θD

σ2
n

z1
2

. . .

Figure 4.3: Graphical Model of Additive Regression, where we have made explicit the
fact that each univariate GP model is implemented as a SSM. For each input location
x, we have D SSM states corresponding to the {xd}Dd=1. Each of these states emits an
observation which contributes to the noise-free function value. We run VBEM on this
graph to perform inference over the SSM states and optimise the values of {θd}Dd=1.

Referring to the definition in 4.44, the true posterior p(Z1, . . . ,ZD|y,X, θ) is hard

to handle computationally because although the Zi are independent a priori, once

we condition on y they all become coupled. As a result, computing the expected

sufficient statistics associated with p(Zi|y,X, θ), crucial to forming predictive dis-

tributions and learning θ, requires evaluation of
∫
p(Z1, . . . ,ZD|y,X, θ)dZ¬i. This

is clearly intractable for large N . Thus we will consider an approximation to the

true posterior which does factorise across the Zi, i.e.:

q(Z) =
D∏

i=1

q(Zi). (4.45)

In order to see what impact using such an approximation has in the context of

using VBEM for the additive GP, we use Equations 4.45 and 4.43 to derive the

iterative updates required. We first write down the log of the joint distribution over
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all variables, given by:

log(p(y,Z|θ)) =
N∑

n=1

log p

(
yn|H

D∑

d=1

z
td(n)
d , σ2

n

)
+

D∑

d=1

N∑

t=1

log p(ztd|zt−1
d , θd), (4.46)

where we have defined p(ztd|zt−1
d , θd) ≡ p(z1

d|θd), for t = 1, and Hz gives the first

element of z (as in Chapter 2). Note that it is also necessary to define the mapping

td(·) which gives, for each dimension d, the SSM index associated with yn. The

index t iterates over the sorted input locations along axis d. Thus:

log q?(Zj) = Ei 6=j(log p(Y,Z|θ)) + const (4.47)

= − 1

2σ2
n

N∑

i=n

Ei 6=j



(

Hz
tj(n)
j −

(
yn −

∑

i 6=j

Hz
td(n)
i

))2



+
N∑

t=1

log p(ztj|zt−1
j , θj) + const. (4.48)

where we have absorbed (almost) everything which does not depend on Zj into the

constant term. Note that Ei 6=j
[(
yn −

∑
i 6=j Hz

td(n)
i

)2
]

is also independent of Zj.

By completing the square we can therefore write:

log q?(Zj) =
N∑

i=n

logN
((

yn −
∑

i 6=j

HE
[
z
td(n)
i

])
; Hz

tj(n)
j , σ2

n

)

+
N∑

t=1

log p(ztj|zt−1
j , θj) + const. (4.49)

where

E
[
zki
]

=

∫
zki q(Zi)dZi. (4.50)

In other words, in order to update the factor q(Zj) it is sufficient to run the standard

SSM inference procedure using the observations:
(
yn −

∑
i 6=j HE

[
z
td(n)
i

])
. This is

similar in nature to the classical backfitting update, and illustrates a novel con-

nection between approximate Bayesian inference for additive models and classical

estimation techniques. A number of conclusions can be drawn from this connection.
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First, since VB iterations are guaranteed to converge, any moment computed using

the factors q(Zi) is also guaranteed to converge. Notice that convergence of these

moments is important because they are used to learn the hyperparameters (see be-

low). Second, since the true posterior p(Z1, . . . ,ZD|y, θ) is a large joint Gaussian

over all the latent variables we would expect Eq(Z) to be equal to the true poste-

rior mean. This is because the Gaussian is unimodal and the VB approximation

is mode-seeking Minka [2005]. This provides another proof of why backfitting com-

putes the posterior mean over latent function values exactly and extends the result

to the posterior mean over derivatives of the function values as well.

For the M-step of the VBEM algorithm it is necessary to optimise Eq (log p(y,Z|θ)).
Using Equation 4.46 it is easy to show that the expected sufficient statistics required

to compute derivatives w.r.t. θ are the set of expected sufficient statistics for the

SSMs associated with each individual dimension. This is clearly another major ad-

vantage of using the factorised approximation to the posterior. Thus, for every di-

mension d, we use the Kalman filter and RTS smoother to compute
{
Eq(Zd)(z

n
d)
}N
n=1

,{
Vq(Zd)(z

n
d)
}N
n=1

and
{
Eq(Zd)(z

n
dz

n+1
d )

}N−1

n=1
. We then use these expected statistics to

compute derivatives of the expected complete data log-likelihood w.r.t. θ and use

a standard minimizer (such as minimize.m) to complete the M step. The overall

VBEM algorithm for training an additive GP is given in Algorithm 11.

4.3 Efficient Projected Additive GP Regression

So far, we have shown how the assumption of additivity can be exploited to derive

non-sparse GP regression algorithms which scale asO(N logN). The price to pay for

such an improvement in complexity becomes apparent when applying the additive

GP model to many regression tasks – the assumption of additivity often causes a

decrease in accuracy and predictive power. We will see several illustrations of this

phenomenon in Section 4.5.

Interestingly, it is actually possible to relax the assumption of additivity in the

original space of covariates without sacrificing the O(N logN) scaling, by simply

considering an additive GP regression model in a feature space linearly related to

original space of covariates. The graphical model illustrating this idea is given in

Figure 4.4. We will restrict attention to the following generative process, which we
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Algorithm 11: Additive GP Regression using VBEM

inputs : Initial values for the hyperparameters θ0

Training set : {X,y}, Test inputs : X?

outputs: Learned hyperparameters θ
E(f?|X?, θ) and V(f?|X?, θ) (test means and variances)

Zero-mean the targets y; θ ← θ0;1

for each VBEM iteration do2

//E-step

Initialise q(Zd) such that E(Zd) = 0 for d = 1, . . . , D;3

while The change in {E(q(Zd))}Dd=1 is above a threshold do4

//ESSd ≡
[
{E(znd)}Nn=1 , {V(znd)}Nn=1 ,

{
E(zndz

n+1
d )

}N−1

n=1

]

//yd ≡
{
yn −

∑
i 6=j HE

[
z
td(n)
i

]}N
n=1

for d = 1, . . . , D do5 [
ESSd,µ

d
?,v

d
?

]
← gpr ssm(yd, [X:,d,X?d], θd); //See Alg. 26

end7

end8

//M-step

Optimise θ using {ESSd}Dd=1; //See Alg. 39

end10

E(f?|X?, θ)←
∑D

d=1µ
d
?;11

V(f?|X?, θ)←
∑D

d=1 vd?;12
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will refer to as the projected additive Gaussian process (PAGP) prior:

yi =
M∑

m=1

fm(φm(i)) + ε i = 1, . . . , N, (4.51)

φm = w>mX m = 1, . . . ,M, (4.52)

fm(·) ∼ GP (0; km(φm,φ
′
m; θm)) m = 1, . . . ,M, (4.53)

ε ∼ N (0, σ2
n).

Notice that the number of projections, M , can be less or greater than D. These

cases are referred to as undercomplete and overcomplete PAGPs. Forming linear

combinations of the inputs before feeding them into an additive GP model signif-

icantly enriches the flexibility of the functions supported by the prior above. It is

straightforward to come up with example functions which would have support un-

der the PAGP prior and not under the vanilla additive model: consider the function

(x1 +x2 +x3)3. This function includes many terms which are formed by taking prod-

ucts of covariates, and thus can capture relationships where the covariates jointly

affect the target variable. In fact, Equations 4.51 through to 4.53 are identical to

the standard neural network model where the nonlinear activation functions (usu-

ally set in advance to be, for example, the sigmoid function) are modelled using

GPs. Recall that, for neural networks, taking M to be arbitrarily large results in

the ability to be able to approximate any continuous function in RD. This property

certainly extends to PAGPs, since we are also learning the activation functions from

data.

4.3.1 Inference and Learning

Naturally, learning and inference for the PAGP model can be implemented straight-

forwardly using the standard GP regression algorithm presented in Chapter 1. For

example, assuming that km(·, ·) is set to be the squared-exponential kernel, we can

simply define the covariance between two inputs to be:

k(x,x′; θ,W ) =
M∑

m=1

vm exp

(
−(w>mx−w>mx′)2

2`2
m

)
+ σ2

nδ(x,x
′), (4.54)

94



y

f1 f2 fM

θ1 θ2

. . .

θM

σ2
n

X:,1 X:,2 X:,D. . .

φ:,1 φ:,2 φ:,M

W

Figure 4.4: Graphical model for Projected Additive GP Regression. In general, M 6= D.
We present a greedy algorithm to select M , and jointly optimise W and {θd}Dd=1.

where we have defined W ≡ [w1, . . . ,wM ] and θ ≡ [v1, . . . , vM , `1, . . . , `M , σ
2
n]. Then,

it is possible to jointly optimise the marginal likelihood w.r.t. θ and W . Note that

no constraints are placed on the structure of the linear projection matrix W – it is

simply optimised element-wise. In addition, a search is required to find which M is

optimal for the problem at hand, the search terminating when a maximum quantity

is reached.

Such an approach obviously suffers from the computational burden we are trying

to avoid. In fact, it actually worsens it by also adding a search for a good value

of M . Conceptually, the simplest way to improve efficiency is to treat the weight

matrix W as part of the set of hyperparameters θ and use MCMC or VBEM, as

was done in Section 4.2. When using MCMC one would need to add a prior over

W , and select a suitable M using reversible-jump MCMC, as described in Green

[1995]. When using VBEM, one would need to consider how to learn W using the

appropriate (approximate) expected sufficient statistics. In this section, we will not

consider these options (although they are perfectly valid choices). Instead, we will
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focus on an elegant greedy learning strategy which is similar to another classical

nonparametric regression algorithm known as projection pursuit regression. We will

refer to it as projection-pursuit GP regression (PPGPR).

Consider the case where M = 1. Following the running example1, the covariance

matrix in Equation 4.54 becomes

k(x,x′; θ,w) = v exp

(
−(w>x−w>x′)2

2`2

)
+ σ2

nδ(x,x
′), (4.55)

and the resulting PAGP regression model reduces to a scalar GP. Recall from Chap-

ter 2 that, for a kernel that can be represented as a SSM, we can use the EM al-

gorithm to optimise θ w.r.t. the marginal likelihood efficiently in Equation 4.55,

for some fixed w. It is possible to extend this idea and jointly optimise w and θ

w.r.t. the marginal likelihood, although in this case we opt to optimise the marginal

likelihood directly without the simplification of using the expected complete data

log-likelihood, as is done in the EM algorithm. Notice that every step of this opti-

misation scales as O(N logN), since at every step we need to compute the marginal

likelihood of a scalar GP (and its derivatives). These quantities are computed using

the Kalman filter by additionally (and laboriously) differentiating the Kalman filter-

ing process w.r.t. w and θ. In the interest of reducing clutter, we present the details

of this routine in Appendix B. In short, all that is required is the derivatives of the

state transition and process covariance matrices (Φt and Qt, for t = 1, . . . , N − 1)

w.r.t. w and θ. In Algorithm 12 below, which gives pseudo-code for PPGPR, we

will refer to the core Kalman filter-based routine as ppgpr 1D. Note how the greedy

nature of the algorithm allows the learning of the dimensionality of the feature space,

M , rather naturally – one keeps on adding new feature dimensions until there is no

significant change in validation set performance (e.g., normalised mean-squared er-

ror). One important issue which arises in Algorithm 12 involves the initialisation of

wm at step m. Several alternatives come to mind, however we will limit ourselves to

two. The first is random initialization where we sample each wm(i) from a standard

Gaussian, the second is where we initialise the weights as those obtained from a

linear regression of X onto the target/residual vector ym. The initialisation of the

1Note that although we will introduce the concepts of PPGPR using the squared-exponential
kernel, in practice we will always be using the Matérn kernel as the core univariate GP model.
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other hyperparameters follow the usual “sensible” initialisation schemes present in

the literature, reiterated in Section 4.5. Note that PPGPR is used for the purposes

of learning W and θ only. Once this is complete, one can simply run the VBEM

algorithm (without the M-step) to compute predictions.

Algorithm 12: Projection Pursuit GP Regression

inputs : Training set : {X,y}, Validation set : {X√,y√}
Test set : {X?,y?}

outputs: Learned hyperparameters θ, Projection W , M
E(f?|X?, θ) and V(f?|X?, θ) (test means and variances)

Zero-mean the targets y;1

m← 1;2

ym ← y;3

while validation error is above a threshold do4

w
(init)
m ← init weights; θ(init)

m ← init hypers ; // See text.5

[wm,θm]← Optimise using ppgpr 1D(w
(init)
m , θ(init)

m , X, y);6 [
µm,µm√

]
← gpr ssm([y,y√], [X,X√], θm, wm);7

ym ← ym − µm; //Form residual.8

µ√ ← µ√ + µm√ ;9

Update validation error using µ√ and y√;10

Add wm to W ; Add θm to θ ;11

m← m+ 1;12

end13

Φ← W>X; Φ? ← W>X?;14

Run Algorithm 10 with hypers fixed at θ to compute E(f?) and V(f?);15

4.4 Generalised Additive GP Regression

In Section 2.4 we extended the efficient state-space model implementation of GP re-

gression to non-Gaussian likelihoods, in order to be able to handle tasks where the

observed targets exhibit a non-Gaussian relationship to the latent GP. Of course,

this was limited to problems where the input space was constrained to be scalar.

The overwhelming majority of real-world generalised regression tasks (such as clas-

sification) use more than one feature to be able to model and predict the labels y.

In this Section, we demonstrate that for GP kernels with additive structure that
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enables O(N logN) scaling in the standard regression setting, it is possible to de-

rive an O(N logN) algorithm which performs MAP inference and hyperparameter

learning using Laplace’s approximation.

Recall that Laplace’s approximation is based on Newton’s method on the objec-

tive:

Ω(f) ≡ log p(y|f) + log p(f |X, θ). (4.56)

Let’s now additionally assume that f is drawn from an additive GP. It is straighfor-

ward to show that:

∇Ω(f) = ∇f log p(y|f)−K−1
addf , (4.57)

∇∇Ω(f) = ∇∇f log p(y|f)︸ ︷︷ ︸
≡−W

−K−1
add, (4.58)

f (k+1) ← f (k) +
(
K−1

add +W
)−1
(
∇f log p(y|f)|f (k) −K−1

addf
(k)
)

(4.59)

= Kadd

(
Kadd +W−1

)−1
[
f (k) +W−1∇f log p(y|f)|f (k)

]
. (4.60)

Note that since p(y|f) =
∏N

n=1 p(yi|fi), W is a diagonal matrix and is easy to

invert. Looking closer at Equation 4.60, we see that it is precisely the same as the

expression to compute the posterior mean of a GP, where the target vector is given

by
[
f (k) + W−1∇f log p(y|f)|f (k)

]
and where the diagonal “noise” term is given by

W−1. Given an additive kernel corresponding to a sum of scalar GPs that can be

represented using SSMs, we can therefore use Algorithm 7 to implement a single

iteration of Newton’s method! As a result, it is possible to compute f̂ in O(N logN)

time and O(N) space, since in practice only a handful of Newton iterations are

required for convergence (as it is a second order optimisation method). Wrapping

backfitting iterations inside a global Newton iteration is precisely how the local-

scoring algorithm is run to fit a generalised additive model. Thus, we can view the

development in this section as a novel Bayesian reinterpretation of local scoring.

We can also efficiently approximate the marginal likelihood using the Taylor

expansion of the objective function Ω(F), as in Equation 1.54, although we will

need to express it explicitly in terms of F ≡ [f1; . . . ; fD], as opposed to the sum f .

Ω(F) = log p(y|F) + log p(F|X, θ). (4.61)
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Note that the run which computes f̂ does so via the computation of F̂, so we obtain

it for free after running Algorithm 7. Once F̂ is known, it can be used to compute

the approximation to the marginal likelihood. Using Equation 1.55 we obtain:

log p(y|X) ≈ Ω(F̂)− 1

2
log det

(
W̃ + K̃

−1
)

+
ND

2
log(2π) (4.62)

= log p(y|F̂)− 1

2
F̂
>
K̃
−1

F̂

− 1

2
log det

(
K̃ + W̃

−1
)
− 1

2
log det(W̃), (4.63)

where we have defined:

K̃ =




K1 0 . . . 0

0 K2 . . . 0
...

. . .
...

0 0 . . . KD



, W̃ =




W 0 . . . 0

0 W . . . 0
...

. . .
...

0 0 . . . W



.

and have used the matrix determinant lemma (see Appendix A) to get from 4.62

to 4.63. Notice how every term in the marginal likelihood approximation can be

computed in O(N logN) complexity. This is trivially true for the terms log p(y|F̂)

and 1
2

log det(W̃). The term 1
2
F̂
>
K̃
−1

F̂ is the sum of SMSEs for D scalar GPs

with noise-free targets f̂d (see Section 4.2.2). The term 1
2

log det
(
K̃ + W̃

−1
)

can be

computed by summing the log predictive variances of D SSMs with diagonal noise

matrices given by W−1 (for any target vector – see Equation 4.31). In Algorithm

13 we give the pseudo-code illustrating these ideas.

4.5 Results

4.5.1 Experiments on Regression Tasks

4.5.1.1 Performance Metrics

We will be concerned with three performance measures when comparing the additive

GP regression algorithms introduced in this chapter, both to each other and to other

algorithms introduced in Section 4.5.1.2. These measures have been chosen to be

consistent with those commonly used in the sparse GP regression literature, in order
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Algorithm 13: Generalised Additive GPR using Laplace’s Approximation

inputs : Hyperparameters θ, Likelihood function : likelihood which
computes log-likelihood of targets (λ) and its first (∇) and second
(−W) derivatives.
Training set : {X,y}, Test inputs : X?

outputs: Predictive means : f̂?, Predictive probabilities : p̂, p̂?
Approximation of the log-marginal likelihood logZ(θ).

fd ← 0 for d = 1, . . . , D; f ←∑D
d=1 fd;1

while the change in f is above a threshold do2

// Newton iterations

[λ, ∇, W]← likelihood(f , y);3

z← f + W−1∇;4

while the change in fd is above a threshold do5

// Backfitting iterations

for d = 1, . . . , D do6

zd ← z−∑j 6=d fd;7

[fd, f?d]← gpr ssm(zd, W−1, [X:,d,X?d], θd); //Diagonal noise8

end9

end10

f ←∑D
d=1 fd; f? ←

∑D
d=1 f?d;11

end12

f̂ ← f ; f̂? ← f?;13

p̂←likelihood(f̂); p̂? ←likelihood(f̂?);14

// Marginal likelihood approximation

[λ, ∇, W]← likelihood(f̂ , y);15

Z(θ)← λ− 1
2

log det(W);16

for d = 1, . . . , D do17

smsed ← gpr smse(f̂d, 0, X:,d, θd);18

logdetd ← gpr logdet(f̂d, W−1, X:,d, θd);19

Z(θ)← Z(θ)− 1
2
smsed − 1

2
logdetd;20

end21
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to ease comparison with other works.

• Runtime, measured in seconds. Fluctuations in all quantities presented per-

taining to runtimes will be reduced by performing 10 independent runs.

• The test-set normalised mean square error (NMSE) :

NMSE =

∑N?
i=1(y?(i)− µ?(i))2

∑N?
i=1(y?(i)− ȳ)2

, (4.64)

where µ? ≡ E(f?|X,y, X?, θ) and ȳ is the training-set average target value

(which will always be zero in our case). This measure only assesses the quality

of the posterior mean predictions and is suitable to cases where we only need

mean predictions for the task at hand. However, for many real-world problems,

error bars in the predictions are also very useful. The quality of error bars is

measured using the metric below.

• The test-set Mean Negative Log Probability (MNLP) :

MNLP =
1

2N?

N?∑

i=1

[
(y?(i)− µ?(i))2

v?(i)
+ log v?(i) + log 2π

]
, (4.65)

where v? ≡ V(f?|X,y, X?, θ). This metric correctly captures the intuitive no-

tion of penalising overconfident predictions which are off, and underconfident

predictions which are actually good. For both the NMSE and MNLP measures

lower values indicate better performance.

4.5.1.2 Comparison Methodology

For each experiment presented, we will compare the performance, as measured by

the three metrics above, of either all or a subset of algorithms listed in this section.

If a particular algorithm has a stochastic component to it (e.g., if it involves MCMC)

its performance will be averaged over 10 runs.

Additive-MCMC : This is the MCMC algorithm presented in Section 4.2.2.

We will perform Gibbs sampling by cycling through Equations 4.22 to 4.25 100

times. Recall that since we run the backfitting algorithm within in each Gibbs sam-

pling iteration a large majority of the random variables involved can be “burned-in”
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rapidly to match the corresponding conditional mode. For all experiments involved,

this reduces the number of Gibbs sampling iterations required to get satisfactory re-

sults. Referring to Equations 4.17 through 4.21 we set up the hyper-prior parameters

as follows:

µ` = 0, v` = 9;ατ = 0.1, βτ = 0.1;αn = 1, βn = 0.1.

When sampling hyperparameters, recall that we use 1-dimensional MH sampling

for the lengthscales and that for all others we sample directly from the appropri-

ate posterior. The MH step size is adjusted in a dataset-specific manner. The

state-transition function used in the underlying SSMs is always set to be the one

corresponding to the Matérn(7/2) kernel. This provides a very good approximation

to the additive SE-ARD covariance.

Additive-VB : This is the VBEM algorithm presented in Section 4.2.2. It is

computationally less-intensive than Additive-MCMC, since we optimise the hyper-

parameters instead of integrating them out via MCMC. The hyperparameters are

initialised in a “sensible” way, unless otherwise stated. This usually has a particular

meaning in the GP literature and we use the following protocol:

• Initialise the lengthscales such that `d = (max(X:,d)−min(X:,d))/2,

• Initialise the signal variances such that vd = var(y)/D,

• Initialise the noise variance to σ2
n = var(y)/4.

We run the VBEM algorithm (Algorithm 11) until the optimized value of θ in a given

iteration has a squared distance less than 0.01 from the value of θ in the previous

iteration. We also limit the number of VB iterations to 50, and this is rarely reached

in practice.

Additive-Full : This corresponds to running the standard GP regression algo-

rithm (Algorithm 1) with kernel:

k(x,x′; θ) =
D∑

d=1

vd exp

(
−(x− x′)2

2`2
d

)
+ σ2

nδ(x,x
′). (4.66)

Note that we will only run the standard GPR algorithm if the training set size is

less than 10000 points, as any larger experiment does not fit into memory. It would
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also be reasonable to use a sum of Matérn(7/2) kernels here, in order to control for

any variation in results due to differences in covariance function. However, as will

become apparent, switching the Matérn(7/2) kernel with the squared-exponential

creates a negligible difference in performance. In addition, it eases comparison to

methods such as SPGP, as the software library for it supports squared-exponential

kernels only.

PPGPR-greedy : This is Algorithm 12. We initialise the projection weights

at every iteration iteration by means of a linear regression of X onto ym in all

cases except for one (the kin40k dataset – see Section 4.5.1.4) where we use random

initialisation instead. These choices were driven by whichever options performed

better. It appears that initialisation via linear regression works better more often.

Once the weights are known we can initialise the scalar GP “sensibly” as described

above (with D = 1). We stop the iterations when the change in validation-set NMSE

is less than 1e-4. Many of the datasets we will use have standard train-test data

splits. By default, we will use an 80-20 split of the original training set to form our

training and validation sets.

PPGPR-MCMC : This algorithm refers to the case where we learn the pro-

jection weights W and the hyperparameters on a subset of data of size min(N, 1000)

and use these to run the Additive-MCMC routine above using the projected in-

puts instead of the original inputs. Here, we learn the weights and hyperparameters

in a non-greedy, yet computationally intensive way by simply using Algorithm 1

with kernel:

k(x,x′; θ,w) = v exp

(
−(w>x−w>x′)2

2`2

)
+ σ2

nδ(x,x
′), (4.67)

on the subset. This algorithm is included mainly to portray the effect of the greedy,

more efficient optimisation present in PPGPR-greedy. We initialise the weights

randomly from standard IID Gaussians and initialise other hyperparameters accord-

ing to the standard protocol.

GP-Full : This is the standard GP regression algorithm applied to the most
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commonly used SE-ARD covariance, given by:

k(x,x′; θ) = v exp

(
−

D∑

d=1

(x− x′)2

2`2
d

)
+ σ2

nδ(x,x
′). (4.68)

Note that this kernel allows full interaction amongst all input variables, and will

therefore be able to capture structure which an additive regression model cannot,

making it an interesting choice for comparison.

SPGP : This algorithm is the sparse approximation method of Snelson and

Ghahramani [2006], as applied to the GP-Full algorithm above. It was briefly

introduced in Chapter 1. The key idea is to use a pseudo training-set {X̄, f̄} with P

noise-free input-output pairs, where P < N . Conceptually, this pseudo training-set

is used to predict the original dataset {X,y}, giving rise to the following prior and

likelihood model for sparse GP regression:

p(f̄ |X̄, θ) = N (0,KP ), (4.69)

p(y|X, X̄, f̄ , θ) =
N∏

i=1

p(yi|xi, X̄, f̄) (4.70)

= N (y|KNPK−1
P f̄ ,Λ + σ2

nIN), (4.71)

where Λ is a diagonal matrix of predictive variances, i.e. Λi,i = Ki,i − k>i K−1
P ki.

Predictions can be made using the posterior over f̄ which can be obtained trivially

using Equations 4.69 and 4.71. The marginal likelihood of SPGP is obtained by

integrating out f̄ to obtain:

p(y|X, X̄, θ) = N (y|0,KNPK−1
P KPN + Λ + σ2

n). (4.72)

This is optimised to learn the pseudo-input locations X̄ and θ. When using SPGP,

we will always initialise the pseudo-input locations as a random subset of X and

follow the usual protocol for initialising the rest of the hyperparameters. We will

set P = min(N, 500) for all the problems analysed. We will use the implementation

provided in Snelson and Ghahramani [2006] and limit ourselves to using the SE-ARD

kernel, as this is the only kernel which is supported.
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4.5.1.3 Experiment I : Runtimes on Synthetic Data

In this experiment, we illustrate how the runtimes of Additive-VB, PPGPR-

greedy, SPGP and Additive-Full vary as a function of N and D. All the runs

use synthetic data generated according to the following generative model:

yi =
D∑

d=1

fd(X:,d) + ε i = 1, . . . , N, (4.73)

fd(·) ∼ GP (0; kd(xd,x
′
d; [1, 1])) d = 1, . . . , D, (4.74)

ε ∼ N (0, 0.01),

where kd(xd,x
′
d; [1, 1]) is given by the Matérn(7/2) kernel with unit lengthscale and

amplitude. Recall that we can perform the sampling in Equation 4.74 in linear time

and space using the FFBS algorithm given in Section 4.2.2. We will measure the

runtime of the training phase (i.e., smoothing and hyperparameter learning given

{X,y}) for all these algorithms. First, we fix D to 8 and collect runtimes for a set of

values for N ranging from 200 to 50000. Note that we have not included the results

for algorithms which use MCMC as these are always slower (although they still

have similar asymptotic scaling). Furthermore, we use the MCMC-based algorithms

mainly as a reference point for assessing the quality of the faster Additive-VB and

PPGPR-greedy algorithms, as will be made clear in the following section. Also

note that, for Additive-VB and PPGPR-greedy we have set the number of outer

loop iterations (the number of VBEM iterations for the former, and the number of

projections, M , for the latter) to be 10 for all N . In practice, the number of outer

loop iterations will vary according to the dataset, causing fluctuations from the

linear relationship to N clearly present in Figure 4.5. This figure clearly portrays the

significant computational savings attained by exploiting the structure of the additive

kernel. We obtain runtimes comparable to sparse GP algorithms despite using the

entire training set during learning! In contrast, the Additive-Full algorithm cannot

be run at all past 10000 points, as it doesn’t fit into memory.

Secondly, we fix N to 1000 and vary D from 5 to 50, in intervals of 5. Figure

4.6 shows that the runtime also scales linearly as a function of D for all algorithms

involved, though the constant factor for Additive-VB is higher than others due to

the repeated calls made to the backfitting algorithm.
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Figure 4.5: A comparison of runtimes for efficient Bayesian additive GP regression,

projection-pursuit GP regression and generic techniques for full and sparse GP regres-

sion (with N = [0.2, 2, 4, 6, 8, 10, 20, 30, 40, 50]×103) presented as a log-log plot. The slope

of Additive Full (in red) is 2.8, and those of Additive VB (blue), PPGPR (black) and

SPGP (magenta) are between 1 and 1.05. This clearly illustrates the reduction from cubic

runtime to O(N logN).

4.5.1.4 Experiment II : Performance on Large Datasets

In this experiment, we assess the performance of all the algorithms above on a series

of synthetic and large, real-world, benchmark datasets.

Synthetic Additive Data : We generate synthetic data from an additive model

in exactly the same way as in Section 4.5.1.3. We have chosen a relatively smaller

N and M in order to be able to obtain results for all the methods involved. In

addition, we have kept D low in order to be able to effectively visualise the learned

models. Recall that additive models are much easier to visualise than their non-

additive counterparts since we can plot how each individual predictor relates to the

target. Since the inherent additivity assumption is satisfied in this data, we expect

all the Additive-* algorithms and those based on projection pursuit to perform well.

Indeed, this expectation is verified in the top half of Table 4.1: both the additive

model and the projection-pursuit algorithm have superior NMSE and MNLP when
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Figure 4.6: A comparison of runtimes for efficient Bayesian additive GP regression,

projection-pursuit GP regression and generic techniques for full and sparse GP regres-

sion. We vary D from 5 to 50. As all methods clearly exhibit linear scaling with D, we

use linear-linear plots.

compared with the GP models where full interaction is allowed. This superiority

stems from the fact that an additive GP prior is simpler than a tensor GP prior and

fits the data just as well (if not better). This results in a higher marginal likelihood

(which is empirically verified, although not presented in the table below) which is

reflected in better NMSE and MNLP scores. Figure 4.7 is an excellent illustration of

this superior performance. We can see that Additive-VB has successfully recovered

the 4 latent univariate functions which gave rise to the data (modulo constant offsets

due to subtracting the mean). We can also see that PPGPR-greedy has learned

automatically that there are 4 major additive components and has learned functional

forms which are clearly consistent with the 4 true functions used to generate the

data. For example, judging from the first row of the W matrix, we can see that the

first component should be similar to the second function from the left; and from the

fourth row of the matrix, we expect the fourth component to be the third function

from the left but with the x-axis flipped (as the weight is negative). Both of these

can clearly be verified visually!
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Friedman’s Synthetic Data : This is a standard synthetic dataset used com-

monly in the literature (e.g., Navone et al. [2001]). The seven input variables are

sampled uniformly over the interval [0, 1] and the targets are generated according

to:

yi = 10 sin(πXi,1Xi,2) + 20(Xi,3 − 0.5)2 + 10Xi,4 + 5Xi,5 + ε, (4.75)

ε ∼ N (0, σ2
n), i = 1, . . . , N.

We set N = 40000 and M = 5000 in order to set up a regime where it would not be

possible to use the full GP routines. In the bottom half of Table 4.1 we can see that

the performance of PPGPR-greedy, PPGPR-MCMC and that of SPGP are

comparable and that these two sets of algorithms fare better than the pure additive

GP models. This is an unsurprising result because the first term in Equation 4.75

couples the first two input variables, and additive models cannot capture this type

of structure. In contrast, the algorithms based on projection pursuit regression can

improve accuracy considerably, thanks to the additional flexibility provided by being

able to project the inputs. Note also that, in this case, PPGPR-greedy actually

runs faster than SPGP as the number of dimensions of the learned input space was

6 (again, this is encouraging because it is close to the actual number of dimensions

present in the generative model – 5).

Elevators : The Elevators dataset is the first of several large, real-world

datasets we consider. It has been used in Lázaro-Gredilla [2010]. It is derived from

a control problem pertaining to F16 aircraft where the 17 input variables represent

the current state of the aircraft and the target relates to the action performed on

its elevators. As can be seen in the top part of Table 4.2, for this particular dataset,

SPGP performs comparably to GP-Full and both slightly outperform the additive

and PPGPR methods, although not by a significant margin. This indicates that

the additivity assumption is not a very strong one for this dataset although it does

cause some degradation in performance.

Pumadyn-8fm : This dataset can be viewed as an example real-world regression

task where the additivity assumption is perfectly reasonable. The pumadyn family

of datasets are constructed from a simulation of a Puma 560 robot arm. The inputs

include the angular positions, velocities and torques and the output variable is the
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Table 4.1: Performance comparison of efficient Bayesian additive GP regression algo-

rithms on synthetically-generated data. As expected, we see that additive GP models and

PPGPR-greedy outperform GP-Full both in terms of runtime and predictive perfor-

mance for additive data. We also observe that SPGP, while being the fastest method,

gives the worst predictive performance in this case. Friedman’s synthetic data adds some

coupling between inputs, thus worsening the performance of additive models. It is inter-

esting to see that PPGPR-Greedy is comparable in runtime and accuracy to SPGP.

Algorithm NMSE MNLP Runtime (s)

Synthetic Additive Data (N = 8000, M = 1000, D = 4)
Additive-MCMC 0.698 1.094 720
Additive-VB 0.703 1.112 125
Additive-Full 0.708 1.070 3097
PPGPR-Greedy 0.669 1.204 114
PPGPR-MCMC 0.714 1.223 846
GP-Full 0.738 1.534 2233
SPGP 0.792 1.702 85

Friedman’s Synthetic Data (N = 40000, M = 5000, D = 7)
Additive-MCMC 0.110 1.923 3134
Additive-VB 0.113 1.929 682
Additive-Full N/A N/A N/A
PPGPR-Greedy 0.0424 1.426 523
PPGPR-MCMC 0.0401 1.438 4178
GP-Full N/A N/A N/A
SPGP 0.0408 1.410 620

angular acceleration of one of the arm links. This particular dataset is classed

“fairly linear”, which justifies the assumption of additivity. Indeed, the Additive-*

algorithms are comparable to GP-Full in terms of NMSE and MNLP, and there

appears to be a slight edge in using PPGPR. The learned models are illustrated in

Figure 4.8, where one can see exactly what “fairly linear” means in the context of this

dataset. Furthermore, Additive-VB has discovered two linear components and has

set the rest of the components to be “zero-signal, all-noise” (the errorbars plotted

here do not include the noise component). Similarly, PPGPR-greedy assigns a

linear component in its first iteration and rapidly converges to a setting where no

more improvement in NMSE can be obtained (the fourth component is basically all

noise).
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Pumadyn-8nm : This dataset is similar to the above, except that its degree

of nonlinearity is far greater. As a consequence, GP-Full does best, and is well-

approximated by SPGP. The Additive-* algorithms perform significantly worse

highlighting the damage the additivity assumption is causing in this particular case.

Note, however, that PPGPR-greedy almost completely closes the performance

gap.

kin40k : The kin40k dataset is a pathological case for any additive model, and

it also forms a challenge to PPGPR-style algorithms. It is a highly nonlinear and low

noise dataset. Therefore, kernels which support full interactions across all inputs are

at a significant advantage, as can be seen in the final section of Table 4.2. Note the

significant difference in performance between vanilla additive GP models (including

Additive-Full) and Full-GP and SPGP. Again, the added flexibility present in

PPGPR significantly boosts performance, although it still falls short. Indeed, the

degree of nonlinearity is reflected by the fact that PPGPR-greedy converges after

20 iterations – indicating that it is preferable to have a 20-dimensional input space

to explain the targets in an additive way, as opposed to the original 8.

4.5.2 Experiments on Classification Tasks

4.5.2.1 Performance Metrics

We will again use three performance measures when comparing the additive GP clas-

sification algorithm introduced Section 4.4 to other kernel classifiers (both Bayesian

and non-Bayesian). These measures have been chosen to be consistent with those

commonly used in the sparse GP classification literature, enabling straightforward

comparison with other experimental results. We will focus on the task of binary

classification. As the efficient implementation of Laplace’s approximation can, in

principle, be run with any likelihood function, extensions to tasks such as multi-class

classification and Poisson regression can be performed without affecting asymptotic

complexity.

• Runtime, measured in seconds. Jitter in all quantities presented pertaining to

runtimes will be reduced by performing 10 independent runs.
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• The test error rate :

Error Rate =
#(incorrect classifications)

#(test cases)
. (4.76)

This measure is commonly used for the Support Vector Machine (SVM) clas-

sifier as its central goal is to return predicted class labels, not the probability

of a new instance belonging to one class or the other. The other methods we

use will always return probabilistic predictions, and when using this metric,

we follow the protocol of assigning a test case to the class with highest proba-

bility. Recall that we had limited ourselves to the computation of p̂ = p(y?|f̂)

and that the test error rate computed using these probabilities were, in fact,

identical to that which is computed from the exact predictive probabilities

given by Equation 1.44. A better measure for assessing the quality of proba-

bilistic predictions is the negative log-likelihood (cross-entropy) of the test-set

predictions, given below.

• The test-set Mean Negative Log-Likelihood (MNLL) :

MNLP =
1

N?

N?∑

i=1

[yi log p̂i + (1− yi) log(1− p̂i)] . (4.77)

For both the test error rate and MNLL measures lower values indicate better

performance.

4.5.2.2 Comparison Methodology

We will compare the following algorithms to each other using the metrics above.

For datasets which are too large, it will not be possible to run the standard GP

classification methods and the results corresponding to these cases will be omitted.

For all the methods, we will rescale the inputs so that the training set inputs have

zero mean and unit variance. We will also perform hyperparameter learning by

grid search only. The reason for doing this is to make the comparison to Support

Vector Machines (SVMs) fair, as this is the technique used for learning SVM hyper-

parameters. Note that for the SVM and the Informative Vector Machine (IVM) the

lengthscale and amplitude parameters are tied across all dimensions and therefore
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we will paramaterize the GP classifiers in a similar fashion. This limits the grid

search to a 2-dimensional space, which is feasible. For SVMs and IVMs we will split

the original training sets 80-20 to form a validation set, and optimise the validation

set MNLL to select the hyperparameters. For GP-based classifiers we will use the

marginal likelihood approximation. Note that using both gradient-based hyperpa-

rameter optimisation and different lengthscales and amplitudes per dimension ought

to further improve performance although we will not consider these extensions.

Additive-LA : This is Algorithm 13 used to perform posterior inference for the

following generative model:

yi ∼ Bernoulli(pi) i = 1, . . . , N,

pi = g(fi), (4.78)

f(·) =
∑

d

fd(·), (4.79)

fd(·) ∼ GP (0; kd(xd,x
′
d; θd)) d = 1, . . . , D,

where

g(fi) =
1− 2ε

1 + exp(−fi)
+ ε, (4.80)

is the logistic link function, altered so that it tends to ε for large and negative

values of fi and to 1 − ε for large and positive values of fi. This greatly improves

the numerical stability of the logistic likelihood function as it is common to find

examples of datasets where one may observe a rare negative label in a region of

high probability for the positive class (and vice versa). This causes very large noise

variances to be introduced inside the underlying Kalman filter (as W−1
i,i is very

high) which in turn runs the risk of causing numerical problems. Intuitively, the

ε parameter plays the role of label noise which can, in fact, be learned from data,

although we will fix it at 1e-5. We have the following expressions for ∇ and W for

the link function in Equation 4.80.

∇i =
(1− 2ε)(yi exp(−fi)− (1− yi))

1 + exp(−fi)
= (1− 2ε)(yi − pi), (4.81)

Wi,i =
(1− 2ε) exp(−fi)
(1 + exp(−fi))2

= (1− 2ε)pi(1− pi). (4.82)
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For the kernels kd(·, ·), we will use the Matérn(7/2) covariance function. We will

perform a grid search over the following space to find a good setting for the hyper-

parameters: ` = [2−5, 2−3, . . . , 29], σf = [2−3, 2−1, . . . , 29]. This type of grid search

is commonly used to select SVM free parameters and we have decided to keep this

consistent across all the techniques being compared.

Additive-Full : This is the standard GP classification with Laplace’s Approx-

imation, as introduced in Rasmussen and Williams [2006]. The grid search over

hyperparameters is identical to Additive-LA above.

Support Vector Machines (SVM) [..]: The SVM is a popular algorithm,

especially for classification problems, and was first introduced in Cortes and Vapnik

[1995]. Its popularity stems from the fact parameter learning boils down to a convex

optimisation problem, guaranteeing convergence to the global optimum. It can also

be kernelized, allowing extensions to infinite dimensional feature spaces, such as the

one provided by the commonly-used Gaussian Radial Basis Function (RBF) kernel.

In addition, its loss function results in sparse solutions where the decision boundary

depends only on a small subset of the training data, thus allowing fast predictions. It

is not a probabilistic approach to classification. Thus the central goal is to optimise

the test-set error rate, i.e., minimize training set classification error subject to model

complexity constraints in order to avoid overfitting. This is achieved by minimizing

the following objective function w.r.t. w and ξ ≡ {ξn}Nn=1:

ΩSVM(w, ξ) ≡ C

N∑

n=1

ξn

︸ ︷︷ ︸
Data fit penalty

+
1

2
w>w
︸ ︷︷ ︸

Complexity penalty

, (4.83)

subject to

yn

≡f(xn)︷ ︸︸ ︷
{w>φ(xn) + b} ≥ 1− ξn, (4.84)

ξn ≥ 0, (4.85)

where yn ∈ {−1, 1}. Notice how, if the sign of f(xn) is consistent with the label then

0 ≤ ξn < 1. The parameter C controls the relative importance of the data fit term to

the regularization term. This objective function can be optimized using Lagrange
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multipliers {αn}Nn=1 corresponding to the constraints in 4.84. The resulting dual

Lagrangian problem is then to optimize the objective:

L(α) =
N∑

n=1

αn −
1

2

N∑

n=1

N∑

m=1

αnαmynym φ(xn)>φ(xm)︸ ︷︷ ︸
≡k(xn,xm)

, (4.86)

subject to

0 ≤ αn ≤ C,
N∑

n=1

αnyn = 0. (4.87)

This optimisation task is convex (it is a quadratic programming problem). A popular

algorithm to implement it is known as Sequential Minimal Optimisation (SMO)

Platt [1998] and has scaling which is between linear and quadratic in N . Notice also

that the SVM training scheme is easily kernelisable and in practice it is common to

use:

k(x,x′) = exp

(
−γ

D∑

d=1

(xd − x′d)
2

)
(4.88)

Once the optimal α are computed, we can compute the optimal ŵ and b̂ and use

these to label unseen instances using sgn(ŵ>φ(x?) + b̂). Further details on SVMs

can be found in Schölkopf and Smola [2001].

There exist many software libraries that implement SVMs. We have chosen

to use LIBSVM (Chang and Lin [2011]) due to its ease of use and its support

for MATLAB via an excellent MEX interface. It also implements an extension to

the standard SVM algorithm which provides the user with probabilistic predictions,

i.e. p(y? = 1|x?) as opposed to simply a label. This is important for our results

because we would like to be able to compute the MNLL measure for SVMs also. The

way probabilistic predictions are derived from the SVM is by using cross-validation

(within the training set) to learn a logistic sigmoid map, using the cross-entropy

metric (see Platt [1999]):

p(y = 1|x) = σ(β1f(x) + β0) (4.89)

We implement parameter learning for the SVM using a grid search over the joint

space of C and γ, using C = [2−5, 2−3, . . . , 29], γ = [2−9, 2−7, . . . , 23].
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Informative Vector Machine (IVM) [..]: The IVM is a rare example of a

sparse GP method which can be readily extended to handle non-Gaussian likelihoods

such as the one for binary classification. The central idea is to find a Gaussian

approximation to the true posterior as follows:

p(f |y, X, θ) ∝ N (f ; 0, K)
N∏

n=1

p(yn|fn)︸ ︷︷ ︸
Non-Gaussian

(4.90)

u N (f ; 0, K)
∏

i∈I

N (mi; fi, vi), (4.91)

where I ⊂ {1, . . . , N} with fixed size (e.g. min(500, N)). The set I is initialised to

the empty set and elements are added incrementally by greedily adding whichever

datapoint causes the biggest reduction in entropy for the Gaussian in Equation 4.91.

The site parameters {mi} and {vi} are updated at each iteration k by minimizing

KL(pk(f)||qk(f)), where:

pk(f) = N (f ; 0, K)
∏

i∈Ik−1

N (m
(k−1)
i ; fi, v

(k−1)
i )p(ynk|fnk),

qk(f) = N (f ; 0, K)
∏

i∈Ik

N (m
(k)
i ; fi, v

(k)
i ).

Note the similarity of this approximation to EP, as introduced in 2.4. It is in fact

a case of Assumed Density Filtering (ADF). For further details, see Minka [2001].

These updates are made tentatively when we are searching for the next example to

add to the subset and are made permanently when the new example is added. The

IVM algorithm runs in O(|I|2N) time and O(|I|N) space, and is thus comparable in

terms of its scaling properties to Algorithm 13. For further details on IVM, consult

Lawrence et al. [2003].

We use the IVM implementation given in Lawrence et al. [2003]. We use the

RBF kernel where all the lengthscales and signal amplitudes are constrained to

be equal. We set the subset size to be min(500, N). Note that, by plugging the

approximation in Equation 4.91 into the expression for the marginal likelihood in

Equation 1.43 we can optimise an approximation to the true marginal likelihood

using conjugate gradients. However, we choose to use grid search much like the one
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for Additive-LA.

Logistic Regression : This is the standard maximum-likelihood logistic re-

gression model. We include it in our analysis as a performance baseline. It can

only capture linear relationships between the inputs and the labels, although it runs

extremely fast when compared with all the methods we consider here.

4.5.2.3 Experiment I : Runtimes on Synthetic Data

We perform the same experiment with runtimes as was done for the regression case.

We sample sythetic data from the generative model of Additive-LA for the same

set of values of N and D. The results are illustrated in Figures 4.10 and 4.11.

Note, however, that in this case we report runtime values for fixed hyperparameter

settings, as opposed to the regression case where we timed the hyperparameter

learning process.

4.5.2.4 Experiment II : Performance on Large Datasets

In this experiment, we assess the performance of all the algorithms above on a set

of synthetic or toy-sized datasets, and subsequently analyse performance on larger

datasets.

Synthetic Additive Classification Data : We sample synthetic data from

the generative model of Additive-LA with N = 2000 and D = 4. As illustrated in

Figure 4.12, despite the limited amount of information available in binary labels, the

recovery of the additive components is still quite accurate (modulo constant offsets).

Unsurprisingly, high frequency components cannot be recovered very accurately. As

the data is a sample from the generative model for additive classification we expect

both Additive-LA and Additive-Full to dominate in accuracy – this is empirically

verified in Table 4.3.

Breast Cancer : This is a small dataset where the aim is to diagnose a breast

tumour as malignant or benign, using 9 discrete features. We see that the Additive-

LA outperforms alternatives on this task.

Magic Gamma Telescope : This is a large binary classification dataset where

the aim is to classify a shower image obtained via the collection of Cherenkov pho-

tons. Using certain features of the image, we would like to be able to predict if it
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was the result of primary high energy gamma rays (positive class) or was the re-

sult of hadronic showers initiated by cosmic rays in the upper atmosphere (negative

class). For further details see Bock et al. [2004]. We see that the Additive-LA

outperforms alternatives for this task also.

IJCNN : This is from the IJCNN 2001 Neural Network Challenge. For further

information see Chang and Lin [2001]. Although the SVM gives the best perfor-

mance for this dataset, it is still worth noting that Additive-LA is a close second,

consistently outperforming the IVM.

USPS Digit Classification : This is the US Postal Service Digit Classification

dataset. It is a benchmark dataset for testing classification algorithms. The original

problem has 10 classes, corresponding to handwritten digits 0-9. We focus on the

binary classification of 0 versus not-0. For this problem, SVM and IVM perform

comparably and both outperform Additive-LA. This is not very surprising, as for

classification of images we would expect that pixel values jointly affect the class

label.
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Figure 4.7: Inference results for the Synthetic dataset. (a) Top: The 4 true univariate

functions used to generate the data. Bottom: Means and variances computed using the

E-step of VBEM at learned hyperparameter settings. (b) Residuals (Top) and learned

functions (Bottom) in the first 4 iterations of PPGPR-greedy (posterior over functions

includes noise). (c) W matrix (M = 5).
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Table 4.2: Performance comparison of efficient Bayesian additive GP regression algo-

rithms with generic techniques for full and sparse GP regression on large, benchmark

datasets. For datasets which do not exhibit significant nonlinearities and couplings be-

tween inputs (Elevators and Pumadyn-8fm) we see that additive GP models and PPGPR-

greedy perform comparably to generic GP techniques, at a fraction of the computational

cost. For more complex datasets, such as kin40k, we see that using GP-Full (or SPGP)

is preferable. Nonetheless, it is worth noting how much PPGPR-greedy improves pre-

dictive performance in this case.

Algorithm NMSE MNLP Runtime (s)

Elevators (N = 8752, M = 7847, D = 17)
Additive-MCMC 0.145 −4.586 1150
Additive-VB 0.167 −4.521 178
Additive-Full 0.147 −4.587 8038
PPGPR-Greedy 0.128 −4.684 211
PPGPR-MCMC 0.222 −3.741 1244
GP-Full 0.104 −4.767 8219
SPGP 0.114 −4.811 102

Pumadyn-8fm (N = 7168, M = 1024, D = 8)
Additive-MCMC 0.0705 1.608 611
Additive-VB 0.0716 1.627 92
Additive-Full 0.0714 1.617 3788
PPGPR-Greedy 0.0514 1.437 103
PPGPR-MCMC 0.0502 1.443 913
GP-Full 0.0545 1.484 2360
SPGP 0.0540 1.478 63

Pumadyn-8nm (N = 7168, M = 1024, D = 8)
Additive-MCMC 0.374 2.640 633
Additive-VB 0.376 2.642 93
Additive-Full 0.372 2.641 3912
PPGPR-Greedy 0.0507 1.511 105
PPGPR-MCMC 0.0430 1.421 934
GP-Full 0.0304 1.386 2378
SPGP 0.0306 1.394 71

kin40k (N = 10000, M = 30000, D = 8)
Additive-MCMC 0.945 1.391 2170
Additive-VB 0.945 1.391 438
Additive-Full 0.948 1.388 9415
PPGPR-Greedy 0.185 0.507 674
PPGPR-MCMC 0.138 0.428 2985
GP-Full 0.0128 −0.897 9302
SPGP 0.0502 −0.326 214
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Figure 4.8: Inference results for the Pumadyn-8fm dataset. (a) The 8 additive compo-

nents inferred by the E-step of VBEM at optimised hyperparameter settings. (b) Resid-

uals (Top) and learned functions (Bottom) in the first 4 iterations of PPGPR-greedy

(posterior over functions includes noise). (c) W matrix (M = 5).
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Figure 4.9: Inference results for the kin40k dataset. (a) The 8 additive components in-

ferred by the E-step of VBEM at optimised hyperparameter settings. (b) Residuals (Top)

and learned functions (Bottom) in the first 4 iterations of PPGPR-greedy (posterior

over functions includes noise). (c) W matrix (M = 20).
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Figure 4.11: Classification runtimes for D ranging from 5 to 50, displayed as a linear-

linear plot. We see that the Additive-* algorithms clearly have linear scaling with D,

although the relationship of runtimes to D appears more complex for IVM and SVM.
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Figure 4.12: Top: The four univariate functions used to generate the class labels. Middle:
Histogram of labels as a function of each input dimension. Bottom: The four additive
components inferred by the Laplace Approximation.
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Table 4.3: Performance on synthetic and small classification datasets. As expected, if

the underlying function is truly additive, we see that Additive-LA and Additive-Full

outperform alternatives in terms of accuracy. This warrants the use of Additive-LA, as

it is also competitive in terms of computational complexity. We also see that Additive-

LA is performing well for small datasets, as the amount of information in the data is not

sufficient to create a preference for more complicated functions supported by Full-GP,

SVM and IVM.

Algorithm Error Rate MNLL Runtime (s)

Synthetic Additive Data (N = 2000, M = 1000, D = 4)
Additive-LA 0.356 0.557 167
Additive-Full 0.341 0.580 305
Full-GP 0.437 0.624 335
SVM 0.437 0.737 124
IVM 0.479 0.709 128
Logistic 0.403 0.744 0

Breast Cancer (N = 359, M = 90, D = 9)
Additive-LA 0 0.0236 110
Additive-Full 0.0333 0.0853 22
Full-GP 0 0.0612 23
SVM 0 0.0368 54
IVM 0.0111 0.586 327
Logistic 0.0556 0.0995 0
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Table 4.4: Performance on large, real-world classification datasets. In contrast to the

regression case, we observe that Additive-LA more frequently provides a competitive

alternative to SVM and IVM. We conjecture that this phenomenon comes about due to

the fact that binary labels do not give much information about the underlying function

generating them. As a result, the additivity assumption becomes a weaker assumption for

classiciation tasks.

Algorithm Error Rate MNLL Runtime (s)

Magic Gamma Telescope (N = 15216, M = 3804, D = 10)
Additive-LA 0.142 0.348 1580
Additive-Full N/A N/A N/A
Full-GP N/A N/A N/A
SVM 0.166 0.397 9833
IVM 0.341 0.642 1780
Logistic 0.209 0.463 1

IJCNN (N = 49990, M = 91701, D = 13)
Additive-LA 0.0513 0.157 8281
Additive-Full N/A N/A N/A
Full-GP N/A N/A N/A
SVM 0.0169 0.0482 71083
IVM 0.0950 0.693 3880
Logistic 0.337 0.666 0

USPS (N = 7291, M = 2007, D = 256)
Additive-LA 0.0164 0.0490 14686
Additive-Full N/A N/A N/A
Full-GP N/A N/A N/A
SVM 0.00897 0.0317 704
IVM 0.00648 0.0348 1580
Logistic 0.0204 0.0678 0
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Chapter 5

Gaussian Processes on

Multidimensional Grids

One of the better-known structured GP techniques involves the exploitation of

Toeplitz structure in covariance matrices. Such matrices arise commonly when in-

puts are scalar and are on the integer lattice. Further details can be found in Golub

and Van Loan [1996], Storkey [1999], Zhang et al. [2005] and Cunningham et al.

[2008]. The fact that computations can be greatly simplified when scalar inputs live

on a lattice begs the question of whether inputs living on a D-dimensional lattice

can result in similar computational savings. The central contribution this chapter

presents is the first full answer to this question, which, in a nutshell, turns out to be

a “yes”. We derive an algorithm which implements all operations in Algorithm 1 in

O(N) time and space, for inputs arranged on a lattice. Note that the lattice does

not have to be equispaced, as is the case for Toeplitz matrix methods, although it

does have to be a full grid, thus constraining N to grow exponentially with D. It

is helpful to consider this chapter as the study of how to generalize Toeplitz meth-

ods to higher dimensional input spaces, just as chapter 4 can be seen as a similar

generalisation of the techniques in chapter 2.

5.1 Introduction

So far, we have illustrated several efficient GP regression algorithms derived as a

consequence of making a range of assumptions about the covariance function or
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about the properties we expect a dataset to have, such as nonstationarity. In this

chapter, we explore the significant efficiency gains to be had by making assumption

about input locations. A good example of this is found in Cunningham et al. [2008]

where it is shown that, for uniformly-spaced input locations over a scalar input space,

it is possible to reduce run-time complexity toO(N logN) and memory requirements

to O(N) through the exploitation of Toeplitz structure induced in the covariance

matrix, for any stationary kernel. This is comparable to the efficiency of Gauss-

Markov Processes, studied in Chapter 2. Indeed, although the techniques in Chapter

2 work with arbitrary input locations, they are restricted to kernels that can be

represented using SSMs. The two ideas are therefore somewhat complementary. In

this chapter, we demonstrate that significant efficiency gains can also be obtained

in D-dimensional input spaces (with D > 1), as long as the input locations X lie on

a Cartesian grid, i.e.,

X = X(1) × · · · ×X(D), (5.1)

where X(i) represents the vector of input locations along dimension i and the opera-

tor × represents the Cartesian product between vectors. Interestingly, the elements

in each of the X(i) can be arbitrary, i.e., X(i) ∈ RGi where Gi is the length of vector

X(i). Note that, by definition of the Cartesian product, X will therefore be of size(∏D
i=1Gi

)
-by-D, and in general will represent a non-uniform grid over D dimen-

sions. In Section 5.2 we will present an algorithm to perform exact GP regression

on such input spaces that runs in O(N) time, using O(N) memory! Note the dis-

claimer however: since N =
∏D

i=1Gi the computational and memory requirements

both scale exponentially with dimension, limiting the applicability of the algorithms

presented in this chapter to around 7 or 8 dimensions. Despite suffering badly from

the “curse of dimensionality”, one can imagine a number of example applications

for which D is not too high and the inputs are often on a grid. Some of these

applications are demonstrated in Section 5.3.

Firstly, there are many climate datasets which record measurements of quantities

such as ocean surface temperatures, CO2 concentrations at a grid of locations over

the earth’s surface. A typical example involving sea surface temperatures can be

found in Rayner et al. [2006]. In this particular example, we have a time-series

of “sensor” measurements arranged as a grid of geographic locations. Indeed, the

time-series is also discretized, so one could view the entire dataset as living on a 3-D
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Cartesian grid.

Secondly, consider the task of globally optimizing an unknown utility function

with respect to a D-dimensional set of parameters. A good example could be op-

timizing the yield of a manufacturing process with respect to a set of parameters

controlling it. As the utility function is unknown, it makes a lot of sense to model

it with a GP, especially when evaluating an input-output pair is costly or deriva-

tives of the utility function are not available. This idea was first introduced in

O’Hagan and Kingman [1978], and has been the topic of many papers, such as

Osborne [2010], Gramacy [2005], Srinivas et al. [2010]. The central question in GP-

optimization (GPO) is where to evaluate the utility function in order to optimize

a trade-off between exploration and exploitation. Often the first optimization it-

eration focusses on exploration and a sensible choice of initial input locations is a

multidimensional grid1, especially if little is know, a priori, about the region where

the optima might live. After evaluating the utility function on the grid, we may

update our belief about where we think the optimum is by optimizing the surrogate

function given by µ?(x?) or suggest new places to evaluate the utility function by

optimizing µ?(x?) +λ (Σ?(x?))
1/2 where µ? and Σ? are given by Equations 1.29 and

1.30 (with M = 1). λ encodes the application-specific trade-off between exploration

and exploitation (see Srinivas et al. [2010]). The results in this chapter imply that

the first optimization iteration can run more efficiently than previously thought and

larger grids can be used to boost initial exploration in GPO.

Another example arises in the regression setting where N is in the order of

millions and D is comparatively much lower (e.g. D < 8). In such a scenario, it

makes sense to bin the observations over a multidimensional grid and form a much

smaller dataset {X,y} where X are the grid centres and y represent the mean of

the observations falling in each bin. Notice that the noise on the targets are now

input-dependent leading to a diagonal noise covariance (as opposed to the usual

spherical noise assumption). This is because the noise standard deviation in each

bin is proportional to 1√
Nb

where Nb is the number of observations that fell into bin

b. Indeed, we will study precisely this type of application in Section 5.3.2.

Before delving into the description of the GPR GRID algorithm we note that it is

1Assuming our parameter space is not too high dimensional – if it were, the global optimization
problem would be a very tough one.
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possible to enable the use of Toeplitz matrix inversion techniques in higher dimen-

sions using the algorithm described in Storkey [1999]. In this algorithm one assumes

that the inputs are on a uniform grid and Toeplitz structures in covariance matrices

are obtained by mapping inputs onto a hyper-cylinder in input space. Additionally,

one needs to assume that the covariance function has finite support, i.e., one for

which long-distance correlations are zero. Hyperparameter learning also poses a

problem as explained in Storkey [1999]. In this chapter, we attain superior complex-

ity for arbitrary grids while making much milder assumptions about the covariance

function and sidestepping any problems in hyperparameter optimization.

5.2 The GPR GRID Algorithm

The algorithm presented in this section works with any covariance function which

is a tensor product kernel and when the only marginals we are interested in live on a

multi-dimensional grid. A covariance function k(·, ·) is a tensor product kernel if it

computes covariances which can be written as a separable product over dimensions

d = 1, . . . , D. This means that for any two D-dimensional inputs xi, xj ∈ X we can

write:

k(xi,xj) =
D∏

d=1

kd

(
x

(d)
i ,x

(d)
j

)
, (5.2)

where x
(d)
i ∈ X(d) is simply the d-th element of input xi and kd(·, ·) is any positive

definite kernel defined over a scalar input space. It can be shown that the positive

definiteness of the individual kd is a necessary and sufficient condition for k(·, ·) to

be a positive kernel over a D-dimensional input space. As a consequence of this

result, most standard covariance functions living on RD are tensor product kernels,

since this is the most intuitive and straightforward way to generalize a kernel (or

set of kernels) defined over scalar inputs to multiple dimensions. Indeed, all the

covariance functions we introduced in Chapter 1 and most of the ones presented in

the standard reference in Rasmussen and Williams [2006] are tensor product kernels.
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For example, for the squared-exponential kernel we may write:

k(xi,xj) = σ2
f exp

(
(x− x′)>Λ(x− x′)

2

)
(5.3)

= σ2
f exp


−

D∑

d=1

(
x

(d)
i − x

(d)
j

)2

2`2
d




=
D∏

d=1

σ
2/D
f exp


−

(
x

(d)
i − x

(d)
j

)2

2`2
d


 . (5.4)

Equation 5.4 indicates that the individual kd are squared-exponential kernels over

scalar inputs with amplitude σ
2/D
f . Despite the abundance of tensor product kernels

in the literature there are several examples which do not fall in this category, includ-

ing dot-product kernels, the neural network kernel and the “factor analysis” kernel

(see Rasmussen and Williams [2006]). Nonetheless, we see that the restriction to

tensor product kernels does not severely restrict the generality of GP priors we can

work with.

The Kronecker Product

It is straightforward to show that a tensor product covariance function evaluated

over a Cartesian grid of input locations will give rise to a covariance matrix that

can be written as a Kronecker product of D smaller covariance matrices which are

each formed by evaluating the axis-aligned kernel kd over the inputs in X(d). This

result is a direct consequence of the definition of the Kronecker product – it is the

generalization of the tensor product to matrices.

Definition 3. If A is an m-by-n matrix and B is a p-by-q matrix, then the Kro-

necker product A⊗B is the mp-by-nq matrix

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 .

More generally,
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Let A = A1 ⊗ · · · ⊗AD =
⊗D

d=1 Ad, where each of the Ad is a Gd-by-Gd matrix.

Then,

A(i, j) = A1(i(1), j(1))A2(i(2), j(2)) . . .AD(i(D), j(D)), (5.5)

• where 0 ≤ i(d), j(d) < Gd and 0 ≤ i < N, 0 ≤ j < N,

• i =
∑D

d=1 G
d
di

(d), and j =
∑D

d=1G
d
dj

(d),

• A is thus a
(∏D

d=1Gd

)
-by-D matrix.

Given that we have ordered the inputs correctly in every matrix involved, Equa-

tion 5.2 implies that for every i, j ∈ {1, . . . , N ≡∏D
d=1 Gd} we can write

K(i, j) = K1(i(1), j(1))K2(i(2), j(2)) . . .KD(i(D), j(D)), (5.6)

where K is the N -byN (noise-free) covariance matrix over our training set which

lives on the Cartesian grid, and Kd is the Gd-by-Gd covariance matrix defined over

the vector of scalar input locations in X(d). Therefore, using Equation 5.5, we arrive

at the result fundamental to the GPR GRID algorithm:

K =
D⊗

d=1

Kd. (5.7)

Properties of the Kronecker Product

Before we can show how the identity in Equation 5.7 leads to a linear-time, linear-

memory GP regression algorithm we list a few of the basic properties of the Kro-

necker product in Equations 5.8 through to 5.15. In these equations, NX gives

the size of the square matrix X, and operator vec(X) corresponds to a column-wise

stacking of the columns of X. We then continue to prove several important theorems

which apply to a covariance matrix for which Equation 5.7 holds.
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Basic properties of the Kronecker Product (for square matrices)

Bilinearity : A⊗ (B + C) = A⊗B + A⊗C (5.8)

Associativity : (A⊗B)⊗C = A⊗ (B⊗C) (5.9)

Mixed-product property : (A⊗B)(C⊗D) = AC⊗BD (5.10)

Inverse : (A⊗B)−1 = A−1 ⊗B−1 (5.11)

Transpose : (A⊗B)> = A> ⊗B> (5.12)

Trace : tr (A⊗B) = tr(A) tr(B) (5.13)

Determinant : det(A⊗B) = (det A)NA (det B)NB (5.14)

Vec : vec(CXB>) = (B⊗C) vec(X) (5.15)

Theorem 5.1. If K =
⊗D

d=1 Kd, then K−1 =
⊗D

d=1 K−1
d .

Proof.

K−1 =

(
D⊗

d=1

Kd

)−1

= K−1
1 ⊗

(
D⊗

d=2

Kd

)−1

[5.11]

...

=
D⊗

d=1

K−1
d .

Theorem 5.2. If Ld is a matrix square-root of Kd such that Kd = LdL
>
d , then

L ≡
D⊗

d=1

Ld, (5.16)

gives the corresponding matrix square-root of K, with K = LL>.
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Proof (By Induction). Trivially true for d = 1. Now assume truth for d = i. i.e.,

i⊗

d=1

LdL
>
d = (L1 ⊗ · · · ⊗ Li) (L1 ⊗ · · · ⊗ Li)

> .

Then,

i+1⊗

d=1

LdL
>
d =

(
i⊗

d=1

LdL
>
d

)
⊗
(
Li+1L

>
i+1

)

=
(

(L1 ⊗ · · · ⊗ Li) (L1 ⊗ · · · ⊗ Li)
>
)
⊗
(
Li+1L

>
i+1

)
[5.16]

= (L1 ⊗ · · · ⊗ Li ⊗ Li+1) (L1 ⊗ · · · ⊗ Li ⊗ Li+1)> . [5.10, 5.12]

A very similar result can be analogously obtained for eigendecompositions :

Theorem 5.3. Let Kd = QdΛdQ>d be the eigendecomposition of Kd. Then the

eigendecomposition of K =
⊗D

d=1 Kd is given by QΛQ> where

Q ≡
D⊗

d=1

Qd, (5.17)

Λ ≡
D⊗

d=1

Λd. (5.18)

Proof. Similar to Proof of Theorem 5.2, noting that

(A⊗B)(C⊗D)(E⊗ F) = (AC⊗BD) (E⊗ F) = ACE⊗BDF.

as a result of the mixed-product property.

Other spectral properties which apply to K include (see 5.13 and 5.14):

tr(K) =
D∏

d=1

tr(Kd), (5.19)

log(det(K)) =
D∑

d=1

Gd log(det(Kd)). (5.20)
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A property in line with that in Equation 5.19 relates the diagonals:

diag(K) =
D⊗

d=1

diag(Kd). (5.21)

Efficient GP Regression using Kronecker Products

Armed with the properties of the Kronecker product described in the previous sec-

tion, we continue our derivation of the GPR GRID algorithm. We first consider the

case where the target vector y contains function values which are not corrupted by

noise, turning the regression problem into one of interpolation. The algorithm for

interpolation is of little practical interest firstly because we rarely have noise-free

data, and secondly because adding a small quantity of “jitter” noise turns out to

be essential to avoid numerical problems. Nevertheless, this algorithm forms the

foundation for the techniques used when we do have noisy data, and is presented in

Algorithm 14.

The kron mvprod and kron mmprod sub-routines

We now outline the details of the kron mvprod ([A1, . . . ,AD],b) call (Algorithm 14,

line 7) where it is possible to evaluate

α =

(
D⊗

d=1

Ad

)
b, (5.22)

in O(N) time and using O(N) memory.

Clearly, computing α using standard matrix-vector multiplication is O(N2) in

runtime and memory, although one can avoid quadratic memory usage by evaluating

each row of
(⊗D

d=1 Ad

)
individually using Equation 5.5. Somewhat surprisingly,

however, it is possible to attain linear runtime using tensor algebra (for an excellent

introduction, see Riley et al. [2006]). A brief introduction to tensor algebra is

provided in Appendix A. The product in 5.22 can be viewed as a tensor product

between the tensor TA
i1,j1,...,iD,jD

representing the outer product over [A1, . . . ,AD],

and TB
jD,...,j1

representing the length-N vector b. Conceptually, the aim is to compute
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Algorithm 14: Gaussian Process Interpolation on Grid

inputs : Data {X ≡ X1 × · · · ×XD,y}, Test locations X?, Covariance
Function [covfunc, dcovfunc ], hypers θ = [σ2

f ; `1 . . . `D]

outputs: Log-marginal likelihood logZ(θ), Derivatives ∂ logZ(θ)
∂θi

, predictive
mean µ? and covariance Σ?

for d← 1 to D do1

Kd ← covfunc(Xd, [σ2
f , `d]); //Evaluate covariance along dim d2

K−1
d ← inv(Kd); //Inverse & determinant3

γd ← log(det(Kd));4

Gd ← size(Kd);5

end6

α← kron mvprod([K−1
1 , . . . ,K−1

D ],y); //See text and Algorithm 157

logZ(θ)← −1
2

(
y>α+

∑D
d=1Gdγd + N

2
log(2π)

)
; //[5.20]8

for i← 1 to length(θ) do9

for d← 1 to D do10
∂Kd

∂θi
← dcovfunc(Xd, [σ2

f , `d], i); //Consistent with 5.2911

δd ← tr(K−1
d

∂K>d
∂θi

);12

end13

κ← kron mvprod([∂K1

∂θi
, . . . , ∂KD

∂θi
],α);14

∂ logZ(θ)
∂θi

← 1
2

(
α>κ−∏D

d=1 δd

)
; //See text15

end16

[KM ,KMN ]← covfunc(X, X?, θ);17

µ? ← KMNα;18

A← kron mmprod([K−1
1 , . . . ,K−1

D ],KNM); //See text19

Σ? ← KM −KMNA;20
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a contraction over the indices j1, . . . , jD, namely:

Tα =
∑

j1

· · ·
∑

jD

TA
i1,j1,...,iD,jD

TB
jD,...,j1

, (5.23)

where Tα is the tensor representing the solution vector α. As the sum in Equation

5.23 is over N elements, it will clearly run in O(N) time! Equivalently, we can

express this operation as a sequence of matrix-tensor products and tensor transpose

operations.

α = vec

((
A1 . . .

(
AD−1

(
ADTB

)>)>
)>)

, (5.24)

where we define matrix-tensor products of the form Z = XT as:

Zi1...iD =

size(T,1)∑

k

Xi1kTki2...iD . (5.25)

The operator > is assumed to perform a cyclic permutation of the indices of a tensor,

namely

Y>iDi1...iD−1
= Yi1...iD . (5.26)

Furthermore, when implementing the expression in Equation 5.24 it is possible to

represent the tensors involved using matrices where the first dimension is retained

and all other dimensions are collapsed into the second. Thus we can represent B

using a Gd-by-
∏

j 6=dGj matrix. Algorithm 15 gives pseudo-code illustrating these

ideas.

kron mmprod ([A1, . . . ,AD],B) =
(⊗D

d=1 Ad

)
B is simply an extension of kron mvprod

where the right-hand-side is an N -by-M matrix instead of a column vector (we per-

form kron mvprod M times). As it runs in O(NM)-time and O(NM)-space it is

limited to cases where M � N .
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Algorithm 15: kron mvprod

inputs : D matrices [A1 . . .AD], length-N vector b

outputs: α, where α =
(⊗D

d=1 Ad

)
b

x← b;1

for d← D to 1 do2

Gd ← size(Kd);3

X← reshape(x, Gd, N/Gd);4

Z← AdX; //Matrix-tensor product using matrices only5

Z← Z>; //Tensor rotation using matrix transpose6

x← vec(Z);7

end8

α← x;9

Derivatives

Recall the standard result for the derivative of the log-marginal likelihood with

respect to each covariance function hyperparameter:

∂ logZ(θ)

∂θi
=

1

2

(
α>

∂K

∂θi
α− tr

(
K−1∂K>

∂θi

))
, (5.27)

where α = K−1y. For many tensor product kernels evaluated on a grid, it is also

possible to write the derivative matrix ∂K
∂θi

in Kronecker product form. As a direct

result of the product rule for derivatives we have:

∂K

∂θi
=

D∑

d=1

∂Kd

∂θi
⊗
(⊗

j 6=d

Kj

)
. (5.28)

Usually, we have that ∂Kd

∂θi
= 0 for d 6= i, as many hyperparameters are specific

to a particular dimension d. Thus, the above simplifies to the following Kronecker

product:

∂K

∂θi
=
∂Ki

∂θi
⊗
(⊗

j 6=i

Kj

)
. (5.29)
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For example, consider the squared-exponential covariance function for which we had:

k(xa,xb) =
D∏

d=1

σ
2/D
f exp


−

(
x

(d)
a − x

(d)
b

)2

2`2
d


 . (5.30)

It can be shown that1 :

∂k(xa,xb)

∂ log(σf )
=

D∏

d=1

21/Dσ
2/D
f exp


−

(
x

(d)
a − x

(d)
b

)2

2`2
d


 , (5.31)

and

∂k(xa,xb)

∂ log(`i)
=

D∏

d=1

σ
2/D
f exp


−

(
x

(d)
a − x

(d)
b

)2

2`2
d







(
x

(d)
a − x

(d)
b

)2

`2
d




δ(i,d)

. (5.32)

Using Equation 5.29, 5.19 and the mixed-product property we can write:

tr

(
K−1∂K>

∂θi

)
= tr

(
K−1
i

∂K>i
∂θi

)∏

j 6=i

tr
(
K−1
j K>j

)
. (5.33)

As we can evaluate the term α> ∂K
∂θi
α efficiently using kron mvprod it is clear that,

given the derivative matrix is such that Equation 5.29 holds, we can compute all

necessary derivatives in linear-time and linear-memory.

Adding Spherical Noise

Although we can write K−1 as a Kronecker product, the same cannot be said for

(K + σ2
nIN)

−1
. This is because (K + σ2

nIN) cannot itself be written as Kronecker

product, due to the perturbation on the main diagonal. Nevertheless, it is possible to

sidestep this problem using the eigendecomposition properties presented in Theorem

5.3. Furthermore, since we can write K = QΛQ>, with Q and Λ given by Equations

5.17 and 5.18 respectively, it is possible to solve the linear system (K + σ2
nIN)

−1
y

1Computing derivatives with respect to the log of the hyperparameter avoids the need to deal
with the hyperparameter positivity constraint.
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using the identity:

(
K + σ2

nIN
)−1

y = Q
(
Λ + σ2

nIN
)−1

Q>y. (5.34)

Algorithm 16 shows how Equation 5.34 is used to perform exact GP regression over

a grid of inputs. On line 8 we use the fact that det(K + σ2
nIN) is the product of the

eigenvalues on the main diagonal of Λ + σ2
n. On lines 12 and 16 we compute the

tricky quantity tr
(

(K + σ2
nIN)

−1 ∂K>

∂θi

)
by appealing to the cyclic property of the

trace operator which maintains that the trace is invariant under cyclic permutations,

i.e., for appropriately-sized matrices A, B, C and D:

tr (ABCD) = tr (DABC) = tr (CDAB) = tr (BCDA) . (5.35)

We can therefore write the following:

tr

((
K + σ2

nIN
)−1 ∂K>

∂θi

)
= tr

(
Q
(
Λ + σ2

nIN
)−1

Q>
∂K>

∂θi

)

= tr

((
Λ + σ2

nIN
)−1

Q>
∂K>

∂θi
Q

)

= diag
((

Λ + σ2
nIN
)−1
)>

diag

(
Q>

∂K>

∂θi
Q

)
,

where the last step is valid because the matrix (Λ + σ2
nIN)

−1
is diagonal. The term

diag
(
Q> ∂K

>

∂θi
Q
)

can be computed in O(N) runtime and O(N) memory using the

property in Equation 5.21 and noting that:

Q>
∂K>

∂θi
Q = Q>i

∂K>i
∂θi

Qi ⊗
(

D⊗

j 6=i

Q>j KjQj

)
, (5.36)

as a result of Equation 5.29.

Algorithm 16 gives pseudo-code of GP regression with spherical noise. It im-

plements exactly the same operations as those given in Algorithm 1, but in O(N)

runtime and space!

139



Algorithm 16: Gaussian Processs Regression on Grid

inputs : Data {X ≡ X1 × · · · ×XD,y}, Test locations X?, Covariance
Function [covfunc, dcovfunc ], hypers θ = [`1 . . . `D;σ2

f ;σ
2
n]

outputs: Log-marginal likelihood logZ(θ), Derivatives ∂ logZ(θ)
∂θi

, predictive
mean µ? and covariance Σ?

for d← 1 to D do1

Kd ← covfunc(Xd, [σ2
f , `d]); //Evaluate covariance along dim d2

[Qd,Λd]← eig(Kd); //Eigendecomposition3

end4

α← kron mvprod([Q>1 , . . . ,Q
>
D],y);5

α← (Λ + σ2
nIN)

−1
α;6

α← kron mvprod([Q1, . . . ,QD],α); //α = K−1y7

logZ(θ)← −1
2

(
y>α+

∑N
i=1 log(Λ(i, i) + σ2

n) + N
2

log(2π)
)

;8

//Derivatives

for i← 1 to length(θ) do9

for d← 1 to D do10
∂Kd

∂θi
← dcovfunc(Xd, [σ2

f , `d], i); //Consistent with Eq. 5.3611

γd ← diag(Q>d
∂K>d
∂θi

Qd);12

end13

γ ←⊗D
d=1 γd;14

κ← kron mvprod([∂K1

∂θi
, . . . , ∂KD

∂θi
],α);15

∂ logZ(θ)
∂θi

← 1
2
α>κ− 1

2
sum((Λ + σ2

nIN)
−1
γ);16

end17

//Test set predictions

[KM ,KMN ]← covfunc(X, X?, θ);18

µ? ← KMNα;19

A← kron mmprod([Q>1 , . . . ,Q
>
D],KNM);20

A← (Λ + σ2
nIN)

−1
A;21

A← kron mmprod([Q1, . . . ,QD])A;22

Σ? ← KM −KMNA;23
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5.3 Results

5.3.1 Runtimes

Figure 5.1 illustrates the magnitude of improvement in runtime obtained by exploit-

ing the structure present in a covariance matrix that can be written as a Kronecker

product. The runtime of Algorithm 16 for N greater than a million points is much

less than the runtime of Algorithm 1 for N = 4096! These runtimes were obtained

by running both these algorithms for a fixed set of hyperparameters given by set-

ting all the lengthscales and the signal amplitude to 1 and the noise variance to

0.01. The input locations were given by [−1, 1]D, thus N = 2D. The noise-free

function values were synthetically generated by using the kron mvprod routine with

{L1, . . . , LD} and an N -vector of standard Gaussian random variables, where Ld is

the (2-by-2) Cholesky factor of the axis-aligned covariance matrix for dimension d

(recall Theorem 5.2). These draws were then corrupted by adding IID Gaussian

noise. The hyperparameters used for synthetic data generation were set to be equal

to the hyperparameters used for runtime calculations.
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Improvement in runtime by means of exploiting Kronecker structure

Figure 5.1: Runtimes of Algorithm 1 (in red) and Algorithm 16 (in black) for
N = [28, 29, . . . , 220]. The slope for Algorithm 1 is 2.6 and that of Algorithm 16 is 0.97.
This empirically verifies the improvement to linear scaling.

141



5.3.2 Example Application: Record Linkage Dataset

An excellent example of a dataset where the inputs lie on a Cartesian grid is given

by the Record Linkage Dataset, which can be found at: http://archive.ics.

uci.edu/ml/datasets/Record+Linkage+Comparison+Patterns. This dataset, in-

troduced in Sariyar et al. [2011], consists of 5,749,132 record pairs of which 20,931

are matches, i.e. they are two separate records belonging to the same person. Each

record pair is described by a set of features encoding phonetic equality of typical per-

sonal data, such as first name, family name, date of birth, gender and so on. These

give rise to 11 features of which 9 are predictive of a match. Of these 9 features,

2 features are rarely present, so we only consider the 7 features which are rarely

missing. Crucially, these features are usually very coarsely discretized. The feature

corresponding to a match of the first names takes 54 unique values and the one cor-

responding to a match of family names takes 101 unique values. All other features

are binary where 0 indicates complete mismatch and 1 indicates a full match. This

gives a total grid size of 174,528. As the number of examples is far greater than

the grid size it is obvious that many targets are observed for individual inputs. As

a result, we can convert the original binary classification problem into a regression

problem with input-dependent noise. For each grid location xg we can construct

the corresponding target and noise variance using a Beta-Bernoulli hierarchy with

a Beta(1,1) prior, i.e.:

y(xg) =
#p+ 1

#p+ #n+ 2
, (5.37)

σ2
n(xg) =

(#p#n)

(((#p+ #n)2)(#p+ #n+ 1))
, (5.38)

where #p and #n are the number of positive and negative examples falling into bin

xg.

Adding Diagonal Noise

Dealing with non-spherical noise poses a significant challenge to GPR on a grid,

since the effect of diagonal noise components on the eigendecomposition of the kernel
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matrix is highly non-trivial1, unlike the case of adding spherical noise which simply

adds a constant to all eigenvalues and leaves eigenvectors unaltered. In fact, it

is likely to add another factor of N to the runtime. Note, however, that for the

purposes of this example application, the majority of elements of the noise vector

(given by Equation 5.38) will correspond to a grid location with no observations,

and therefore to a fixed (indeed, maximal) value. Therefore, it is sensible to first

run Algorithm 16 with spherical noise set to the maximal noise variance and then

correct for the entries with at least one observation. Notice that we would like to

be able to solve the following linear system:

(
Q(Λ + max(σ2

n(·))IN)Q> +
∑

i∈C

ρieie
>
i

)
α = y, (5.39)

where C is the set of indices to be corrected, ei is the ith unit vector, and, by

definition, ρi < 0. This can be accomplished by initialising α to be the solution of

the spherical noise system, i.e.,

α← Q(Λ + max(σ2
n(·))IN)−1Q>︸ ︷︷ ︸

≡K−1

y, (5.40)

and updating it in light of each correction, as follows (see Press et al. [2007] for a

derivation):

α← α− e>i α

1 + ρie>i K−1ei
K−1ei. (5.41)

In a similar fashion we can compute the log-determinant λ of the matrix in Equation

5.39 by first assigning:

λ← log(det(K)), (5.42)

and updating it for each correction, using:

λ← λ+ log
(
1 + ρie

>
i K−1ei

)
. (5.43)

Using both the solution vector α and λ we can compute the marginal likelihood.

Every diagonal correction adds O(N) computation to the load, as is evident from

1In fact, this is an open research question, see Knutson and Tao [2000]
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Equation 5.41. Fortunately, in a 7-dimensional space most input locations on the

grid will not be observed, thus |C| � N and the overall runtime complexity will

still be closer to linear than it is to quadratic. For example, in this particular

application |C| = 12, 186. One could solve the system in Equation 5.39 using the

conjugate gradients algorithm also, however, since the size of this linear system is

so large, it is typical to find that more iterations of conjugate gradients (each with

O(N) computation) is necessary to achieve the same accuracy as the correction-

based approach.

Note that the computation of the derivatives of the marginal likelihood is also

complicated by the addition of diagonal noise. For this particular dataset we will

perform hyperparameter learning by constraining the lengthscales in each dimen-

sion to be equal and doing a grid search over the singleton lengthscale and signal

amplitude parameters.

Performance Comparison

The Record Linkage dataset is so large that it is not possible to run many of the

standard algorithms one would ordinarily run to perform comparisons, including

the SVM, the IVM and SPGP (these were used extensively in Chapter 4). Even

fitting the additive GP classifier of Chapter 4 proved troublesome – although certain

changes to the code can be made to improve efficiency in this case.

As can be seen in Table 5.1, we have compared the algorithm described above

(referred to as GPR GRID) to logistic regression and to simple histogramming, which

uses the targets in Equation 5.37 directly to make predictions for unseen points

(which will land in the same set of grid locations). Thus, we would expect the

GPR GRID algorithm to perform better than Histogram, as it predicts in exactly the

same way, except that it additionally smoothes the targets. We have also compared

the performance of the nearest-neighbour algorithm. Note that, without the use of

kd-trees (see Bentley [1975]), we would not be able to run nearest-neighbours in a

reasonable amount of time.

For all these methods we train on a randomised 80% subset of the full dataset

and compute the test error and MNLP (see Chapter 4) on the remaining 20%.
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Table 5.1: Performance on the very large Record Linkage dataset. The runtime for

GPR GRID does not include the time it took to perform the grid search to find the optimal

hyperparameters. These were found to be log(`) = −2, log(σf ) = 0. The timing is for the

hyperparameters set to these values. The size of the dataset becomes apparent from the

runtime of the simple nearest neighbour algorithm, implemented efficiently using kd-trees.

Algorithm Error Rate MNLL Runtime (s)

Histogram 5.327× 10−4 −17.4 2
Logistic Regression 0.148× 10−4 −21.6 9
GPR GRID 0.0889× 10−4 −23.1 246
Nearest Neighbour 0.122× 10−4 N/A 24,252
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Chapter 6

Conclusions

A number of noteworthy conclusions can be drawn from the findings in this thesis.

Firstly, it is reasonable to expect that most real-world scalar GP regression

tasks can be tackled using the techniques in chapter 2, perhaps in conjunction with

Toeplitz matrix methods. Thus, one should no longer assume that generalised GP

regression over a scalar input space suffers from the same complexity as the generic

GP regression algorithm. Indeed, this can be viewed as one of the central mes-

sages this thesis has attempted to convey. The fact that inference and learning can

be achieved so efficiently unlocks the potential for many exciting extensions. For

example, we have only considered generalised regression where the likelihood has

been assumed to factorise across the observations. There are many applications

where a more complex likelihood would be appropriate, an example being infer-

ence for the Cox process where we model the underlying rate function with a GP.

The Cox process, or doubly-stochastic Poisson process was first introduced in Cox

[1955]. Inference for such a model was studied extensively in Adams [2009], where

the runtime complexity is cubic in N , per MCMC iteration. We conjecture that

chapter 2 can form the foundation of alternative techniques which scale better in

the frequently-encountered case where time is the only input dimension. Another

exciting avenue is inference and learning for (temporal) Markov processes which are

non-Gaussian. Recall that when running EP on Gauss-Markov processes, the for-

ward and backward messages did not require a projection. This would not be the

case for Markov processes, which therefore pose an interesting challenge to the EP

algorithm. Approximate inference based on variational methods for Markov pro-
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cesses has already been studied in Archambeau et al. [2008] and Archambeau and

Opper [2011]. Chapter 2 provides a solid foundation for construction of scalable

alternatives to these techniques. Another useful extension involves the use of the

state-space model representation of GPs for the purpose of improving the efficiency

of algorithms which tackle the case where there are multiple temporal latent GPs

giving rise to multivariate targets. This is the subject of many methods including,

but not limited to, sets of dependent temporal GPs Boyle and Frean [2005], latent

force models Alvarez et al. [2009] and the (temporal) semiparametric latent factor

model Teh et al. [2005].

In chapter 3 we saw how to exploit nonstationarity in a sequential data stream

for the purposes improving predictive accuracy and runtime. The improvement in

runtime will usually become apparent only in the case where we cannot represent

the underlying GP kernel as a SSM, and inputs are continuous. In contrast, im-

provements in predictive accuracy are generally to be expected, especially if it is

known, a priori, that the time series does indeed exhibit nonstationarity. We re-

stricted attention to online inference and prediction, so an obvious extension is to

consider the case where we do not need an online technique and extend the basic

BOCPD algorithm so that we can perform smoothing in addition to filtering, in

order to calculate the exact posterior runlength distribution, in a manner similar

to Chib [1998]. Another interesting extension would be to combine the methods

of chapter 3 with those of chapter 4 to construct an additive GP model which is

naturally formed of independent additive models in different partitions of the D-

dimensional input space. Indeed, this approach would have similarities to that in

Gramacy [2005], albeit where the GP prior is assumed to be additive.

The main message of chapter 4 is that one of the simplest ways to extend the

efficiency of a scalar GP method to higher dimensional input spaces, is through the

additivity assumption. As long as we are summing a set of scalar GPs, irrespective

of whether we use the original inputs or features derived from these inputs, we can

expect to see significant computational savings. From a modelling perspective, the

most interesting algorithm presented in this chapter is projection-pursuit GP regres-

sion, as it can be seen as a feed-forward neural network (see Bishop [2007]) where

each activation function is a scalar GP! Chapter 4 presented a greedy algorithm

for learning network weights and the GP-based activation functions in O(N logN)
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runtime and O(N) space, which is impressively efficient for such a flexible model. Of

course, this begs the question of whether there are better (non-greedy) ways to op-

timise the PPGPR model, perhaps similar in spirit to the original backpropagation

algorithm of Rumelhart et al. [1986]. In addition, for PPGPR to be more widely

used, it is crucial to be able to extend it to handle non-Gaussian likelihoods. Thus,

another interesting extension would involve attempts to combine it with approximate

inference techniques such as EP or Laplace’s approximation. Note that we actually

derived the additive GP classification algorithm by means of the Laplace approxima-

tion. For the purposes of classication there is consensus (see Nickisch and Rasmussen

[2008]) that EP gives superior performance. However, the EP updates required for

the additive GP can be shown to be intractable due to the coupling between the

univariate functions induced by observing the targets. It would, nonetheless, be

interesting to see if EP itself can be adapted to produce an alternative framework

for generalised additive GP regression. Finally, note that the additivity assumption

may not be the only way to extend efficiency to the case where we have multivariate

inputs. A promising alternative may involve the use of space-time Gauss-Markov

processes, for which inference may be performed using stochastic PDEs. Whether

or not this results in improved efficiency is an open problem, and is introduced in

Särkkä [2011].

The final chapter demonstrates the rather surprising result that GPs defined

on multidimensional grids are actually easy to handle computationally! The main

caveat is that the grid blows up in size as D increases, thus constraining applications

to live over lower-dimensional inputs spaces. The first way to sidestep this problem

is to study the case where inputs live on a “subgrid”. As of writing, no efficient

algorithm is known for GP regression on subgrids. Thus, this can be viewed as an

interesting open problem. The second way is to assume that we have low-dimensional

latent pseudo-inputs and run a GP model efficiently using these inputs instead.

Recall from Snelson and Ghahramani [2006] that we can integrate out the pseudo-

targets associated with these inputs, and optimise the grid locations with respect to

the marginal likelihood.
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Appendix A

Mathematical Background

A.1 Matrix Identities

Here, we list some specific matrix identities which are used frequently in this thesis

and which may not appear in any standard linear algebra text book.

• Let P be a square matrix of size N and R be a square matrix of size M . Then,

(
P−1 + B>R−1B

)−1
B>R−1 = PB>

(
BPB> + R

)−1
, (A.1)

where B is M ×N . In the special case where M = N and B = IN , we obtain:

(
P−1 + R−1

)−1
R−1 = P (P + R)−1 . (A.2)

• Another useful identity is the Woodbury formula, which holds for arbitrary

matrices A,U,W,V of appropriate sizes:

(
A + UWV>

)−1
= A−1 −A−1U

(
W−1 + V>A−1U

)−1
VA−1. (A.3)

This comes in handy if A is easy to invert, and (W−1 + V>A−1U) is much

smaller than the matrix on the left-hand-side. It is also useful if we already

know A−1 and would like to compute the inverse of a low-rank update to A

efficiently.
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• The Woodbury formula has an analogue for determinants, namely:

det
(
A + UWV>

)
= det(W−1 + V>A−1U) det(W) det(A). (A.4)

• Blockwise matrix inversion can be performed analytically:

[
A B

C D

]−1

=

[
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
.

(A.5)

for appropriately size matrices A,B,C and D. Note that A and D need to

be square matrices for this identity to be valid. This is useful when we have

already computed A−1, and would like to know the inverse of the same matrix

but with a couple of rows/columns added in. This situation arises for the

online GP where we keep on adding new rows (and associated columns) to the

kernel matrix, and require its inverse for next-step predictions. In practice, it

is necessary to avoid explicity computing the inverse (due to high numerical

instability), and instead work with “rank-one updates” of solution vectors of

the form K−1y and with Cholesky decompositions.

• Using Equation A.5, we can derive the rank-one update equation for GP ker-

nels:

K−1
N+1 ≡

[
KN k?

k>? k?,?

]−1

=

[
K−1
N + η−1vv> −η−1v

−η−1v> η−1

]
, (A.6)

where η ≡ k?,? − k>? K−1
N k? and v ≡ K−1

N k?. Thus, given that we already

have computed the solution αN ≡ K−1
N yN , αN+1 can be computed straight-

forwardly using:

αN+1 =

[
αN + η−1

[(
v>yN − yN+1

)
v
]

η−1
[
yN+1 − v>yN

]
]
. (A.7)

Given LN is the lower Cholesky factor of KN , the lower Cholesky factor of

KN+1 is given by:

LN+1 =

[
LN 0

t τ

]
, (A.8)
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where t ≡ L−1
N k?, and τ ≡

(
k?,? − t>t

)1/2
.

• An analogue of Equation A.5 also exists for determinants:

det

(
A B

C D

)
= det(A) det(D−CA−1B). (A.9)

In particular, for the rank-one updates used by the online GP, we have:

det

(
KN k?

k>? k?,?

)
= det(KN) det(k?,? − k>? K−1

N k?). (A.10)

A.2 Gaussian Identities

A.2.1 Marginalisation and Conditioning

Let

p

([
x

y

])
= N

([
µx

µy

]
,

[
Σx,x Σx,y

Σy,x Σy,y

])
, (A.11)

where the cross-covariance term is symmetric, i.e., Σy,x = Σ>x,y. Then, the marginals

of this joint Gaussian distribution are (trivially) given by:

∫
p(x,y)dy ≡ p(x) = N (µx,Σx,x), (A.12)

∫
p(x,y)dx ≡ p(y) = N (µy,Σy,y). (A.13)

The conditionals are also Gaussian:

p(x|y) = N
(
µx + Σx,yΣ−1

y,y

(
y − µy

)
,Σx,x −Σx,yΣ−1

y,yΣy,x

)
, (A.14)

p(y|x) = N
(
µy + Σy,xΣ

−1
x,x (x− µx) ,Σy,y −Σy,xΣ

−1
x,xΣx,y

)
. (A.15)

Equations A.11 through to A.15 provide all one needs to know in order to per-

form inference in any linear-Gaussian model. Such models are abundant in machine

learning, ranging from Bayesian linear regression to inference in linear dynamical
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systems and probabilistic principal components analysis. In particular, x are as-

sumed to represent latent variables (or parameters) and y the observed variables

under the following generative model:

p(x) = N (µ,Σ), (A.16)

p(y|x) = N (Ax + b,N). (A.17)

Thus, for this case, Equation A.11 becomes:

p

([
x

y

])
= N

([
µ

Aµ+ b

]
,

[
Σ ΣA>

AΣ N + AΣA>

])
, (A.18)

from which we can straightforwardly derive the posterior p(x|y) and marginal like-

lihood terms p(y), using Equations A.13 and A.14. These form the key quantities

for Bayesian inference and learning as applied to the linear-Gaussian model.

A.2.2 Multiplication and Division

The multiplication and division of multivariate Gaussian factors of the same di-

mensionality D is central to approximate inference algorithms such as EP. The

multiplication of two Gaussian factors results in another, unnormalised Gaussian.

This can be easily seen as a result of “completing the square” in the exponent of

the product of Gaussians.

N (a,A)N (b,B) ∝ N (c,C), (A.19)

where

C =
(
A−1 + B−1

)−1
, (A.20)

c = CA−1a + CB−1b. (A.21)

The normalisation constant Z of the left-hand-side of Equation A.19 can be derived

by calculating the constant required to equate both sides. It can further be shown
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that it is a Gaussian function of either a or b:

Z = (2π)−D/2|C|+1/2|A|−1/2|B|−1/2 exp

[
−1

2

(
a>A−1a + b>B−1b− c>C−1c

)]
.

(A.22)

The division of a two Gaussian factors also results in an unnormalised Gaussian,

given that the resulting covariance is positive definite. Note that the division of two

Gaussians may result in a “Gaussian” function with negative-definite covariance.

N (a,A)

N (b,B)
∝ N (c,C), (A.23)

where

C =
(
A−1 −B−1

)−1
, (A.24)

c = CA−1a−CB−1b. (A.25)

The normalisation constant of the left-hand-side is given by:

Z = (2π)+D/2|C|+1/2|A|−1/2|B|+1/2 exp

[
−1

2

(
a>A−1a− b>B−1b− c>C−1c

)]
.

(A.26)

A.2.3 Gaussian Expectation Propagation

In this thesis, we are only concerned with EP approximations which are fully-

factorised and Gaussian. For this particular version of EP, the central factor update

equation, given in Equation 2.73 and reiterated below, is implemented using only

Gaussian multiplications, divisions and projections.
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∀k ∈ ne(φi) (A.27)

φ̃new
ik (zk) ∝

proj




∝N (zk;µcav,Vcav)︷ ︸︸ ︷∏

j∈ne(zk)
j 6=i

φ̃old
jk (zk)

≡f(zk)︷ ︸︸ ︷∫

Z¬k

φi(Zne(φi))
∏

`∈ne(Z¬k)

∏

m∈¬k

φ̃old
`m(zm) dZ¬k




∏

j∈ne(zk)
j 6=i

φ̃old
jk (zk)

︸ ︷︷ ︸
∝N (zk;µcav,Vcav)

.

The “cavity distribution”, given by N (zk;µcav,Vcav) can be computed by multiply-

ing all the constituent Gaussians using Equations A.20 and A.21, and normalising

the result. As one usually maintains the (approximated) marginals over zk, i.e.,∏
j∈ne(zk) φ̃

old
jk (zk), the cavity distribution can also be computed via dividing the

marginal by φ̃old
ik (zk), using Equations A.24 and A.25 (and normalising). For most

applications of EP, it should be possible to find an analytic expression for f(zk).

This term, will, more often than not, be a non-Gaussian function of zk. The proj[·]
operator dictates that we find the mean, µproj, and covariance, Vproj, of zk, for the

product of factors given as an argument. As shown in Minka [2001] and Seeger

[2005], general formulae exist for computing these quantities, provided that we can

compute:

Zproj(µcav,Vcav) ≡
∫ ∏

j∈ne(zk)
j 6=i

φ̃old
jk (zk)f(zk)dzk. (A.28)

with

µproj = µcav + Vcav

[
∇µcav

logZproj

]
, (A.29)

Vproj = Vcav −Vcav

[(
∇µcav

∇>µcav
− 2∇Vcav

)
logZproj

]
. (A.30)

Finally, the new (normalised) factor φ̃new
ik (zk) is computed using the identity:

φ̃new
ik (zk) = Zproj

N (µproj,Vproj)∏
j∈ne(zk)
j 6=i

φ̃old
jk (zk)

. (A.31)
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A.3 Tensor Algebra

In this section, we will use the term “tensor” loosely to mean any object whose

components are indexed using M indices. M will be referred to as the order of

the tensor. We will present the basics of tensor algebra in a manner similar to the

introduction in Riley et al. [2006].

• The outer product of a tensor Qi1,...,iM of order M and that of a tensor Rj1,...,jN

of order N is another tensor of order M +N , with entries given by:

Pi1,...,iM ,j1,...,jN = Qi1,...,iMRj1,...,jN . (A.32)

• The process of contraction is the generalisation of the trace operation to ten-

sors. The same index is used for two subscripts and we sum over this index.

An example contraction over the first two indices of a tensor Q is shown below:

Ci3,...,iM =
∑

i

Qi,i,i3,...,iM . (A.33)

Notice that a contraction over a tensor of order M produces a tensor of order

M − 2.

• A tensor product over indices ik and jl for two tensorsQi1,...,ik,...,iM andRj1,...,jl,...,jN

can be performed by forming the outer product of Q and R followed by a con-

traction over indices ik and jl. This means that a tensor product of a vector

of order M and one of order N is another tensor of order M +N − 2.

Pi1,...,iM−1,j1,...,jN−1
=
∑

c

Qi1,...,c,...,iMRj1,...,c,...,jN . (A.34)

As a simple example, one can view the matrix vector product

Aijxj = bi, (A.35)

as the contraction of the third order tensor Qijk (over j and k) formed by the

outer product of A and b.
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Appendix B

MATLAB Code Snippets

We present MATLAB code snippets for routines which are hard to present as pseudo-

code, as has been the usual protocol:

• The likfunc routine in Algorithm 4, Line 10, which implements Equation

2.73 for targets which are binary labels (yi ∈ {−1,+1}).

function [mu, var] = likfunc(y, mu c, var c)

The cavity mean and variance are given by mu c and var c respectively. The

target for which we want to compute the continuous pseudo-target mu and the

pseudo-noise var is represented as y. Note that we do not have to compute the

normalising constant, as it is handled rather naturally as part of the Kalman

filtering pass.

• The ppgpr 1D routine in Algorithm 12, Line 6. It has the interface:

function [nlml, dnlml] = pp gpr 1d(phi, stfunc, X, y)

phi includes the projection weights wm and the scalar GP hyperparameters

θm. stfunc computes the state-transition matrices for the underlying Kalman

filter. The purpose of this routine is to compute the marginal likelihood of the

GP placed on the training set {w>mX,y}, and its derivatives w.r.t. wm and
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θm efficiently using Kalman filtering. The variable names used in the code

are consistent with the names used in Chapter 2. The derivatives labelled

with the suffixes dl, ds, dn and dW correspond to derivatives w.r.t. the

hyperparameters {λ, σ2
f , σ

2
n} and wm respectively.

• We also present the script that uses the MATLAB Symbolic Math Toolbox

to generate analytic expressions for the Φ and Q matrices (see chapter 2) for

Matérn(ν), for any ν. This script uses p ≡ ν − 1/2.
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function [mu, var] = likfunc(y, mu c, var c)

%Implementation of likfunc for the probit likelihood...

%Form product between cavity and non−Gaussian factor

z = (y*mu c)/sqrt(1 + var c);

mu proj = mu c + ...

(y*var c*std normal(z))/(Phi(z)*sqrt(1 + var c));

aa = (var cˆ2*std normal(z))/((1 + var c)*Phi(z));

bb = z + std normal(z)/Phi(z);

var proj = var c − aa*bb;

%Divide the product by the cavity

var = 1/(1/var proj − 1/var c);

mu = var*(mu proj/var proj − mu c/var c);

function n = std normal(x)

n = (1/(sqrt(2*pi)))*exp(−0.5*x*x);

function phi = Phi(x)

phi = 0.5*erfc(−x/sqrt(2));

158



function [nlml, dnlml] = pp gpr 1d(phi, stfunc, X, y)

%...INITIALIZATION OF ALL NECESSARY VARIABLES BEFORE FILTERING LOOP

%FORWARD PASS : sufficient to compute marginal likelihood and derivatives...

for i = 2:T

[Phi, Q, deriv] = feval(stfunc, lambda, signal var, wgt, X(i,:)', X(i−1,:)');
P = Phi*V*Phi' + Q;

PhiMu = Phi*mu;

pm = PhiMu(1);

pv = P(1,1) + noise var;

dP dl = Phi*V*deriv.dPhidlambda' + (Phi*dV dl + deriv.dPhidlambda*V)*Phi' + ...

deriv.dQdlambda;

dP ds = Phi*dV ds*Phi' + deriv.dQdSigvar; dP dn = Phi*dV dn*Phi';

for d = 1:D

dP dW(:,:,d) = Phi*V*deriv.dPhidW(:,:,d)' + ...

(Phi*dV dW(:,:,d) + deriv.dPhidW(:,:,d)*V)*Phi' + deriv.dQdW(:,:,d);

end

dPhiMu dl = deriv.dPhidlambda*mu + Phi*dmu dl;

dPhiMu ds = Phi*dmu ds; dPhiMu dn = Phi*dmu dn;

for d = 1:D

dPhiMu dW(:,d) = deriv.dPhidW(:,:,d)*mu + Phi*dmu dW(:,d);

end

dpm dl = dPhiMu dl(1); dpm ds = dPhiMu ds(1);

dpm dn = dPhiMu dn(1); dpm dW = dPhiMu dW(1,:)';

dpv dl = dP dl(1,1); dpv ds = dP ds(1,1);

dpv dn = dP dn(1,1) + 1; dpv dW = squeeze(dP dW(1,1,:));

nlml = nlml + 0.5*(log(2*pi) + log(pv) + ((y(i) − pm)ˆ2)/pv);

dnlml dpv = 0.5*(1/pv − ((y(i) − pm)ˆ2)/(pv*pv));

dnlml dpm = −0.5*(2*(y(i) − pm)/pv);

dnlml dl = dnlml dl + dnlml dpv*dpv dl + dnlml dpm*dpm dl;

dnlml ds = dnlml ds + dnlml dpv*dpv ds + dnlml dpm*dpm ds;

dnlml dn = dnlml dn + dnlml dpv*dpv dn + dnlml dpm*dpm dn;

dnlml dW = dnlml dW + dnlml dpv*dpv dW + dnlml dpm*dpm dW;

kalman gain = (P*H')/pv;

dg dl = (pv*(dP dl*H') − dpv dl*(P*H'))/(pv*pv);

dg ds = (pv*(dP ds*H') − dpv ds*(P*H'))/(pv*pv);

dg dn = (pv*(dP dn*H') − dpv dn*(P*H'))/(pv*pv);

for d = 1:D

dg dW(:,d) = (pv*(dP dW(:,:,d)*H') − dpv dW(d)*(P*H'))/(pv*pv);

end

mu = PhiMu + kalman gain*(y(i) − pm);

dmu dl = dPhiMu dl + dg dl*(y(i) − pm) − kalman gain*dpm dl;

dmu ds = dPhiMu ds + dg ds*(y(i) − pm) − kalman gain*dpm ds;

dmu dn = dPhiMu dn + dg dn*(y(i) − pm) − kalman gain*dpm dn;
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for d = 1:D

dmu dW(:,d) = dPhiMu dW(:,d) + dg dW(:,d)*(y(i) − pm) − kalman gain*dpm dW(d);

end

V = (eye(p) − kalman gain*H)*P;

dV dl = dP dl − ((kalman gain*H)*dP dl + (dg dl*H)*P);

dV ds = dP ds − ((kalman gain*H)*dP ds + (dg ds*H)*P);

dV dn = dP dn − ((kalman gain*H)*dP dn + (dg dn*H)*P);

for d = 1:D

dV dW(:,:,d) = dP dW(:,:,d) − ((kalman gain*H)*dP dW(:,:,d) + (dg dW(:,d)*H)*P);

end

end

dnlml = [dnlml dW; −lambda*dnlml dl; 2*signal var*dnlml ds; 2*noise var*dnlml dn];
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function [Phi, Q, derivs] = get Phi Q matern(p)

%Construct analytic expressions for SSM transition matrices ...

using Symbolic toolbox!

lambda = sym('lambda', 'positive');

t = sym('t', 'positive');

syms s;

for i = 1:p

M(i,i) = s;

M(i,i+1) = −1;
end

M(p+1,p+1) = s;

poly str = char(expand((lambda + 1)ˆ(p+1)));

idx = findstr('+', poly str);

idx = [0, idx];

for i = 1:length(idx)−1
N(p+1,i) = sym(poly str(idx(i)+1:idx(i+1)−1));

end

B = M + N;

expA = ilaplace(inv(B));

Phi = simplify(expA);

Outer = Phi(: ,end)*Phi(: ,end)';

delta = sym('delta', 'positive');

Q = int(Outer, t, 0, delta);

simplify(Q);

%also return derivs w.r.t. lambda & delta

if nargout > 2

derivs.dQ dl = diff(Q, lambda);

derivs.dPhi dl = diff(Phi, lambda);

derivs.dQ dd = diff(Q, delta);

derivs.dPhi dd = diff(Phi, t);

end
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Hastie, T. and Tibshirani, R. (1998). Bayesian backfitting. Statistical Science,
15:193–223. 82

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical
learning: data mining, inference, and prediction. New York: Springer-Verlag,
Second edition. i, 31, 72, 73

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models. London:
Chapman & Hall. 72, 73, 76, 80

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge Univer-
sity Press. 4

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME — Journal of Basic Engineering, 82(Series D):35–45.
22, 24, 41

Karklin, Y. and Lewicki, M. (2005). A hierarchical Bayesian model for learning
nonlinear statistical regularities in nonstationary natural signals. Neural Compu-
tation, 17(2):397–423. 20

Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline
functions. Journal of Mathematical Analysis and Applications, 33(1):82–95. 33

Knutson, A. and Tao, T. (2000). Honeycombs and sums of Hermitian matrices. 143

Kreyszig, E. (1989). Introductory Functional Analysis with Applications. John Wiley
& Sons, First edition. 32

Kuss, M. and Rasmussen, C. (2005). Assessing approximate inference for binary
Gaussian process classification. The Journal of Machine Learning Research,
6:1679–1704. 46

Lawrence, N. D., Seeger, M., and Herbrich, R. (2003). Fast sparse Gaussian process
methods: the informative vector machine. In Advances in Neural Information
Processing Systems 17, pages 625–632, Cambridge, MA, USA. The MIT Press.
18, 115

165



REFERENCES

Lázaro-Gredilla, M. (2010). Sparse Gaussian Processes for Large-Scale Machine
Learning. PhD thesis, Universidad Carlos III de Madrid, Madrid, Spain. 17, 108

MacKay, D. J. (2003). Information Theory, Inference, and Learning Algorithms.
Cambridge University Press. i, 81

Minka, T. (2001). A family of algorithms for approximate Bayesian inference. Phd
thesis, MIT. 14, 45, 47, 115, 154

Minka, T. (2005). Divergence measures and message passing. Technical report,
Microsoft Research. 92

Murray, I. and Adams, R. P. (2010). Slice sampling covariance hyperparameters of
latent Gaussian models. In Lafferty, J., Williams, C. K. I., Zemel, R., Shawe-
Taylor, J., and Culotta, A., editors, Advances in Neural Information Processing
Systems 23, pages 1723–1731. 4

Naish-Guzman, A. and Holden, S. (2007). The generalized FITC approximation.
In Advances in Neural Information Processing Systems 21, pages 534–542, Cam-
bridge, MA, USA. The MIT Press. 18

Navone, H., Granitto, P., and Verdes, P. (2001). A Learning Algorithm for Neural
Network Ensembles. Journal of Artificial Intelligence, 5(12):70–74. 108

Neal, R. (1993). Probabilistic inference using markov chain monte carlo methods.
Technical report, University of Toronto. 81

Nickisch, H. and Rasmussen, C. E. (2008). Approximations for binary gaussian
process classification. Journal of Machine Learning Research, 9:2035–2078. 14,
45, 148

Oh, S., Rehg, J., Balch, T., and Dellaert, F. (2008). Learning and inferring motion
patterns using parametric segmental switching linear dynamic systems. Interna-
tional Journal of Computer Vision, 77(1):103–124. 69

O’Hagan, A. and Forster, J. (1994). Kendall’s Advanced Theory of Statistics: Vol-
ume 2B; Bayesian Inference. Halsted Press. 4

O’Hagan, A. and Kingman, J. F. C. (1978). Curve Fitting and Optimal Design for
Prediction. Journal of the Royal Statistical Society. Series B (Methodological),
40(1):1–42. 128

Oppenheim, A., Willsky, A., and Young, I. (1996). Signals and Systems. Prentice-
Hall Upper Saddle River, NJ, Second edition. 25

166



REFERENCES
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