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Abstract

Directed acyclic graphs (DAGs) have been widely used as a representation of conditional indepen-
dence in machine learning and statistics. Moreover, hiddenor latent variables are often an important
component of graphical models. However, DAG models suffer from an important limitation: the
family of DAGs is not closed under marginalization of hiddenvariables. This means that in general
we cannot use a DAG to represent the independencies over a subset of variables in a larger DAG.
Directed mixed graphs (DMGs) are a representation that includes DAGs as a special case, and
overcomes this limitation. This paper introduces algorithms for performing Bayesian inference in
Gaussian and probit DMG models. An important requirement for inference is the specification of
the distribution over parameters of the models. We introduce a new distribution for covariance ma-
trices of Gaussian DMGs. We discuss and illustrate how several Bayesian machine learning tasks
can benefit from the principle presented here: the power to model dependencies that are generated
from hidden variables, but without necessarily modeling such variables explicitly.

Keywords: graphical models, structural equation models, Bayesian inference, Markov chain
Monte Carlo, latent variable models

1. Contribution

The introduction of graphical models (Pearl, 1988; Lauritzen, 1996; Jordan, 1998) changed the way
multivariate statistical inference is performed. Graphical models provide a suitable language to
decompose many complex real-world processes through conditional independence constraints.

Different families of independence models exist. The directed acyclic graph (DAG) family is
a particularly powerful representation. Besides providing a language for encoding causal state-
ments (Spirtes et al., 2000; Pearl, 2000), it is in a more general sense a family that allows for
non-monotonic independence constraints: that is, models where some independencies can be de-
stroyed by conditioning on new information (also known as the “explaining away” effect — Pearl,
1988), a feature to be expected in many real problems.
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Figure 1: Consider the DAG in (a). Suppose we want to represent the marginal dependencies and
independencies that result after marginalizing outY6. The simplest resulting DAG (i.e.,
the one with fewest edges) is depicted in (b). However, notice that this graph does not
encode some of the independencies of the original model. For instance,Y3 andY4 are
no longer marginally independent in the modified DAGs. A different family of graphical
models, encoded with more than one type of edge (directed andbi-directed), is the focus
of this paper. The graph in (c) depicts the solution using this “mixed” representation.

However, DAG independence models have an undesirable feature: theyare not closed under
marginalization, as we will illustrate. Consider the regression problem wherewe want to learn the
effect of a cocktail of two drugs for blood pressure, while controlling for a chemotherapy treatment
of liver cancer. We refer toY1, Y2 as the dosage for the blood pressure drugs,Y3 as a measure of
chemotherapy dosage,Y4 as blood pressure, andY5 as an indicator of liver status. Moreover, letY6

be an hidden physiological factor that affects both blood pressure andliver status. It is assumed that
the DAG corresponding to this setup is given by Figure 1(a).

In this problem, predictions concerningY6 are irrelevant: what we care is the marginal for
{Y1, . . . ,Y5}. Ideally, we want to take such irrelevant hidden variables out of the loop. Yet the set of
dependencies within the marginal for{Y1, . . . ,Y5} cannot be efficiently represented as a DAG model.
If we remove the edgeY3→Y4 from Figure 1(b), one can verify this will imply a model whereY3

andY4 are independent givenY5, which is not true in our original model. To avoid introducing
unwanted independence constraints, a DAG such as the one in Figure 1(b) will be necessary. Notice
that in general this will call for extra dependencies that did not exist originally (such asY3 andY4

now being marginally dependent). Not only learning from data will be more difficult due to the
extra dependencies, but specifying prior knowledge on the parametersbecomes less intuitive and
therefore more error prone.

In general, it will be the case that variables of interest have hidden commoncauses. This puts
the researcher using DAGs in a difficult position: if she models only the marginal comprising the
variables of interest, the DAG representation might not be suitable anymore.If she includes all
hidden variables for the sake of having the desirable set of independencies, extra assumptions about
hidden variables will have to be taken into account. In this sense, the DAG representation is flawed.
There is a need for a richer family of graphical models, for whichmixed graphsare an answer.

Directed mixed graphs (DMGs) are graphs with directed and bi-directed edges. In particular,
acyclic directed mixed graphs (ADMGs) have no directed cycle, that is, nosequence of directed
edgesX → ·· · → X that starts and ends on the same node. Such a representation encodes a set
of conditional independencies among random variables, which can be read off a graph by using a
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Figure 2: Different examples of directed mixed graphs. The graph in (b)is cyclic, while all others
are acyclic. A subgraph of two variables where both edgesY1→ Y2 andY1↔ Y2 are
present is sometimes known as a “bow pattern” (Pearl, 2000) due to its shape.
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Figure 3: After marginalizing variablesH1 andH2 from the DAG on the left, one possible DMG
representation of the same dependencies is shown by the graph in the middle.Notice
that there are multiple DMGs within a same Markov equivalence class, that is, encoding
the same set of conditional independencies (Richardson and Spirtes, 2002). The two last
graphs above are on the same class.

criterion known as m-separation, a natural extension of the d-separationcriterion used for directed
acyclic graphs (Richardson, 2003).

In a ADMG, two adjacent nodes might be connected by up to two edges, where in this case
one has to be bi-directed and the other directed. A cyclic model can in principle allow for two
directed edges of opposite directions. Figure 2 provides a few examples of DMGs. The appeal
of this graphical family lies on the representation of the marginal independence structure among
a set of observed variables, assuming they are part of a larger DAG structure that includes hidden
variables. This is illustrated in Figure 3.1 More details on DMGs are given in Sections 2 and 8.
In our blood pressure\liver status multiple regression problem, the suitable directed mixed graph is
depicted in Figure 1(c).

The contribution of this paper is how to perform Bayesian inference on twodifferent families
of mixed graph models: Gaussian and probit. Markov chain Monte Carlo (MCMC) and variational
approximations will be discussed. Current Bayesian inference approaches for DMG models have
limitations, as discussed in Section 2, despite the fact that such models are widely used in several
sciences.

The rest of the paper is organized as follows. Section 3 describes a special case of Gaussian
mixed graph models, where only bi-directed edges are allowed. Priors anda Monte Carlo algorithm
are described. This case will be a building block for subsequent sections, such as Section 4, where

1. Notice that it is not necessarily the case that the probability model itself is closed under marginalization. This will
happen to some models, including the Gaussian model treated in this paper.But the basic claim of closure concerns
the graph, that is, the representation of independence constraints.
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Gaussian DMG models are treated. Section 5 covers a type of discrete distribution for binary and
ordinal data that is Markov with respect to an acyclic DMG. In Section 6 we discuss more sophis-
ticated algorithms that are useful for scaling up Bayesian learning to higher-dimensional problems.
Section 7 presents several empirical studies. Since the use of mixed graphmodels in machine learn-
ing applications is still in its early stages, we briefly describe in Section 8 a variety of possible uses
of such graphs in machine learning applications.

2. Basics of DMGs, Gaussian Models and Related Work

In this section, we describe the Gaussian DMG model and how it complements latent variable
models. At the end of the section, we also discuss a few alternative approaches for the Bayesian
inference problem introduced in this paper.

2.1 Notation and Terminology

In what follows, we will use standard notions from the graphical modeling literature, such as ver-
tex (node), edge, parent, child, ancestor, descendant, DAG, undirected graph, induced subgraph,
Markov condition and d-separation. Refer to Pearl (1988) and Lauritzen (1996) for the standard
definitions if needed. Less standard definitions will be given explicitly whenappropriate. A useful
notion is that of m-separation (Richardson, 2003) for reading off whichindependencies are entailed
by a DMG representation. This can be reduced to d-separation (Pearl, 1988) by the following trick:
for each bi-directed edgeYi ↔Yj , introduce a new hidden variableXi j and the edgesXi j →Yi and
Xi j →Yj . Remove then all bi-directed edges and apply d-separation to the resulting directed graph.

As usual, we will refer to vertices (nodes) in a graph and the corresponding random variables in
a distribution interchangeably. Data points are represented by vectors withan upper index, such as
Y(1),Y(2), . . . ,Y(n). The variable corresponding to nodeYi in data pointY( j) is represented byY( j)

i .

2.2 Gaussian Parameterization

The origins of mixed graph models can be traced back to Sewall Wright (Wright, 1921), who used
special cases of mixed graph representations in genetic studies. Generalizing Wright’s approach,
many scientific fields such as psychology, social sciences and econometrics use linear mixed graph
models under the name ofstructural equation models(Bollen, 1989). Only recently the graphical
and parametrical aspects of mixed graph models have been given a thorough theoretical treatment
(Richardson and Spirtes, 2002; Richardson, 2003; Kang and Tian, 2005; Drton and Richardson,
2008a). In practice, many structural equation models today are Gaussianmodels. We will work
under this assumption unless stated otherwise.

For a DMGG with a set of verticesY, a standard parameterization of the Gaussian model is
given as follows. For each variableYi with a (possibly empty) parent set{Yi1, ...,Yik}, we define a
“structural equation”

Yi = αi +bi1Yi1 +bi2Yi2 + · · ·+bikYik + εi

whereεi is a Gaussian random variable with zero mean and variancevii . Notice that this parameter-
ization allows for cyclic models.

Unlike in standard Gaussian DAG models, the error terms{εi} are not necessarily mutually
independent. Independence is asserted by the graphical structure: given two verticesYi andYj ,
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the respective error termsεi andε j are marginally independent ifYi andYj are not connected by a
bi-directed edge.

By this parameterization, each directed edgeYi ← Yj in the graph corresponds to a parameter
bi j . Each bi-directed edgeYi ↔ Yj in the graph is associated with a covariance parametervi j , the
covariance ofεi andε j . Each vertexYj in the graph is associated with variance parameterv j j , the
variance ofε j . Algebraically, letB be am×m matrix, m being the number of observed variables.
This matrix is such that(B)i j = bi j if Yi ← Yj exists in the graph, and 0 otherwise. LetV be a
m×m matrix, where(V)i j = vi j if i = j or if Yi ↔ Yj is in the graph, and 0 otherwise. LetY be
the column vector of observed variables,α the column vector of intercept parameters, andε be the
corresponding vector of error terms. The set of structural equationscan be given in matrix form as

Y = BY +α+ ε⇒ Y = (I −B)−1(ε+α)
⇒ Σ(Θ) = (I −B)−1V(I −B)−T

(1)

whereA−T is the transpose ofA−1 andΣ(Θ) is the implied covariance matrixof the model,Θ ≡
{B,V,α}.

2.2.1 COMPLETENESS OFPARAMETERIZATION AND ANCESTRAL GRAPHS

An important class of ADMGs is the directed ancestral graph. Richardsonand Spirtes (2002) pro-
vide the definition and a thorough account of the Markov properties of ancestral graphs. One of the
reasons for the name “ancestral graph” is due to one of its main properties: if there is a directed
pathYi → ·· · →Yj , that is, ifYi is an ancestor ofYj , then there is no bi-directed edgeYi ↔Yj . Thus
directed ancestral graphs are ADMGs with this constraint.2

In particular, they show that any Gaussian distribution that is Markov with respect to a given
ADMG can be represented by some Gaussian ancestral graph model thatis parameterized as above.
For the ancestral graph family, the given parameterization iscomplete: that is, for each Markov
equivalence class, it is always possible to choose an ancestral graphwhere the resulting parameteri-
zation imposes no further constraints on the distribution besides the independence constraints of the
class. Since the methods described in this paper apply to general DMG models, they also apply to
directed ancestral graphs.

In principle, it is possible to define and parameterize a Gaussian DAG model that entails exactly
the same independence constraints encoded in an directed ancestral graph. One possibility, as hinted
in the previous Section, is to replace each bi-directed edgeYi ↔ Yj by a new pathYi ← Xi j → Yj .
Variables{Xi j} are “ancillary” hidden variables, in the sense that they are introduced for the sake of
obtaining the same independence constraints of an ancestral graph. Standard Bayesian methodology
can then be applied to perform inference in this Gaussian DAG model.

However, this parameterization might have undesirable consequences, as discussed in Section
8.6 of Richardson and Spirtes (2002). Moreover, when Markov chainMonte Carlo algorithms
are applied to compute posteriors, the “ancillary” hidden variables will haveto be integrated out
numerically. The resulting Markov chain can suffer from substantial autocorrelation when compared
to a model with no ancillary variables. We illustrate this behavior in Section 7.

Further constraints beyond independence constraints are certainly desirable depending on the
context. For instance, general ADMGs that are not ancestral graphsmay impose other constraints
(Richardson and Spirtes, 2002), and such graphs can still be sensiblemodels of, for example, the

2. Notice this rules out the possibility of having both edgesYi →Yj andYi ↔Yj in the same ancestral graph.
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causal processes for the problem at hand. When many observed variables are confounded by a same
hidden common cause, models based on factor analysis are appropriate (Silva et al., 2006). How-
ever, it is useful to be able to build upon independence models that are known to have a complete
parameterization. In any case, even the latent variables in any model might have dependencies that
arise from other latent variables that were marginalized, and a latent variable ADMG model will be
necessary. When it comes to solving a problem, it is up to the modeler (or learning algorithm) to
decide if some set of latent variables should be included, or if they should be implicit, living their
hidden life through the marginals.

Richardson and Spirtes (2002) provide further details on the advantages of a complete parame-
terization. Drton and Richardson (2004) provide an algorithm for fitting Gaussian ancestral graph
models by maximum likelihood.

2.3 Bayesian Inference

The literature on Bayesian structural equation models is extensive. Scheines et al. (1999) describe
one of the first approaches, including ways of testings such models. Lee(2007) provides details
on many recent advances. Standard Bayesian approaches for Gaussian DMG models rely on either
attempting to reduce the problem to inference with DAG models, or on using rejection sampling.

In an application described by Dunson et al. (2005), the “ancillary latent”trick is employed,
and Gibbs sampling for Gaussian DAG models is used. This parameterization has the disadvan-
tages mentioned in the previous section. Scheines et al. (1999) use the complete parameterization,
with a single parameter corresponding to each bi-directed edge. However, the global constraint of
positive-definiteness in the covariance matrix is enforced only by rejectionsampling, which might
be inefficient in models with moderate covariance values. The prior is setup inan indirect way. A
Gaussian density function is independently defined for each error covariancevi j . The actual prior,
however, is the result of multiplying all of such functions and the indicator function that discards
non-positive definite matrices, which is then renormalized.

In contrast, the Bayesian approach delineated in the next sections uses the complete parameter-
ization, does not appeal to rejection sampling, makes use of a family of priorswhich we believe is
the natural choice for the problem, and leads to convenient ways of computing marginal likelihoods
for model selection. We will also see that empirically they lead to much better behaved Markov
chain Monte Carlo samplers when compared to DAGs with ancillary latent variables.

3. Gaussian Models of Marginal Independence

This section concerns priors and sampling algorithms for zero-mean Gaussian models that are
Markov with respect to a bi-directed graph, that is, a DMG with no directed edges. Focusing on
bi-directed graphs simplifies the presentation, while providing a convenientstarting point to solve
the full DMG case in the sequel.

Concerning the notation: the distribution we introduce in this section is a distribution over
covariance matrices. In the interest of generality, we will refer to the random matrix asΣ. In the
context of the previous section,Σ≡ Σ(Θ) = V, since we are assumingB = 0,α = 0.
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3.1 Priors

Gaussian bi-directed graph models are sometimes calledcovariance graph models. Covariance
graphs are models of marginal independence: each edge corresponds to a single parameter in the
covariance matrix (the corresponding covariance); the absence of anedgeYi↔Yj is a statement that
σYiYj = 0, σXY being the covariance of random variablesX andY. More precisely, ifΣ is a random
covariance matrix generated by a covariance model, a distribution ofΣ is the distribution over the
(non-repeated) entries corresponding to variances and covariances of adjacent nodes.3

In a model with a fully connected bi-directed graph, this reduces to a spaceof unrestricted co-
variance matrices. A common distribution for covariance matrices is the inverseWishartIW(δ,U).
In this paper, we adopt the following inverse Wishart parameterization:

p(Σ) ∝ |Σ|−(δ+2m)/2exp

{

−
1
2

tr(Σ−1U)

}

,Σ positive definite,

p(·) being the density function,tr(·) the trace function, andm the number of variables (nodes) in
our model.4 We will overload the symbolp(·) wherever it is clear from the context which density
function we are referring to. It is assumed thatδ > 0 andU is positive definite.

Following Atay-Kayis and Massam (2005), letM+(G) be the cone of positive definite matrices
such that, for a given bi-directed graphG andΣ∈M+(G), σi j = 0 if nodesYi andYj are not adjacent
in G . It is convenient to choose a distribution that is conjugate to the Gaussian likelihood function,
since one can use the same algorithms for performing inference both in the prior and posterior. In a
zero-mean Gaussian model, the likelihood function for a fixed data setD = {Y(1),Y(2), . . . ,Y(n)} is
defined by the sufficient statisticS= ∑n

d=1(Y
(d))(Y(d))T as follows:

L(Σ;D) = (2π)−nm/2|Σ|−n/2exp

{

−
1
2

tr(Σ−1S)

}

. (2)

We extend the inverse Wishart distribution to the case of constrained covariance matrices in
order to preserve conjugacy. This define the following distribution:

p(Σ) =
1

IG (δ,U)
|Σ|−(δ+2m)/2exp

{

−
1
2

tr(Σ−1U)

}

,Σ ∈M+(G) (3)

which is basically a re-scaled inverse Wishart prior with a different support and, consequently,
different normalizing constantIG (δ,U). An analogous concept exists for undirected graphs, where
Σ−1∈M+(G) is given a Wishart-like prior: the “G -Wishart” distribution (Atay-Kayis and Massam,
2005). We call the distribution with density function defined as in Equation (3)the G -Inverse
Wishartdistribution (G -IW). It will be the basis of our framework. There are no analytical formulas
for the normalizing constant.

3. As such, the density function forΣ is defined with respect to the Lebesgue measure of the non-zero, independent
elements of this matrix.

4. We adopt this non-standard parameterization of the inverse Wishart because it provides a more convenient reparam-
eterization used in the sequel. Notice this is the parameterization used by Brown et al. (1993) and Atay-Kayis and
Massam (2005), which developed other distributions for covariance matrices.
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3.2 The Normalizing Constant

We now derive a Monte Carlo procedure to computeIG (δ,U). In the sequel, this will be adapted
into an importance sampler to compute functionals of aG -IW distribution. The core ideas are also
used in a Gibbs sampler to obtain samples from its posterior.

The normalizing constant is essential for model selection of covariance graphs. By combining
the likelihood equation (2) with the prior (3), we obtain the joint

p(D,Σ | G) = (2π)−
nm
2 IG (δ,U)−1×|Σ|−

δ+2m+n
2 exp

{

−
1
2

tr[Σ−1(S+U)]

}

where we make the dependency on the graphical structureG explicit. By the definition ofIG ,
integratingΣ out of the above equation implies the following marginal likelihood:

p(D | G) =
1

(2π)
nm
2

IG (δ+n,S+U)

IG (δ,U)

from which a posteriorP (G |D) can be easily derived as a function of quantities of the typeIG (·, ·).
The normalizing constantIG (δ,U) is given by the following integral:5

IG (δ,U) =
Z

M+(G)
|Σ|−

δ+2m
2 exp

{

−
1
2

tr(Σ−1U)

}

dΣ. (4)

The spaceM+(G) can be described as the space of positive definite matrices conditioned on the
event that each matrix has zero entries corresponding to non-adjacentnodes in graphG . We will
reduce the integral (4) to an integral over random variables we know how to sample from. The given
approach follows the framework of Atay-Kayis and Massam (2005) using the techniques of Drton
and Richardson (2003).

Atay-Kayis and Massam (2005) show how to compute the marginal likelihood of non-
decomposable undirected models by reparameterizing the precision matrix through the Cholesky
decomposition. The zero entries in the inverse covariance matrix of this modelcorrespond to con-
straints in this parameterization, where part of the parameters can be sampledindependently and the
remaining parameters calculated from the independent ones.

We will follow a similar framework but with a different decomposition. It turns out that the
Cholesky decomposition does not provide an easy reduction of (4) to an integral over canonical,
easy to sample from, distributions. We can, however, use Bartlett’s decomposition to achieve this
reduction.

3.2.1 BARTLETT’ S DECOMPOSITION

Before proceeding, we will need a special notation for describing sets of indices and submatrices.
Let {i} represent the set of indices{1,2, . . . , i}. Let Σi,{i−1} be the row vector containing the

covariance betweenYi and all elements of{Y1,Y2, . . . ,Yi−1}. Let Σ{i−1},{i−1} be the marginal covari-
ance matrix of{Y1,Y2, . . . ,Yi−1}. Let σii be the variance ofYi . Define the mapping

Σ→Φ≡ {γ1,B2,γ2,B3,γ3, . . . ,Bm,γm},

5. Notice this integral is always finite for any choice ofδ > 0 and positive definiteU, since it is no greater than the
normalizing constant of the inverse Wishart.
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such thatBi is a row vector withi−1 entries,γi is a scalar, and

γ1 = σ11,

Bi = Σi,{i−1}Σ−1
{i−1},{i−1}, i > 1,

γi = σii .{i−1},{i−1} ≡ σii −Σi,{i−1}Σ−1
{i−1},{i−1}Σ{i−1},i , i > 1.

(5)

The setΦ provides a parameterization ofΣ, in the sense that the mapping (5) is bijective. Given
thatσ11 = γ1, the inverse mapping is defined recursively by

Σi,{i−1} = BiΣ{i−1},{i−1}, i > 1,
σii = γi +BiΣ{i−1},i , i > 1.

(6)

We call the setΦ ≡ {γ1,B2,γ2,B3,γ3, . . . ,Bm,γm} the Bartlett parametersof Σ, since the de-
composition (6) is sometimes known as Bartlett’s decomposition (Brown et al., 1993).

For a random inverse Wishart matrix, Bartlett’s decomposition allows the definition of its density
function by the joint density of{γ1,B2,γ2,B3,γ3, . . . ,Bm,γm}. Define U{i−1},{i−1}, U{i−1},i and
uii .{i−1},{i−1} in a way analogous to theΣ definitions. The next lemma follows directly from Lemma
1 of Brown et al. (1993):

Lemma 1 SupposeΣ is distributed as IW(δ,U). Then the distribution of the corresponding Bartlett
parametersΦ≡ {γ1,B2,γ2,B3,γ3, . . . ,Bm,γm} is given by:

1. γi is independent ofΦ\{γi ,Bi}

2. γi ∼ IG((δ+ i−1)/2,uii .{i−1,i−1}/2), where IG(α,β) is the inverse gamma distribution

3. Bi | γi ∼ N(U−1
{i−1},{i−1}U{i−1},i ,γiU−1

{i−1},{i−1}), where N(M ,C) is a multivariate Gaussian

distribution andU−1
{i−1},{i−1} ≡ (U{i−1},{i−1})

−1.

3.2.2 BARTLETT’ S DECOMPOSITION OFMARGINAL INDEPENDENCEMODELS

What is interesting about Bartlett’s decomposition is that it provides a simple parameterization of
the inverse Wishart distribution with variation independent parameters. Thisdecomposition allows
the derivation of new distributions. For instance, Brown et al. (1993) derive a “Generalized Inverted
Wishart” distribution that allows one to define different degrees of freedom for different submatrices
of an inverse Wishart random matrix. For our purposes, Bartlett’s decomposition can be used to
reparameterize theG -IW distribution. For that, one needs to express the independent elements ofΣ
in the space of Bartlett parameters.

The original reparameterization mapsΣ to Φ ≡ {γ1,B2,γ2,B3,γ3, . . . ,Bd,γd}. To impose the
constraint thatYi andYj are uncorrelated, fori > j, is to set

(

BiΣ{i−1},{i−1}
)

j
= σYiYj (Φ) = 0. For a

fixed Σ{i−1},{i−1}, this implies a constraint on(Bi) j ≡ βi j .
Following the terminology used by Richardson and Spirtes (2002), let aspouseof nodeY in

a mixed graph be any node adjacent toY by a bi-directed edge. The set of spouses ofYi is de-
noted bysp(i). The set of spouses ofYi according to order Y1,Y2, . . . ,Ym is defined bysp≺(i) ≡
sp(i)∩{Y1, . . . ,Yi−1}. The set of non-spouses ofYi is denoted bynsp(i). Analogously,nsp≺(i) ≡
{Y1, . . . ,Yi−1}\sp≺(i). Let Bi,sp≺(i) be the subvector ofBi corresponding to the the respective
spouses ofYi . DefineBi,nsp≺(i) analogously.
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Given the constraintBiΣ{i−1},nsp≺(i) = 0, it follows that

Bi,sp≺(i)Σsp≺(i),nsp≺(i) +Bi,nsp≺(i)Σnsp≺(i),nsp≺(i) = 0⇒

Bi,nsp≺(i) =−Bi,sp≺(i)Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i). (7)

Identity (7) was originally derived by Drton and Richardson (2003). A property inherited
from the original decomposition for unconstrained matrices is thatBi,sp≺(i) is functionally inde-
pendent ofΣ{i−1},{i−1}. From (7), we obtain that the free Bartlett parameters ofΣ are ΦG ≡
{γ1,B2,sp≺(2),γ2,B3,sp≺(3),γ3, . . . ,Bm,sp≺(m),γm}.

Notice that, according to (5),Φ corresponds to the set of parameters of a fully connected, zero-
mean, Gaussian DAG model. In such a DAG,Yi is a child of{Y1, . . . ,Yi−1}, and

Yi = BiY i−1 +ζ j , ζ j ∼ N(0,γ j)

whereY i−1 is the(i−1)×1 vector corresponding to{Y1, . . . ,Yi−1}.
As discussed by Drton and Richardson (2003), this interpretation along with Equation (7) im-

plies
Yi = Bi,sp≺(i)Z i +ζ j (8)

where the entries inZ i are the corresponding residuals of the regression ofsp≺(i) onnsp≺(i).
The next step in solving integral (4) is to find the JacobianJ(ΦG ) of the transformationΣ→ΦG .

This is given by the following Lemma:

Lemma 2 The determinant of the Jacobian for the change of variableΣ→ΦG is

|J(ΦG)|=
m

∏
i=2
|Ri |=

1

∏m
i=2 |Σnsp≺(i),nsp≺(i)

|

m−1

∏
i=1

γm−i
i

where Ri ≡ Σsp≺(i),sp≺(i)
−Σsp≺(i),nsp≺(i)

Σ−1
nsp≺(i),nsp≺(i)

Σnsp≺(i),sp≺(i)
, that is, the covariance matrix of the

respective residualZ i (as parameterized byΦG ). If nsp≺(i) = /0, Ri is defined asΣsp≺(i),sp≺(i)
and

|Σnsp≺(i),nsp≺(i)
| is defined as 1.

The proof of this Lemma is in Appendix C. A special case is the Jacobian of theunconstrained
covariance matrix (i.e., when the graph has no missing edges):

|J(Φ)|=
m−1

∏
i=1

γm−i
i . (9)

Now that we have the Jacobian, the distribution over Bartlett’s parameters given by Lemma 1,
and the identities of Drton and Richardson (2003) given in Equation (7), we have all we need to
provide a Monte Carlo algorithm to compute the normalizing constant of aG -IW with parameters
(δ,U).

Let Σ(ΦG ) be the implied covariance matrix given by our set of parametersΦG . We start
from the integral in (4), and rewrite it as a function ofΦG . This can be expressed by substituting
Σ for Σ(ΦG ) and multiplying the integrand by the determinant of the Jacobian. Notice that the
parameters inΣ(ΦG ) are variation independent: that is, their joint range is given by the product of
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their individual ranges (positive reals for theγ variables and the real line for theβ coefficients). This
range will replace the originalM+(G) space, which we omit below for simplicity of notation:

IG (δ,U) =
Z

|J(ΦG )||Σ(ΦG)|−
δ+2m

2 exp

{

−
1
2

tr(Σ(ΦG)−1U)

}

dΦG .

We now multiply and divide the above expression by the normalizing constant ofan inverse
Wishart(δ,U), which we denote byIIW(δ,U):

IG (δ,U) = IIW(δ,U)
Z

|J(ΦG )|× I−1
IW (δ,U)|Σ(ΦG)|−

δ+2m
2 exp

{

−
1
2

tr(Σ(ΦG)−1U)

}

dΦG . (10)

The expression

I−1
IW (δ,U)|Σ|−

δ+2m
2 exp

{

−
1
2

tr(Σ−1U)

}

corresponds to the density function of an inverse WishartΣ. Lemma 1 allows us to rewrite the
inverse Wishart density function as the density of Bartlett parameters, butthis is assuming no inde-
pendence constraints. We can easily reuse the result of Lemma 1 as follows:

1. write the density of the inverse Wishart as the product of gamma-normal densities given in
Lemma 1;

2. this expression contains the original Jacobian determinant|J(Φ)|. We have to remove it, since
we are plugging in our own Jacobian determinant. Hence, we divide the reparameterized
density by the expression in Equation (9).

This ratio|J(ΦG )|/|J(Φ)| can be rewritten as

|J(ΦG)|

|J(Φ)|
=

m

∏
i=1

|Ri |

γm−i
i

=
1

∏m
i=2 |Σnsp≺(i),nsp≺(i)

|

where|Σnsp≺(i),nsp≺(i)
| ≡ 1 if nsp≺(i) = /0;

3. substitute each vectorBi,nsp≺(i), which is not a free parameter, by the corresponding expres-
sion−Bi,sp≺(i)Σsp≺(i),nsp≺(i)Σ−1

nsp≺(i),nsp≺(i).

This substitution takes place into the original factors given by Bartlett’s decomposition, as in-
troduced in Lemma 1:

p(Bi ,γi) = (2π)−(i−1)/2γ−(i−1)/2
i |U{i−1},{i−1}|

1/2

× exp

(

−
1

2γi
(BT

i −M i)
TU{i−1},{i−1}(B

T

i −M i)

)

×
(uii .{i−1},{i−1}/2)(δ+i−1)/2

Γ((δ+ i−1)/2)
γ
−( δ+i−1

2 +1)
i exp

(

−
1

2γi
uii .{i−1},{i−1}

)

(11)

whereM i ≡ U−1
{i−1},{i−1}U{i−1},i . Plugging in this in (10) results in
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IG (δ,U) = IIW(δ,U)
Z

1

∏m
i=2 |Σnsp≺(i),nsp≺(i)

|
× p(γ1)

m

∏
i=2

p(Bi ,γi)dΦG .

However, after substitution, each factorp(Bi ,γi) is not in general a density function for{Bi,sp≺(i),
γi} and will include also parameters{B j,sp≺( j),γ j}, j < i. Because of the non-linear relationships
that link Bartlett parameters in a marginal independence model, we cannot expect to reduce this
expression to a tractable distribution we can easily sample from. Instead, we rewrite each original
density factorp(Bi ,γi) such that it includes all information aboutBi,sp≺(i) andγi within a canonical
density function. That is, factorizep(Bi ,γi) as

p(Bi ,γi |Φi−1) = pb(Bi,sp≺(i)|γi ,Φi−1)pg(γi |Φi−1)× fi(Φi−1) (12)

where we absorb any occurrence ofBi,sp≺(i) within the sampling distribution and factorize the re-
maining dependence on previous parametersΦi−1≡ {γ1,γ2,B2,sp≺(2), . . . ,γi−1, Bi−1,sp≺(i−1)} into a
separate function.6 We derive the functionspb(·), pg(·) and fi(·) in Appendix A. The result is as
follows.

The densitypb(Bi,sp≺(i)|γi ,Φi−1) is the density of a GaussianN(K imi ,γiK i) such that

mi = (Uss−A iUns)M sp≺(i) +(Usn−A iUnn)Mnsp≺(i),

K−1
i = Uss−A iUns−UsnAT

i +A iUnnAT

i ,

A i = Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i)

(13)

where

[

Uss Usn

Uns Unn

]

≡

[

Usp≺(i),sp≺(i) Usp≺(i),nsp≺(i)

Unsp≺(i),sp≺(i) Unsp≺(i),nsp≺(i)

]

. (14)

The densitypg(γi |Φi−1) is the density of an inverse gammaIG(g1,g2) such that

g1 =
δ+ i−1+#nsp≺(i)

2
,

g2 =
uii .{i−1},{i−1}+Ui

2
,

Ui = MT

i U{i−1},{i−1}M i−mT

i K imi .

whereuii .{i−1},{i−1} was originally defined in Section 3.2.1.
Finally,

fi(Φi−1) ≡ (2π)−
(i−1)−#sp≺(i)

2 |K i |
1/2|U{i−1},{i−1}|

1/2

×
(uii .{i−1},{i−1}/2)(δ+i−1)/2

Γ((δ+ i−1)/2)

Γ((δ+ i−1+#nsp≺(i))/2)

((uii .{i−1},{i−1}+Ui)/2)(δ+i−1+#nsp≺(i))/2
.

6. A simpler decomposition was employed by Silva and Ghahramani (2006) (notice however that paper used an incorrect
expression for the Jacobian). The following derivation, however, can be adapted with almost no modification to define
a Gibbs sampling algorithm, as we show in the sequel.
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Density functionpb(Bi,sp≺(i)|·, ·) and determinant|K i |
1/2 are defined to be 1 ifsp≺(i) = /0. Ui

is defined to be zero ifnsp≺(i) = /0, andUi = MT

i U{i−1},{i−1}M i if sp≺(i) = /0.
The original normalizing constant integral is the expected value of a function of ΦG over a

factorized inverse gamma-normal distribution. The density function of this distribution is given
below:

pI(δ,U)(ΦG ) =

(

m

∏
i=1

pg(γi |Φi−1)

)(

m

∏
i=2

pb(Bi,sp≺(i)|γi ,Φi−1)

)

.

We summarize the main result of this section through the following theorem:

Theorem 3 Let 〈 f (X)〉p(X) be the expected value of f(X) whereX is a random vector with density
p(X). The normalizing constant of aG -Inverse Wishart with parameters(δ,U) is given by

IG (δ,U) = IIW(δ,U)×

〈

m

∏
i=1

fi(Φi−1)

|Σnsp≺(i),nsp≺(i)
|

〉

pI(δ,U)(ΦG )

.

This can be further simplified to

IG (δ,U) =

〈

m

∏
i=1

f ′i (Φi−1)

|Σnsp≺(i),nsp≺(i)
|

〉

pI(δ,U)(ΦG )

(15)

where

f ′i (Φi−1)≡ (2π)
#sp≺(i)

2 |K i(Φi−1)|
1/2 Γ((δ+ i−1+#nsp≺(i))/2)

((uii .{i−1},{i−1}+Ui)/2)(δ+i−1+#nsp≺(i))/2

which, as expected, reducesIG (δ,U) to IIW(δ,U) when the graph is complete.

A Monte Carlo estimate ofIG (δ,U) is then given from (15) by obtaining samples{Φ(1)
G ,Φ(2)

G ,

. . . ,Φ(M)
G } according topI(δ,U)(·) and computing:

IG (δ,U)≈
1
M

M

∑
s=1

m

∏
i=1

f ′i (Φ
(s)
i−1)

|Σnsp≺(i),nsp≺(i)
(Φ(s)

i−1)|

where here we emphasize thatΣnsp≺(i),nsp≺(i)
is a function ofΦG as given by (6).

3.3 General Monte Carlo Computation

If Y follows a GaussianN(0,Σ) whereΣ is given aG -IW(δ,U) prior, then from a sampleD =
{Y(1), . . . ,Y(n)} with sufficient statisticS = ∑n

d=1(Y
(d))(Y(d))T, the posterior distribution forΣ

given S will be a G -IW(δ + n,U + S). In order to obtain samples from the posterior or to com-
pute its functionals, one can adapt the algorithm for computing normalizing constants. We describe
an importance sampler for computing functionals, followed by a Gibbs sampling algorithm that also
provides samples from the posterior.
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Algorithm SAMPLEGIW-1
Input: am×mmatrixU, scalarδ, bi-directed graphG , an ordering≺

1. LetΣ be am×mmatrix

2. Define functionssp≺(·), nsp≺(·) according toG and ordering≺

3. Sampleσ11 from IG(δ/2,u11/2)

4. Fori = 2,3, . . . ,m

5. Sampleγi ∼ IG((δ+ i−1+#nsp≺(i))/2,(uii .{i−1},{i−1}+Ui)/2)

6. SampleBi,sp≺(i) ∼ N(K imi ,γiK i)

7. SetBi,nsp≺(i) =−Bi,sp≺(i)Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i)

8. SetΣT

{i−1},i = Σi,{i−1} = BiΣ{i−1},{i−1}

9. Setσii = γi +BiΣi,{i−1}

10. Setw = ∏m
i=1 f ′i (Φi−1)/|Σnsp≺(i),nsp≺(i)|

11. Return(w,Σ).

Figure 4: A procedure for generating an importance sampleΣ and importance weightw for com-
puting functionals of aG -Inverse Wishart distribution. Variables{M i ,mi ,K i ,Ui} and
function f ′i (Φi−1) are defined in Section 3.2.2.

3.3.1 THE IMPORTANCESAMPLER

One way of computing functionals of theG -IW distribution, that is, functions of the type

g(δ,U;G)≡
Z

M+(G)
g(Σ)p(Σ | δ,U,G)dΣ

is through the numerical average

g(δ,U;G)≈
∑M

s=1wsg(Σ(s))

∑M
s=1ws

,

where weights{w1,w2, . . . ,wM} and samples{Σ(1),Σ(2), . . . ,Σ(M)} are generated by an importance
sampler. The procedure for computing normalizing constants can be readilyadapted for this task
using pI(δ,U)(·) as the importance distribution and the corresponding weights from the remainder
factors. The sampling algorithm is shown in Figure 4.

3.3.2 THE GIBBS SAMPLER

While the importance sampler can be useful to compute functionals of the distribution, we will
need a Markov chain Monte Carlo procedure to sample from the posterior.In the Gibbs sampling

1200



BAYESIAN LEARNING WITH M IXED GRAPH MODELS

Algorithm SAMPLEGIW-2
Input: am×mmatrixU, scalarδ, bi-directed graphG , am×mmatrix Σstart

1. LetΣ be a copy ofΣstart

2. Define functionssp(·), nsp(·) according toG

3. Fori = 1,2,3, . . . ,m

4. Sampleγi ∼ IG((δ+(m−1)+#nsp(i))/2,(uii .{\i},{\i}+U\i)/2)

5. SampleBi,sp(i) from aN(K \im\i ,γiK \i)

6. SetBi,nsp(i) =−Bi,sp(i)Σsp(i),nsp(i)Σ−1
nsp(i),nsp(i)

7. SetΣT

{\i},i = Σi,{\i} = BiΣ{\i},{\i}

8. Setσii = γi +BiΣi,{\i}

9. ReturnΣ.

Figure 5: A procedure for generating a sampledΣ within a Gibbs sampling procedure.

procedure, we sample the wholei-th row ofΣ, for each 1≤ i ≤m, by conditioning on the remaining
independent entries of the covariance matrix as obtained on the previous Markov chain iteration.

The conditional densities required by the Gibbs sampler can be derived from (12), which for a
particular ordering≺ implies

p(Σ;δ,U,G) ∝ pg(γ1)
m

∏
i=2

pb(Bi,sp≺(i)|γi ,Φi−1)pg(γi |Φi−1) fi(Φi−1).

By an abuse of notation, we usedΣ in the left-hand side and the Bartlett parameters in the righ-hand
side.

The conditional density of{Bm,sp≺(m),γm} given all other parameters is therefore

p(Bm,sp≺(m),γm|ΦG\{Bm,sp≺(m),γm}) = pb(Bm,sp≺(m)|γm,Φm−1)pg(γm|Φm−1)

from which we can reconstruct a new sample of them-th row/column of Σ after sampling
{Bm,sp≺(m),γm}. Sampling other rows can be done by redefining a new order where the corre-
sponding target variable is the last one.

More precisely: let{\i} denote the set{1,2, . . . , i− 1, i + 1, . . . ,m}. The Gibbs algorithm is
analogous to the previous algorithms. Instead ofsp≺(i) andnsp≺(i), we refer to the originalsp(i)
and nsp(i). MatricesΣ{\i},{\i} and U{\i},{\i} are defined by deleting the respectivei-th row and
i-th columns. Row vectorΣi,{\i} and scalaruii .{\i} are defined accordingly, as well as any other
vector and matrix originally required in the marginal likelihood/importance samplingprocedure.
The algorithm is described in Figure 5. The procedure can be interpretedas calling a modification
of the importance sampler with a dynamic ordering≺i which, at every step, movesYi to the end of
the global ordering≺.
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3.4 Remarks

The importance sampler suffers from the usual shortcomings in high-dimensional problems, where
a few very large weights dominate the procedure (MacKay, 1998). This can result in unstable
estimates of functionals of the posterior and the normalizing constant.

The stability of the importance sampler is not a simple function of the number of variables in the
domain. For large but sparse graphs, the number of parameters might be small. For large but fairly
dense graphs, the importance distribution might be a good match to the actual distribution since
there are few constraints. In Section 7, we performe some experiments to evaluate the sampler.

When used to compute functionals, the Gibbs sampler is more computationally demanding con-
sidering the cost per step, but we expect it to be more robust in high-dimensional problems. In
problems that require repeated calculations of functionals (such as the variational optimization pro-
cedure of Section 4.3), it might be interesting to run a few preliminary comparisons between the
estimates of the two samplers, and choose the (cheaper) importance sampler ifthe estimates are
reasonably close.

Näıvely, the Gibbs sampler costsO(m4) per iteration, since for each step we have to invert the
matrix Σnsp{\i},nsp{\i}, which is of sizeO(m) for sparse graphs. However, this inversion can cost
much less thanO(m3) if sparse matrix inversion methods are used. Still, the importance sampler
can be even more optimized by using the methods of Section 6.

4. Gaussian Directed Mixed Graph Models

As discussed in Section 2, Gaussian directed mixed graph models are parameterized by the set with
parametersΘ = {V,B,α}. Our prior takes the formp(Θ) = p(B)p(α)p(V). We assign priors for
the parameters of directed edges (non-zero entries of matrixB) in a standard way: each parameter
bi j is given a GaussianN(cB

i j ,s
B
i j ) prior, where all parameters are marginally independent in the

prior, that is,p(B) = ∏i j p(bi j ). The prior for intercept parametersα is analogous, withαi being a
GaussianN(cα

i ,sα
i ).

Recall from Equation (1) that the implied covariance of the model is given bythe matrix
Σ(Θ) = (I −B)−1V(I −B)−T. Similarly, we have the implied mean vectorµ(Θ) ≡ (I −B)−1α.
The likelihood function for data setD = {Y(1),Y(2), . . . ,Y(n)} is defined as

L(Θ;D) = |Σ(Θ)|−n/2∏n
d=1exp

(

−1
2(Y(d)−µ(Θ))TΣ(Θ)−1(Y(d)−µ(Θ))

)

=
{

|(I −B)−1||V||(I −B)−T|
}−n/2{

exp
(

−1
2tr(V−1(I −B)S(I −B)T)

)}

,

where nowS≡ ∑n
d=1(Y

(d)−µ(Θ))(Y(d)−µ(Θ))T.
Given a priorG -IW(δ,U) for V, it immediately follows that the posterior distribution ofV given

the data and other parameters is

V | {B,α,D} ∼ G -IW(δ+n,U+(I −B)S(I −B)T).

Therefore it can be sampled using the results from the previous section. Notice this holds even
if the directed mixed graphG is cyclic.

Samplingαi given{D,Θ\{αi}} can also be done easily for both cyclic and acyclic models: the
posterior is given by a normalN(cα′

i /sα′
i ,1/sα′

i ) where
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sα′
i ≡

1
sα
i

+n(V−1)ii ,

cα′
i ≡

cα
i

sα
i
−n

m

∑
t=1,t 6=i

(V−1)it αt +
n

∑
d=1

m

∑
t=1

(V−1)it

(

Y(d)
t −∑

pt

bt ptY
(d)
pt

)

,

with pt being an index running over the parents ofYt in G .
However, sampling the non-zero entries ofB results in two different cases depending whether

G is cyclic or not. We deal with them separately.

4.1 Sampling from the Posterior: Acyclic Case

The acyclic case is simplified by the fact thatI −B can be rearranged in a way it becomes lower
triangular, with each diagonal element being 1. This implies the identity|(I−B)−1||V||(I−B)−T|=
|V|, with the resulting log-likelihood being a quadratic function of the non-zero elements ofB. Since
the prior for coefficientbi j is Gaussian, its posterior given the data and all other parameters will be
the GaussianN(cb′

i j /sb′
i j ,1/sb′

i j ) where

sb′
i j ≡

1

sb
i j

+(V−1)ii

n

∑
d=1

(Y(d)
j )2,

cb′
i j ≡

cb
i j

sb
i j

+
n

∑
d=1

Y(d)
j

m

∑
t=1

(V−1)it

(

Y(d)
t − ∑

pt ,(t,pt)6=(i, j)

bt ptY
(d)
pt −αt

)

.

(16)

As before,pt runs over the indices of the parents ofYt in G . Notice that in the innermost

summation we excludebi jY
(d)
j . We can then samplebi j accordingly.

It is important to notice that, in practice, better mixing behavior can be obtained by sampling the
coefficients (and intercepts) jointly. The joint distribution is Gaussian and can be obtained in a way
similar to the above derivation. The derivation of the componentwise conditionals is nevertheless
useful in the algorithm for cyclic networks.

4.2 Sampling from the Posterior: Cyclic Case

Cyclic directed graph models have an interpretation in terms of causal systemsin equilibrium. The
simultaneous presence of directed pathsYi→·· ·→Yj andYj→·· ·→Yi can be used to parameterize
instantaneous causal effects in a feedback loop (Spirtes, 1995). Thismodel appears also in the
structural equation modeling literature (Bollen, 1989). In terms of cyclic graphs as families of
conditional independence constraints, methods for reading off constraints in linear systems also
exist (Spirtes et al., 2000).

The computational difficulty in the cyclic case is that the determinant|I −B| is no longer a con-
stant, but a multilinear function of coefficients{bi j}. Becausebi j will appear outside the exponential
term, its posterior will no longer be Gaussian.

From the definition of the implied covariance matrixΣ(Θ), it follows that |Σ(Θ)|−n/2 = (|I −
B||V|−1|I −B|)n/2. As a function of coefficientbi j ,

|I −B|= (−1)i+ j+1Ci j bi j +
k=m

∑
k=1,k6= j

(−1)i+k+1Cikbik,
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whereCi j is the determinant of respective co-factor ofI −B, bik ≡ 0 if there is no edgeYi←Yk, and
bii ≡−1. The resulting density function ofbi j givenD andΘ\{bi j} is

p(bi j |Θ\{bi j},D) ∝ |bi j −κi j |
nexp

{

−
(bi j −cb′

i j /sb′
i j )

2

2sb′
i j

}

,

where

κi j ≡C−1
i j

k=m

∑
k=1,k6= j

(−1)k− j+1Cikbik

and{cb′
i j ,s

b′
i j } are defined as in Equation (16). Standard algorithms such as Metropolis-Hastings can

be applied to sample from this posterior within a Gibbs procedure.

4.3 Marginal Likelihood: A Variational Monte Carlo Approach

While model selection of bi-directed graphs can be performed using a simple Monte Carlo procedure
as seen in the previous Section, the same is not true in the full Gaussian DMG case. Approaches
such as nested sampling (Skilling, 2006) can in principle be adapted to deal with the full case.
For problems where there are many possible candidates to be evaluated, such a computationally
demanding sampling procedure might be undesirable (at least for an initial ranking of graphical
structures). As an alternative, we describe an approximation procedure for the marginal likelihood
p(D|G) by combining variational bounds (Jordan et al., 1998) with theG -Inverse Wishart samplers,
and therefore avoiding a Markov chain over the joint model of coefficients and error covariances.
This is described for acyclic DMGs only.

We adopt the following approximation in our variational approach, accounting also for possible
latent variablesX:

p(V,B,α,X|D)≈ q(V)q(B,α)
n

∏
d=1

q(X(d))≡ q(V)q(B,α)q(X)

with q(B,α) being a multivariate Gaussian density of the non-zero elements ofB andα. Function
q(X(d)) is also a Gaussian density, and functionq(V) is aG -Inverse Wishart density.

From Jensen’s inequality, we obtain the following lower-bound (Beal, 2003, p. 47):

ln p(D|G) = ln
R

p(Y,X|V,B,α)p(V,B,α)dX dBdV dα
≥ 〈ln p(Y,X|V,B,α)〉q(V)q(B,α)q(X)

+〈ln p(V)/q(V)〉q(V)

+〈ln p(B,α)/q(B,α)〉q(B,α)−〈lnq(X)〉q(X)

(17)

where this lower bound can be optimized with respect to functionsq(V), q(B), q(X). This can be
done by iterative coordinate ascent, maximizing the bound with respect to a single q(·) function at
a time.

The update ofq(V) is given by

qnew(V) = pG -IW(δ+d,U+
〈

(I −B)S(I −B)T
〉

q(X)q(B,α)
)
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wherepG -IW(·) is the density function for aG -Inverse Wishart, andS is the empirical second mo-
ment matrix summed over the completed data set(X,Y) (hence the expectation overq(X)) centered
atµ(Θ).

The updates forq(B,α) andq(X) are tedious but straightforward derivations, and described in
Appendix B. The relevant fact about these updates is that they are functions of

〈

V−1
〉

q(V)
. For-

tunately, we pay a relatively small cost to obtain these inverses using the Monte Carlo sampler of
Figure 4: from the Bartlett parameters, define a lower triangularm×mmatrixB (by placing on the
ith line the row vectorBi , followed by zeroes) and a diagonal matrixΓ from the respective vector of
γi ’s. The matrixV−1 can be computed from(I −B)TΓ−1(I −B), and the relevant expectation com-
puted according to the importance sampling procedure. For problems of moderate dimensionality,7

the importance sampler might not be recommended, but the Gibbs sampler can beused.
At the last iteration of the variational maximization, the (importance or posterior)samples from

q(V) can then be used to compute the required averages in (17), obtaining a bound on the marginal
log-likelihood of the model. Notice that the expectation〈ln p(V)/q(V)〉q(V) contains the entropy of
q(V), which will require the computation ofG -inverse Wishart normalizing constants.

For large problems, the cost of this approximation might still be prohibitive. Anoption is to par-
tially parameterizeV in terms of ancillary latents and another submatrix distributed as aG -inverse
Wishart, but details on how to best do this partition are left as future work (this approximation will
be worse but less computationally expensive if ancillary latents are independent of the coefficient
parameters in the variational density functionq(·)). Laplace approximations might be an alternative,
which have been successfully applied to undirected non-decomposable models (Roverato, 2002).

We emphasize that the results present in this section are alternatives that didnot exist before
in previous approaches for learning mixed graph structures through variational methods (e.g., Silva
and Scheines, 2006). It is true that the variational approximation for marginal likelihoods will tend
to underfit the data, that is, generate models simpler than the true model in simulations. Despite
the bias introduced by the method, this is less of a problem for large data sets (Beal and Ghahra-
mani, 2006) and the method has been shown to be useful in model selection applications (Silva
and Scheines, 2006), being consistently better than standard scores such as BIC when hidden vari-
ables are present (Beal and Ghahramani, 2006). An application in prediction using the variational
posterior instead of MCMC samples is discussed by Silva and Ghahramani (2006). It is relevant
to explore other approaches for marginal likelihood evaluation of DMG models using alternative
methods such as annealed importance sampling (Neal, 2001) and nested sampling (Skilling, 2006),
but it is unrealistic to expect that such methods can be used to evaluate a large number of candidate
models. A pre-selection by approximations such as variational methods might be essential.

5. Discrete Models: The Probit Case

Constructing a discrete mixed graph parameterization is not as easy as in the Gaussian case. Ad-
vances in this area are described by Drton and Richardson (2008a), where a complete parameteriza-
tion of binary bi-directed graph models is given. In our Bayesian context,inference with the mixed
graph discrete models of Drton and Richardson would not to be any computationally easier than the
case for Markov random fields, which has been labeled asdoubly-intractable(Murray et al., 2006).

7. We observed a high ratio of the highest importance weight divided by the median weight in problems with dimen-
sionality as low as 15 nodes. However, notice that in practice the error covariance matrixV has a block diagonal
structure, and only the size of the largest block is relevant. This is explained in more detail in Section 6.
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Instead, in this paper we will focus on a class of discrete models that has been widely used in
practice: the probit model (Bartholomew and Knott, 1999). This model is essentially a projection of
a Gaussian distribution into a discrete space. It also allows us to build on the machinery developed
in the previous sections. We will describe the parameterization of the model foracyclic DMGs, and
then proceed to describe algorithms for sampling from the posterior distribution.

5.1 Parameterizing Models of Observable Independencies

A probit model for the conditional probability of discrete variableYi given a set of variables{Yi1, ...,
Yik} can be described by the two following relationships:

Y⋆
i = αi +bi1Yi1 +bi2Yi2 + · · ·+bikYik + εi

P (Yi = vi
l |Y

⋆
i ) = 1(τi

l−1≤Y⋆
i < τi

l )
(18)

whereP (·) is the probability mass function of a given random variable, as given by thecontext, and
1(·) is the indicator function.Yi assumes values in{vi

1,v
i
1, . . . ,v

i
κ(i)}. Thresholds{τi

0 =−∞ < τi
1 <

τi
2 < · · ·< τi

κ(i) = ∞} are used to define the mapping from continuousY⋆
i to discreteYi . This model

has a sensible interpretation for ordinal and binary values as the discretization of someunderlying
latent variable(UV) Y⋆

i . Such a UV is a conditionally Gaussian random variable, which follows
by assuming normality of the error termεi . This formulation, however, is not appropriate for gen-
eral discrete variables, which are out of the scope of this paper. Albert and Chib (1993) describe
alternative Bayesian treatments of discrete distributions not discussed here.

Given this binary/ordinal regression formulation, the natural step is how todefine a graphical
model accordingly. As a matter of fact, the common practice does not strictly follow the probit
regression model. Consider the following example: for a given graphG , a respective graphical
representation of a probit model can be built by first replicatingG as a graphG⋆, where each vertex
Yi is relabeled asY⋆

i . Those vertices represent continuous underlying latent variables (UVs). To
each vertexY⋆

i in G⋆, we then add a single childYi . We call this theType-I UV model. Although
there are arguments for this approach (see, for instance, the argumentsby Webb and Forster (2006)
concerning stability to ordinal encoding), this is a violation of the original modeling assumption
as embodied byG : if the given graph is a statement of conditional independence constraints, it
is expected that such independencies will be present in the actual model. The Type-I formulation
does not fulfill this basic premise: by construction there are no conditionalindependence constraints
among the set of variablesY (the marginal independencies are preserved, though). This is illustrated
by Figure 6(b), where the conditional independence ofY1 andY3 givenY2 disappears.

An alternative is illustrated in Figure 6(c). Starting from the original graphG (as in Figure 6(a)),
the probit graph modelG⋆ shown in the Figure is built fromG by the following algorithm:

1. add to empty graphG⋆ the verticesY of G , and for eachYi ∈ Y, add a respective UVY⋆
i and

the edgeY⋆
i →Yi ;

2. for eachYi →Yj in G , add edgeYi →Y⋆
j toG⋆;

3. for eachYi ↔Yj in G , add edgeY⋆
i ↔Y⋆

j toG⋆;

We call this theType-II UV model, which has the following property (the proof is in Appendix
C):
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Figure 6: The model in (a) has at least two main representations as a probitnetwork. In (b), the
original structure is given to the underlying variables, with observed variables being chil-
dren of their respective latents. In (c), the underlying variable inherits the parents of the
original variable and the underlying latents of the spouses.

Theorem 4 SupposeG is acyclic with vertex setY. Yi and Yj are m-separated givenZ ⊆Y\{Yi ,Yj}
in G if and only if Yi and Yj are m-separated givenZ in G⋆.

The parameterization of the Type-II UV model follows from the definition of probit regression:
the conditional distributionYi given its parents in{Yi1, ...,Yik} inG is given as in Equation (18), while
the error terms{ε1,ε2, . . . ,εm} follow the multivariate GaussianN(0,V). The entry corresponding
to the covariance ofεi andε j is assumed to be zero if there is no bi-directed edgeYi ↔Yj in G .

In what follows, we discuss algorithms for Type-II models. The approach here described can
be easily adapted to cover Type-I models. We say that Type-II models aremodels ofobservable
independencies, since independencies hold even after marginalizing all UVs.

5.2 Algorithm

As before, we provide a Gibbs sampling scheme to sample parametersΘ = {α,B,V,T } from the
posterior distribution given data setD = {Y(1),Y(2), . . . ,Y(n)}. The setT = {Ti} is the set of
threshold parameters,Ti = {τi

0 =−∞ < τi
1 < τi

2 < · · ·< τi
κ(i) = ∞} for each random variableYi with

κ(i) different values. We will not discuss priors and algorithms for samplingT given the other
parameters: this can be done by standard approaches (e.g., Albert andChib, 1993).8

For the purposes of the Gibbs procedure, we augment the data set with theunderlying variables
D⋆ = {Y⋆(1),Y⋆(2), . . . ,Y⋆(n)} at each sampling step.

From the set of structural equations

Y⋆(d) = α+BY(d) + ε

it follows that the conditional distribution ofY⋆(d) given theD ∪Θ is a truncated Gaussian with
meanα + BY(d) and covariance matrixV. The truncation levels are given by the thresholds and
observed dataY(d): for eachY(d)

i = vi
l , the range forY⋆(d)

i becomes[τi
l−1,τ

i
l ). Sampling from a

truncated Gaussian is a standard procedure. We used the algorithm of Kotecha and Djuric (1999) in
our implementation.

To sampleV from its conditional, we will rely on the following result.

8. In Section 7, we perform experiments with binary data only. In this case, the thresholds are set to fixed values:
{τi

0 =−∞,τi
1 = 0,τi

2 = ∞} for all 0≤ i ≤m.
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Proposition 5 LetG be an acyclic DMG, and(α,B,V,T ) be the respective set of parameters that
defines the probit model. For a fixed(α,B,T ), there is a bijective function fBαT (·) mappingY⋆ to
ε. This is not true in general ifG is cyclic.

Proof: If the graph is acyclic, this follows directly by recursively solving the modelequations,
starting from those corresponding toY⋆

j vertices with no parents. This results inε = Y⋆−α−BY,
as expected.

For cyclic graphs, the following model provides a counter-example. Let the graph beY⋆
1 →

Y1→Y⋆
2 →Y2→Y⋆

1 . Let the model beY⋆
1 = Y2 + ε1,Y⋆

2 = Y1 + ε2, that is,b12 = b21 = 1 andα = 0.
Let the variables be binary, with a threshold at zero (Yi = 1 if and only if Y⋆

i ≥ 0). Then the two
instantiations(Y⋆

1 =−0.8,Y⋆
2 = 0), (Y⋆

1 = 0.2,Y⋆
2 = 1) imply the same pair(ε1 =−0.8,ε2 = 0). �

The negative result for discrete models with cycles is the reason why suchmodels are out of the
scope of the paper.

LetD⋆
ε = {ε(1), . . . ,ε(n)}, whereε(d) = fBαT (y(d)⋆). Due to this bijection (and the determinism

mappingY⋆ to Y), the densityp(V | Θ\V,D,D⋆) = p(V | Θ\V,D⋆) = p(V | Θ\V,y(1)⋆, . . . ,y(d)⋆)
is equivalent to

p(V | Θ\V,D⋆) = p(V | α,B,T ,D⋆,D⋆
ε )

= p(V | α,B,T ,D⋆
ε )

∝ p(V | α,B,T )p(D⋆
ε | α,B,T ,V)

∝ p(V)∏n
d=1 p(ε(d)| V).

For the given data setD∪D⋆, defineS⋆ as the sum of(Y⋆(d)−α−BY(d))(Y⋆(d)−α−BY(d))T

over all d ∈ {1,2, . . . ,n}. Sincep(ε | V) is normal with zero mean and covariance matrixV, the
posterior forV given all other parameters and variables is

V | {Θ\V,D,D⋆} ∼ G -IW(δ+n,U+S⋆).

SamplingB andα is analogous to the Gaussian case, except that we have to consider that the
left-hand side of the structural equations now refer toY⋆. We give the explicit conditional forαi ,
with the conditional forbi j being similarly adapted from Section 4. The posterior forαi is given by
a normalN((s′i)

−1m′i ,s
′
i) where

sα′
i =

1
sα
i

+n(V−1)ii ,

cα′
i =

cα
i

sα
i
−n

m

∑
t=1,t 6=i

(V−1)it αt +
n

∑
d=1

m

∑
t=1

(V−1)it

(

Y⋆(d)
t −∑

pt

bt ptY
(d)
pt

)

.

5.3 A Note on Identifiability

The scale of the underlying latent variables in the probit model is arbitrary.As such, it has been
often suggested that such latents should have constant (e.g., unity) variance (Pitt et al., 2006). There
are two usual arguments for fixing the variance: improving the interpretabilityof the model, and im-
proving the mixing of the Markov chain. The interpretability argument is not particularly appealing
within the Bayesian setting with proper priors, such as the one proposed in this paper: the posterior
distribution of the parameters is well-defined by the prior uncertainty and the data.
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The goal of improving the mixing of the chain might be important: if some parameterscan
assume arbitrary values and still allow for the same model over the observables, then fixing such
parameters may help sampling by eliminating largely flat regions from the posterior (which will
happen for large data sets and broad priors). In practice, however,scaling UVs might not be ad-
vantageous. In some cases it might increase the computational cost of each sampling step, while
sampling from the non-scaled model might work just fine. Many MCMC algorithms work well on
highly unidentifiable models such as multilayer perceptrons (Neal, 1996). Inour experiments, we
do not use any scaling.

5.4 Remarks

It is clear that the given approach can be generalized to other generalized linear models by changing
the link function that maps underlying latent variables (UVs) to observables. For instance, a model
containing discrete and continuous variables can be constructed by usingthe identity link function
instead of probit for the continuous variables. Notice that the continuous variables will not nec-
essarily be marginally Gaussian if some of its parents are discrete. Other link functions will have
different parameters besides thresholds, such as in multivalued (“polychotomous”) discrete distri-
butions. A Bayesian account of Gaussian copula models is given by Pitt etal. (2006), to which a
DMG-based family could in principle be defined. For continuous, marginally non-Gaussian, vari-
ables joined by a Gaussian copula, it is possible that all link functions are invertible. In this case,
it is easier in principle to define cyclic models through Type-I UV models (e.g., Figure 6(b)) while
preserving the observable independencies.

It is important to point out that Type-II probit models with Markov equivalent graphs will not,
in general, be likelihood equivalent. A simple example is given by the two-nodegraphsY1→Y2 and
Y1↔Y2: if Y1 is binary, then the marginal forY2 in the first case is equivalent to having an underlying
latent variable that follows a mixture of two Gaussians. While some of these issues can be solved
by adopting a mixture of Gaussians marginal independence model to account for bi-directed edges
(Silva and Ghahramani, 2009), details need to be worked out. When the goal of model selection
is to find causal structures (Spirtes et al., 2000), the usual guaranteesof search methods based on
Markov equivalence classes do not hold. However, it remains to be seen whether the parametric
constraints implied by the Type-II formulation will allow for other consistent approaches for causal
discovery, as shown in the case of non-linearities with additive noise (Hoyer et al., 2008).

6. Scaling Up: Factorizations and Perfect Sequences

Each Monte Carlo sampling step for the given mixed graph models is theoreticallytractable, but not
necessarily practical when the dimensionalitym of the data is high. By using clever factorizations
of the graph and ordering of the variables, it is possible to sometimes scale to high-dimensional
problems. In this section, we describe approaches to minimize the run-time of themarginal likeli-
hood computation for bi-directed graphs, which is also important for computing variational bounds
for DMG models. We start, however, with a discussion on factorizations of the posterior density for
coefficient parametersB. The context is the Gibbs sampler for acyclic models.
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Figure 7: The coefficientsb31 andb32, represented as nodes in (a), become dependent after condi-
tioning onY. However, they are still independent ofb54. This a general property of DAG
models. In DMG models, a sequence of bi-directed edges will connect extra coefficients.
In graph (b), coefficientsb21,b32 and b43 will all be dependent givenY. Coefficients
into nodes in different districts will still be independent. The graph in (c) has districts
{Y1,Y2,Y3,Y4} and{Y5,Y6}.

6.1 Factorizations

Our prior for coefficients{bi j} is fully factorized. In directed acyclic graphs, this is particularly
advantageous: coefficients corresponding to edges into different nodes are independent in the pos-
terior.9 One can then jointly sample a whole set of{bi j} coefficients with samei index, with no
concern for the other coefficients. Figure 7(a) illustrates this factorization. This means that, in
Equation (16), the summation overt does not go over all variables, but only fort = i. This also
follows from the fact that(V)−1

it = 0 unlessi = t, sinceV is diagonal.
In ADMGs, however, this is not true anymore. For any pair of vertices linked by a path of

bi-directed edges, for example,Yi ↔Yi+1↔ ·· · ↔Yt , one will have in general that(V)−1
it 6= 0. This

can be shown by using the graphical properties of the model when conditioning on some arbitrary
datapointY:

Proposition 6 Let G be an acyclic DMG with vertex setY, andG ′ the DMG obtained by aug-
mentingG with a vertex for each parameter bi j and a respective edge bi j →Yi . Then if there is a
bi-directed path Yi ↔ ·· · ↔Yt in G , {bi j ,btv} are not m-separated givenY in G ′.

Proof: The joint model for{Y,B} with independent priors on the non-zero entries ofB is Markov
with respect toG ′. The sequence of bi-directed edges betweenYi andYt implies a path betweenbi j

andbtv where every vertex but the endpoints is a collider in this path. Since every collider is in Y,
this path is active.�

This Proposition is illustrated by Figure 7(b). The practical implication is as follows: m-
connection means that there is no further graphical property that would entail (V)−1

it = 0 (i.e., only
particular cancellations on the expression of the inverse, unlikely to happen in practice, would hap-
pen to generate such zeroes).

9. Sampling in Gaussian DAG models is still necessary if the model includes latent variables (Dunson et al., 2005).
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Consider the maximal sets of vertices in an ADMG such that each pair of elements in this set
is connected by a path of bi-directed edges. Following Richardson (2003), we call this adistrict.10

It follows that is not possible in general to factorize the posterior ofB beyond the set of districts of
G . Figure 7(c) illustrates a factorization. Fortunately, for many DMG models withboth directed
and bi-directed edges found in practical applications (e.g., Bollen, 1989), the maximum district size
tends to be considerably smaller than the dimensionality of the problem.

6.2 Perfect Sequences

It is still important to speed up marginal likelihood (or variational bound) computations for models
with districts of moderate size, particularly if many models are to be evaluated.

Without loss of generality, assume our graphG is a bi-directed graph with a single district, since
the problem can be trivially separated into the disjoint bi-directed components. We will consider
the case where the bi-directed graph is sparse: otherwise there is little to be gained by exploring the
graphical structure. In that case, we will assume that the largest numberof spouses of any node in
G is bounded by a constantκ that is independent of the total number of nodes,m. The goal is to
derive algorithms that are of lower complexity inm than the original algorithms.

The bottleneck of our procedure is the computation of theΣ−1
nsp≺(i),nsp≺(i) matrices, required

in the mapping between independent and dependent Bartlett parameters (Equation 7), as well as
computing the determinants|Σnsp≺(i),nsp≺(i)|. Since in sparse districtsnsp≺(i) grows linearly with
m, the cost of a näıve algorithm for a single sampling step isO(m3) per node. Iterating over all nodes
implies a cost ofO(m4) for a Monte Carlo sweep. Therefore, our goal is to find a procedure by which
such mappings can be computed in less thanO(m3) time. The general framework is reusing previous
inverses and determinants instead of performing full matrix inversion and determinant calculation
for eachYi . The difficulty on applying low-rank updates when we traverse the covariance matrix
according to≺ is that the sets of non-spousesnsp≺(i) andnsp≺(i +1) might differ arbitrarily. We
want sensible orderings where such sets vary slowly and allow for efficient low-rank updates, if any.

The foundation of many scaling-up procedures for graphical models is the graph decompo-
sition by clique separators (Tarjan, 1985), usually defined for undirected graphs. The definition
for bi-directed graphs is analogous. Such a decomposition identifies overlappingprime subgraphs
{GP(1),GP(2), . . . ,GP(k)} of the original graphG . A prime graph is a graph that cannot be partitioned
into a triple(Y′,S,Y′′) of non-empty sets such thatS is a complete separator (i.e.,S is a clique and
removingS disconnects the graph). Notice that a clique is also a prime subgraph.

The prime components of a graph can be ordered in aperfect sequence{YP(1), . . . ,YP(k)} of
subsets ofY (Roverato, 2002; Lauritzen, 1996). DefineH j ≡YP(1)∪·· ·∪YP( j) as thehistoryof the
perfect sequence up to thej-th subgraph. LetR j ≡ YP( j)\H j−1 be theresidualof this history (with
R1≡YP(1)), andSj ≡H j−1∩YP( j) the separator. In a perfect sequence, the triple(H j−1\Sj ,Sj ,R j)
forms a decomposition of the subgraph ofG induced by the vertex setH j .

Surprisingly, although bi-directed and undirected graph models have very different Markov
properties (in undirected models, conditioning removes dependencies; in bi-directed models, it adds
dependencies), perfect prime graph sequences prove to be also useful, but in an entirely different

10. Kang and Tian (2005) call such structuresc-componentsand reserve the word “district” to refer to the function map-
ping a vertex to its respective c-component, as originally introduced by Richardson (2003). We choose to overload
the word and call “district” both the structure and the mapping.
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Y7

Y5Y3 Y6

Y1 Y2 Y4

V1 = {Y1,Y2,Y3}
V2 = {Y4,Y5}
V3 = {Y6}

Figure 8: On the left, we have a bi-directed graph of 7 vertices arrangedand ordered such that nodes
are numbered by a depth-first numbering starting from “root”Y7, with {Y1,Y2,Y4,Y6}
being leaves. Vertices{Y1,Y2, . . . ,Y6} can be partitioned as the union∪3

t=1Vt , as illustrated
on the right.

way. The next subsection describes the use of prime graph decompositions in a particularly inter-
esting class of bi-directed graphs: the decomposable case. The general case is treated in the sequel.

6.2.1 DECOMPOSABLEMODELS

In a recursively decomposable graph, all prime subgraphs are cliques. We will assume that any
perfect sequence in this case contains all and only the (maximal) cliques of the graph. The resulting
decomposition can be interpreted as a hypergraph where nodes are the maximal cliques of the origi-
nal graph, and edges correspond to the separators. In the statistics literature, a decomposable model
is defined as a model that is Markov with respect to a recursively decomposable undirected graph
(Lauritzen, 1996). Its widespread presence on applications of Markov random fields is due to nice
computational properties, with tree-structured distributions being a particular case. Our definition
of bi-directed decomposable models is analogous: a model Markov with respect to a recursively
decomposable bi-directed graph.

Given the residual sequence{R1,R2, . . . ,Rk} obtained through a perfect sequence of maximal
cliques ofG , we define aperfect ordering≺ by numbering nodes inRt before nodes inR1, . . . ,Rt−1,
1 < t ≤ k and ordering nodes according to this numbering.11 Any ordering that satisfies this restric-
tion is a perfect ordering. Such an ordering has the following property.

Theorem 7 Let G be a recursively decomposable bi-directed graph such that the indexingof its
verticesY = {Y1,Y2, . . . ,Ym} follows a perfect ordering≺. Then for each1 < i ≤ m, the set

{Y1,Y2, . . . ,Yi−1} can be partitioned as∪K(i)
t=1Vt such that:

1. eachVt induces a connected subgraph ofG , and for each Yt ∈ Vt and Yt ′ ∈ Vt ′ , t 6= t ′, Yt is
not adjacent to Yt ′ in G ;

11. Lauritzen (1996) describes other uses of perfect sequences inundirected graphs. Notice that the notion of perfect
numbering described by Lauritzen (1996) is not equivalent to our notion of perfect ordering, which is always derived
from a perfect sequence of prime graphs.
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2. for each{Yp,Yq} ⊆ Vt , if Yp is a spouse of Yi , and Yq is a non-spouse of Yi , then p> q;

The proof is in Appendix C. This result is easier to visualize in trees. One can take as a perfect
ordering some depth-first ordering for a given choice of root. Then for each vertexYi , the set
{Y1,Y2, . . . ,Yi−1} is partitioned according to the different branches “rooted” atYi . The starting point
of each branch is a spouse ofYi , and all other vertices are non-spouses ofYi . The ordering result
then follows directly from the definition of depth-first traversal, as illustrated in Figure 8.

Let Σ be the covariance matrix of a bi-directed decomposable model with graphG , whereΣ
follows aG -inverse Wishart distribution. Let≺ be a perfect ordering forG . By the construction of
Bartlett’s decomposition, mapping between parameters is given by

Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i),

the computational bottleneck being the inversion. Notice this corresponds to the multiple regression
coefficients ofsp≺(i) on nsp≺(i). But according to Theorem 7, using a perfect ordering implies
that within eachVs for a fixedYi , all preceding non-spouses ofYi are ordered before the preceding
spouses. Elements{Yp,Yq} in differentVs are marginally independent given{Y1, . . . ,Yi−1}\{Yp,Yq}.
This implies that the regression coefficient of spouseYp on non-spouseYq will be zero ifYp andYq

are on different componentsVs, and will be identical to the previously computedBp,q if they are
in the same component. Splitting the set{Y1,Y2, . . .Yi−1} into preceding spousesYsp≺(i) and non-
spousesYnsp≺(i), we have

Ysp≺(i) = Bsp≺(i),sp≺(i)Ysp≺(i) +Bsp≺(i),nsp≺(i)Ynsp≺(i) + εsp≺(i)⇒

Ysp≺(i) = (I −Bsp≺(i),sp≺(i))
−1(Bsp≺(i),nsp≺(i)Ynsp≺(i) + εsp≺(i))

where eachε j is an independent Gaussian with varianceγ j , and each element(p,q) in Bsp≺(i),nsp≺(i)

corresponds to the known (i.e., previously computed) regression coefficient of the spouseYp on the
non-spouseYq. Matrix Bsp≺(i),sp≺(i) is defined analogously. Hence, the regression coefficients of
Ysp≺(i) onYnsp≺(i) are given by

Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i) = (I −Bsp≺(i),sp≺(i))

−1Bsp≺(i),nsp≺(i). (19)

No inversion ofΣnsp≺(i),nsp≺(i) is ever necessary. Moreover, the determinant|Σnsp≺(i),nsp≺(i)| is given
by ∏{q s.t. Yq∈nsp≺(i)} γq, since all non-spouses precede the spouses (which means their marginal
covariance matrix is given by the previously computed Bartlett parameters).

Hence, calculatingBi,nsp≺(i) for all 1≤ i ≤maccording to a perfect ordering has as a bottleneck
the inversion (of a triangular matrix) and multiplication in Equation (19), with a cost of O(κ2+mκ2),
κ being the maximum number of spouses for any given node. The cost of theremaining operations
for the i-th stage in the importance sampler isO(κ3). As a function ofm, the cost of the parameter
sampling step falls fromO(m3) to O(m). The cost of computing the weights is dominated by the
computation ofK i from Equation (13), which isO(κ3 + κm2) = O(m2). Figure 9 illustrates the
derivation of the new ordering in a tree-structured model.

6.2.2 NON-DECOMPOSABLEMODELS

In a non-decomposable model, some prime graphsYP(t) will no longer be cliques. In what follows,
we once again assume that≺ is a perfect ordering. Unlike in the decomposable case, the product
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YC YD Y YC DYCY YB CYCY YA C

(a) (b)

Figure 9: The tree-structured (i.e., cycle-free) bi-directed graph in (a) has as maximal cliques the
adjacent pairs. Such cliques can be ordered in a perfect sequence as shown in (b), where
rectangles indicate the separators. Notice thatR1 = {YA,YC},R2 = {YB},R3 = {YD}. One
possible perfect ordering is{YD,YB,YC,YA}.

Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i) does not simplify in general. Instead we will focus only on fast methods

to computeΣ−1
nsp≺(i),nsp≺(i).

As we shall see, the function of the perfect sequence is now to provide asensible choice of
which inverse submatrices{Σ−1

W,W}, W ⊆ Y, to cache and reuse when computingΣ−1
nsp≺(i),nsp≺(i).

The same can be done to compute determinants|Σnsp≺(i),nsp≺(i)|.
A simple way of reusing the results from the previous section is by triangulatingthe non-

decomposable graphG , transforming it into a decomposable one,G ′, which is then used to generate
the perfect sequence. We need to distinguish between the “true” spouses of a nodeYi in G and the
artificial spouses inG ′ that result from the extra edges added.

Let nsp≺G ′(i) be the non-spouses ofYi in G ′ that precede it according to≺: by construction,
these are also non-spouses ofYi in G . Let sp∆≺G ′(i) be the spouses ofYi in G ′ that arenot spouses
of Yi in G . That is, the set of preceding non-spouses ofYi in G is given bynsp≺(i) = nsp≺G ′(i) ∪
sp∆≺G ′(i).

Recall that the inverse of a partitioned matrix can be given by the following identity:

(

A B
C D

)−1

=

(

A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)

. (20)

In order to computeΣ−1
nsp≺(i),nsp≺(i), we consider its partitioned version

Σ−1
nsp≺(i),nsp≺(i) =

(

Σnsp≺G ′ (i),nsp≺G ′ (i) Σnsp≺G ′ (i),sp∆≺G ′ (i)

Σsp∆≺G ′ (i),nsp≺G ′ (i) Σsp∆≺G ′ (i),sp∆≺G ′ (i)

)−1

. (21)

Let κnsp be the maximum number of non-spouses among allYi within any prime subgraph in-
duced byYP(t). By using relation (20), where we assume for now that we knowA−1 ≡

Σ−1
nsp≺G ′ (i),nsp≺G ′ (i)

, the cost of computing (21) isO(m2κnsp)+O(κ3
nsp) = O(m2κnsp) (the cost of com-

putingD−CA−1B is O(m2κnsp)+O(κ2
nsp) = O(m2κnsp), while the cost of inverting it isO(κ3

nsp)).
Treatingκnsp as a constant, this reduces the complexity of sampling thei-th row of Σ from O(m3)
to O(m2). A similar procedure applies to the computation of the determinant|Σnsp≺(i),nsp≺(i)|, using
in this case the relationship (26).
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The advantage of using the perfect sequence is to allow for the computationof all A−1 ≡
Σ−1

nsp≺G ′ (i),nsp≺G ′ (i)
at a total cost, across all nodes, ofO(m3): each setnsp≺G ′(i) is guaranteed to

be equal to{Y1,Y2, . . . ,Ylns} whereYlns is the last non-spouse ofYi in G ′ that antecedesYi . This
follows from the result in the previous section, since all non-spouses ofa node in a decomposable
graph precede its spouses. Therefore, if we store the inverse covariance matrices for{Y1,Y2, . . . ,Yi},
1≤ i ≤ m, we can obtain the required matricesA−1. This requires the storage ofO(m) matrices,
and each matrix can be obtained by the previous one by a low-rank update (20) with aO(m2) cost.

Arbitrary orderings do not guarantee such an incremental pattern and,hence, no efficient low-
rank updates. Notice that depending on the problem, many of such inversematrices can be dynam-
ically removed from memory if they are not used by any node placed after a particular position.

6.3 Remarks

In Gaussian undirected models, the problem of covariance matrix sampling can also be reduced to
sampling within each prime graph at the cost ofO(|P |4), |P | being the size of the largest prime
component (Atay-Kayis and Massam, 2005). Since bothκ and κnsp are O(|P |), our procedure
costsO(m2|P |2 + |P |4) per prime graph, plus a cost ofO(m2) per node to compute the importance
weights. Considering a number ofm/|P | prime graphs and|P | < m, the total cost isO(m3|P |),
down fromO(m4). For undirected models, the corresponding cost by sampling step using theperfect
ordering decomposition isO(m|P |3). The higher-order dependency onm in bi-directed models is
to be expected, since the Markov blanket of any nodeYt in a connected bi-directed graph isV\{Yt}.
It is clear that inference with a given bi-directed graph model will never scale at the same rate
of a undirected model with the same adjacencies, but this does not justify adopting an undirected
representation if it is ill-suited to the problem at hand. One has also to consider that in problems
with directed and bi-directed edges, the actual maximum district size might be much smaller than the
number of variables. For large problems, however, further approximation schemes will be necessary.
Drton and Richardson (2008b) describe some reduction techniques fortransforming bi-directed
edges into directed edges such that the resulting Gaussian model remains thesame. As future work,
such methods could be adapted to theG -inverse Wishart sampling procedures and combined with
the ordering techniques developed here into a single framework. It will also be interesting to develop
similar schemes for the Gibbs sampler.

7. Experiments

We now evaluate the advantages of the Gaussian and probit models in Bayesian inference on real
problems.

7.1 Industrialization and Democratization Study

Bollen (1989) describes a structural equation model of political and democratization factors within
nations. “Democratization” and “industrialization” levels are abstract notions, but nevertheless of
clearly observable impact. They are tied to empirical observations through different sets ofindi-
cators. For instance, an indicator of industrialization level is the gross national product. Hence,
democratization and industrialization levels are here defined as scalar latentvariables never ob-
served directly, while the observed data is composed of indicators. In this model, there is a total
of three indicators of industrialization, and four indicators of democratization. Democratization is
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11

Y1 Y3

Industrialization 1960

Y2

Democratization 1960 Democratization 1965

Y Y Y5 6 7Y4 Y YY8 Y9 10

1. Gross national product (GNP) 1960
2. Energy consumption per capita 1960
3. Percentage of labor force in industry 1960
4. Freedom of press 1960
5. Freedom of opposition 1960
6. Fairness of elections 1960
7. Elective nature of legislative body 1960
8. Freedom of press 1965
9. Freedom of opposition 1965

10. Fairness of elections 1965
11. Elective nature of legislative body 1965

Figure 10: A directed mixed graph representing dependencies between 11 observed political and
economical indicators and three latent concepts (shaded nodes) (Dunson et al., 2005;
Bollen, 1989).

measured in a longitudinal study, where data was collected in two years (1960 and 1965). The
indicators of democratization are pooled expert opinions summarized in an ordinal number scaled
from 1 to 10. Following Bollen, we will treat the model as multivariate Gaussian,which provides
an excellent fit (a p-value greater than 0.3 using a chi-square test) for asample of 75 countries.

The corresponding mixed graph is depicted in Figure 10, along with a description of all indica-
tors. The graph is taken from Bollen (1989). Other hidden common causesaffect the democratiza-
tion indicators over time, but the nature of such hidden variables is irrelevant to the problem at hand:
that is, the bi-directed edges are motivated by unmeasured causes of variability in the observed in-
dicators that exist over time. For instance, the records of freedom of press in 1960 (Y4) and 1965
(Y8) co-vary due to other unmeasured factors not accounted by democratization factors.
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Figure 11: An embedding of 75 countries in a two-dimensional latent space:democratization level
in 1960 and 1965. Boxplots of the Bayesian posterior distribution of the projection
in the two dimensions are depicted in the vertical axis. Countries are arranged in the
horizontal axis by the increasing order of their posterior expected industrialization level.
Figure adapted from Dunson et al. (2005).

An example of Bayesian inference application is shown in Figure 11. Boxplots of the posterior
values ofDemocratization Level 1960and Democratization Level 1965are generated. Dunson
et al. (2005) use this information to, for instance, find clusters of countries in the latent space. An
example of a cluster is the one formed by the bottom 16 countries in the industrialization level
ranking: the growing trend of democratization levels after the first 16 countries is interrupted. This
type of analysis might provide new insights to a polical scientist, for example, by revealing particular
characteristics for such a group of nations.

7.1.1 EVALUATING THE MCMC ALGORITHM FOR DIFFERENTMODELS

In our analysis, we fix to unity the coefficients corresponding to the edgesIndustrialization 1960
→Y1, Democratization 1960→Y4 andDemocratization 1965→Y8, since the scale and sign of the
latent variables is arbitrary. The intercept terms of the equations forY1,Y4 andY8 are set to zero,
since the mean of the latents is also arbitrary. The resulting model is identifiable.

We apply the Gibbs sampling procedure to three different models. The Gaussian DMG model as
described in this paper, and two modified DAG models. The first DAG model is the one described
by Dunson et al. (2005), where each bi-directed edge is substituted by an “ancillary” latent (as
mentioned in Section 2.3). For instance, the pathway corresponding toY4↔Y8 is substituted by the
chainY4← D48→Y8, whereD48 is unobserved. Dunson et al. further assume that all covariances
due to such ancillary latents are positive. As such, the coefficients fromDi j into {Yi ,Yj} are set
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Figure 12: Posterior distribution of parameters associated with the respective edges in the industri-
alization/democratization domain. Smoothed posterior obtained using the output of our
Gibbs sampler and theDENSITY function of R 2.6.0.
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Figure 13: The first three plots show the initial 5,000 iterations of a run of theGibbs sampling
algorithm for the DMG model for three different parameters associated withedges in
the graph. The last plot depicts the posterior distribution the error covariance associated
with the edgeY7↔Y11 (smoothed with the kernel density estimator from the statistical
software R).

to unity, with the variance ofDi j corresponding to the residual covariance of{Yi ,Yj} given their
parents. Means of ancillary latents are fixed at zero.

However, even for covariance matrices with positive covariances, this parameterization is not
complete. This result is evident from the fact that the variances ofYi andYj will both be larger than
their covariance, which is not true of covariance matrices in general. Forthis particular problem,
however, this extra restriction provides no measurable difference in termsof fitness. It does serve
as a reminder, however, that “intuitive” parameterizations might hide undesirable constraints.

The second DAG model is an extension of the DAG model suggested by Dunson et al., the only
difference being that the coefficients corresponding to edgesDi j →Yi , i < j, are free to vary (instead
of being fixed to 1). In general, there are Gaussian DMG models that cannot be parameterized this
way (Richardson and Spirtes, 2002). Notice also that because of chains such asDemocratization
1960→ Y4↔ Y8← Democratization 1965, the set of independence constraints in this graph can
only be represented by a DAG if we include the ancillary latentsDi j . That is, there is no DAG with
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Figure 14: Comparison of the effective sample size of the MCMC algorithm applied to the three
models, DMG, DAG with positive covariances (posDAG) and general DAG, as ex-
plained in the main text. The horizontal axis is the boxplot for each independent en-
try of the observed covariance matrix, 66 in total. The boxplots are obtainedfrom 80
independent chains initialized randomly, where each chain runs for 50,000 iterations.

exactly the same set of independence constraints as the given DMG, unless ancillary latent variables
are added.

We study the behavior of the MCMC algorithm for these three models.12 It turns out that the
mixing properties of the chain are considerably affected by the choice of model. Recall that, in
the Gibbs sampling algorithm for the DMG model, a whole row of the error covariance matrix is
sampled jointly conditioning on the other parameters. For the DAG models all entriesof the error
covariance matrix are independent and can be sampled jointly, but this requiresconditioningon the
ancillary latents, which do not exist in the DMG model and have to be sampled only in the DAG
case.

For the majority of the covariance entries, the MCMC procedure mixed quite well, as illustrated
in Figure 13. Notice how about 12% of the sampled DMG error covariancesfor Y7↔Y11 were under
zero, which could raise suspicion over the assumption of positive covariances. Autocorrelation is

12. A few technical notes: we used the priors suggested in Dunson et al.(2005), except that we changed the confidence
in the prior of the covariance of the error termsV to be smaller (in order to minimize the influence of the priors in the
models, since in this particular problem the DMG and DAG models are nearly likelihood equivalent but not posterior
distribution equivalent− the priors belong to different families). We used 1 degree of freedom inour G -Inverse
Wishart, with the matrix parameter being the expected value of Dunson et al.’s prior. For the DAG models, we also
used theG -inverse Wishart prior for the error terms, but where all error termsare independent. For the DAG model
with a free coefficient per ancillary latent, we assigned a standard Gaussian prior to such coefficients. The chains
were initialized randomly by sampling standard Gaussians for the coefficients and latent variables. Error covariance
matrices were initialized to diagonal matrices with diagonal entries sampled uniformly in [1,2]. Coefficient parame-
ters were sampled jointly given the error covariance matrix and latent variables. Latent variables were also sampled
jointly, given the parameters.
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Figure 15: Comparison of the effective sample size of the MCMC algorithm applied to the three
models. Here we plot the average effective sample sizes over 80 trials of 50,000 sam-
ples for each of the 66 entries of the covariance matrix. Points over the line indicate
parameters where the DMG approach performed better.

essentially zero for most parameters at a lag of 50. The degree of autocorrelation, however, varied
significantly between the DMG model and each DAG model. The chains for the DMG model
mixed considerably better. To summarize such behavior, we calculated the effective sample size
of the samples obtained from several chains. The parameters of interestin this comparison are the
independent entries in the 11×11 dimensional observed covariance matrix. This is a total of 66
parameters. The effective sample size statistics were obtained by 80 independent chains of 50,000
samples each, for the three models. For each chain and each parameter, we compute the desired
statistic using theEFFECTIVESIZE function implemented in the R packageCODA, freely available
in the Internet.

Results are summarized by boxplots in Figure 14. Parameters are ordered inthe x-axis following
the upper triangular covariance matrix, scanning it in the order{σY1Y1,σY1Y2, . . . , σY1Y11,σY2Y2, . . . ,
σY11Y11}. White boxplots correspond to the distribution of effective sample size statistics with the
DMG model across the 80 independent chains. Gray boxplots correspond to the two DAG variants.
There is no significant difference between the behaviour of the Gibbs sampling procedure for the
two DAG models. The procedure with the DMG model is clearly better behaved.As a summary
statistic, the average effective sample size over 80 trials was steadly largerin the DMG outcome
than in the positive DAG outcome (61 out of 66 parameters) and unconstrained DAG (59 out of 66).
The comparison of averages is illustrated by Figure 15.

By caching the sufficient statistics of the data and factorizing the sampling procedure according
to the districts of the graph, the running time for generating 50,000 samples outof the DMG model
was of 34 seconds in a dual core Pentium IV 2.0 GHz. Depending on the connectivity of the bi-
directed components of the graph and on the implementation of matrix inversion, sampling from the
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DAG model might be faster than sampling from the DMG. In this particular study,sampling from the
DAG models was substantially slower, an approximate average of 60 seconds for both variants. This
can be explained by the fact that sampling latent variables is very expensive, especially considering
that in the given DAG models all ancillary latents become dependent when conditioning on the data.
To summarize, the DMG approach allowed for a complete parameterization with significantly better
mixing properties, while still resulting in a faster MCMC procedure.

7.2 Structure Learning Applications

When trying to find a point estimate of graphical structures (i.e., returning a single graph that ex-
plains the data well), simple approaches such as testing for marginal independencies are reasonable
learning algorithms under the Gaussian assumption. The Bayesian approach, however, allows one
to compute odds and distributions over graphs and graph statistics, for example, the joint probability
of small substructures (Friedman and Koller, 2003). Moreover, it is notclear how the independence
test procedure controls for the predictive ability of the model, which is not astraightforward function
of the edges that are selected due to the quantitative aspects of the dependencies.

We evaluate our Bayesian model selection contribution, focusing on the Monte Carlo sampler
for bi-directed models. Jones et al. (2005) propose the following priorsfor graphs:

P (G |β) = β|E|(1−β)0.5m(m−1)−|E|

whereβ is a hyperparameter,|E| is the number of edges inG , andm is the number of nodes. As
suggested by Jones et al., we chooseβ = 0.5/(m−1), which puts more mass on graphs withO(m)
edges than the uniform prior.

We start with a brief synthetic study to compare the approach against a simple but effective
approach based on the BIC approximation.13 An experiment with gene expression data closes this
subsection.

7.2.1 SYNTHETIC STUDIES

As a sanity check for the procedure, we generate synthetic 10-dimensional Gaussian data from
models that are Markov with respect to a bi-directed graph. One hundreddata sets of 50 datapoints
each are generated, each coming from a different model.14 We initially find a structure by marginal
independence tests using the Fisher’s Z statistic at a 0.05 level. From this starting point, we perform
two searches: one using the BIC score, and the other using the marginal likelihood with aG -IW
prior.15 Given the best model for each procedure, we evaluate the predictive log-likelihood on a test
set of 2,000 points which are independently sampled for each of the 100 models.

13. The BIC approach is an asymptotically consistent score for selectingthe maximum a posteriori Gaussian bi-directed
graph model (Richardson and Spirtes, 2002).

14. The details of the simulated data are as follows: we start with DAG with no edges, with observed nodes
{Y1,Y2, . . . ,Y10} and hidden nodes{X1,X2,X3,X4}. Each individual edgeXi → Yj is added with probability 0.35,
and no other edges are allowed. We reject graphs with fewer than 10 edges. All coefficient parameters are sampled
from a standard Gaussian, and variances from an uniform distribution in[0,1]. The model overY corresponds to
a bi-directed graph, where the edgeYi ↔ Yj exists if and only ifYi andYj have a common latent parentXk in the
DAG. We then store 50 samples for theY variables in a data set. The procedure is repeated 100 times with different
parameters and graphical structures each time. The average numberof edges in the resulting simulation was of 18.4
edges per graph.

15. In both cases, we center the data at the empirical mean of the training set and assume the data to have been generated
from a zero-mean Gaussian. TheG -Inverse Wishart is an empirical prior: a diagonal matrix with the training variance
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Figure 16: The differente in predictive log-likelihood with models learned withthe G -IW prior
and the best BIC models found by greedy search. Although the difference per point is
small, it reflects a persistent advantage of the full Bayesian approach. Figure (a) shows
the estimated density of the distribution of differences when predicting points using
the Bayesian predictive log-likelihood. Since the BIC search method does not atempt
to maximize the finite sample posterior distribution, we provide Figure (b) for com-
pleteness: in this case, the predictive log-likelihood for the BIC model was calculated
using the maximum likelihood estimator. The difference hardly changes, and the fully
Bayesian model still wins (density estimates produced by theDENSITY(·) function of R
2.6.0.).

The average difference in log-likelihood prediction16 between the structure learned with the
Bayesian prior and the BIC-induced model is depicted in Figure 16(a). This is computed by con-
ditioning on the learned structures (fully Bayesian vs. BIC maximum a posteriori graphs) and
marginalizing over the posterior of the parameters. The parameter priors are those used for the
structure learning step. This might be unfair for the BIC procedure, since it is not designed to max-
imize the finite sample posterior: hence we also show in Figure 16(b) the resultsobtained when the
predictions given the BIC model are obtained by using the maximum likelihood estimators of the

of each variable used as the diagonal. The number of degrees of freedom is set to 1. The search is a standard greedy
procedure: we evaluate the marginal log-likelihood or BIC score for each graph that differs from the current candidate
by one edge (i.e., graphs with one more or one fewer edge) and pick the one with the highest score. We stop when
no improvement is possible.

16. In terms of incorrect edge additions and deletions, the proceduresbehave about the same: an average of one third
of the edges is missed, and 7% of edges are incorrectly added (individual percentages are with respect to total
number of possible mistakes in each graph). Unlike BIC, however, ourprocedure allows for different trade-offs
by using different priors. It should also be pointed out that counting edge errors is just one possible measure. A
more global quantitative score such as predictive log-likelihood takes intoaccount, indirectly, the magnitude of the
errors—although it is not a direct measure of model fitness.
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parameters. The average difference in the first case is 400.07, and only slightly less for the second
case (389.63). Most of the mass of the difference distribution is positive (85 out of 100 for the first
case, 89 out of 100 in the second case), which passes a sign test at a 0.05 level. The difference is
still relatively small, suggesting that informative prior knowledge might be necessary to produce
substantially better predictions.

7.2.2 GENE EXPRESSIONANALYSIS

To illustrate the use of Bayesian model selection approaches, we analyse the gene expression data
previously studied by Drton and Perlman (2007), also as Gaussian bi-directed models. As before,
our goal will be to compare the predictive power of models learned by greedy search with BIC and
greedy search with the Bayesian posterior.

The data consists of 13 gene expression measurements from a metabolic network. A total of
118 points is available. Using all data, the BIC-induced graph has 39 edges, while the finite sample
posterior graph had 44. The same procedure used in the synthetic studies, for initializing graphs
and choosing priors and centering the data, was applied in this case with two choices of degrees of
freedomδ for theG -IW prior: δ = 1 andδ = 5. Preliminary experiments where 90% of the samples
are assigned to the training set showed a negligible difference between methods. We then generate
10 random splits of the data, 50% of them assigned to the training set. Predictive results using the
MCMC method for evaluating the Bayesian predictions (with half a million samples) are shown in
Table 1. The BIC graphs are by definition the same in the three sets of evaluation, but parameters
are learned in three different ways (maximum likelihood point estimation and Bayesian averaging
with two different priors). There is a steady advantage for the Bayesianapproach, although a small
one. Notice that using Bayesian averaging over parameters given the BIC graph improves prediction
when compared to using the maximum likelihood point estimate, despite the simplistic choice of
prior in this study. Notice also that the cases where the Monte Carlo method hassmall or no
advantage over the BIC method were the ones where the maximum likelihood estimators produced
their best results.

7.2.3 REMARKS

The procedure based on the sampler is doable for reasonably sized problem on the order of a few
dozen variables in desktop machines. Further improvements are necessary for larger problems.
One aspect that was not explored here was re-using previous computations when calculating the
probability of a new candidate, in a way similar to the local updates in DAG models (Chickering,
2002). How to combine local updates with the ordering-based improved sampler of Section 6 is
left as future research. Several practical variations can also be implemented, such as vetoing the
inclusion of edges associated with high p-values in the respective independence tests. Such tabu
lists can significantly shrink the search space.

It is important to evaluate how the Monte Carlo procedure for computing normalizing constants
behaves in practice. For all practical purposes, the procedure is an importance sampler and as such
is not guaranteed to work within a reasonable amount of time for problems of high dimensionality
(MacKay, 1998). We can, however, exploit the nature of the problem for our benefit. Notice that the
procedure depends upon a choice of ordering≺ for the variables. Different orderings correspond
in general todifferent importance distributions. We can play with this feature to choose an suitable
ordering. Consider the following algorithm for choosing an ordering given a bi-directed graphG :
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MLE δ = 1 δ = 5
Folder BIC BIC MC BIC MC

1 -6578.44 -6382.45 -6308.19 -6342.82 -6296.14
2 -6392.67 -6284.64 -6277.94 -6279.54 -6285.26
3 -8194.54 -6567.89 -6433.51 -6553.88 -6452.15
4 -6284.00 -6265.16 -6285.77 -6252.54 -6258.42
5 -9428.00 -6473.93 -6400.51 -6483.43 -6469.45
6 -7111.45 -6573.85 -6572.74 -6528.76 -6513.02
7 -6411.43 -6329.53 -6317.18 -6313.05 -6309.18
8 -6350.44 -6319.87 -6295.19 -6299.53 -6297.80
9 -6374.31 -6307.13 -6308.21 -6297.47 -6304.25
10 -7247.82 -6584.96 -6468.51 -6528.61 -6444.55

Table 1: Results for the 10 random splits of the gene expression data, with 50% of the points as-
signed to the training set. The first column shows the predictive log-likelihoodfor the
graph learned with the BIC criterion and parameters fit by maximum likelihood. The next
two columns show predictive log-likelihood results for the graphs learned with BIC and
the Monte Carlo (MC) marginal likelihood method using aG -IW prior with degrees of
freedomδ = 1. The last two columns are the results of a prior whereδ = 5. Best results in
bold.

1. Let≺ be an empty queue.

2. LetG ′ be the graph complement ofG , that is, the graph where{Yi ,Yj} are neighbors if and
only if they are not adjacent inG .

3. LetC be an arbitrary maximum clique ofG ′. Add all elements ofC to the end of≺ in any
arbitrary order.

4. For each pair{Yi ,Yj}, not intersectingC , such that the pathYi ↔ Yk↔ Yj exists inG and
Yk ∈ C , add the edgeYi ↔Yj toG .

5. Remove all elementsYk ∈ C fromG , including any edge intoYk.

6. Iterate Steps 2-5 untilG is an empty graph.

The resulting queue≺ is an ordering that attempts to maximize the number of variables that are
marginally independent given their common predecessors. This is just onepossibility to simplify the
importance sampling distribution: perfect orderings and the approaches for simplifying maximum
likelihood estimation described by Drton and Richardson (2008b) could be adapted to provide even
better orderings, but we leave this as future work.17

17. In our actual implementation used in the experiments in this Section, we implemented an even simpler approach:
instead of finding maximum cliques, we start to build a clique from a particularnode, “greedily” adding other nodes
to the clique according to the column order of the data set. Each node generates a candidate clique, and we pick an
arbitrary clique of maximal size to be our new setC .
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Figure 17: An evaluation on the stability of the Monte Carlo normalizing function procedure. The
top row depicts the marginal likelihood estimates for the gene problem using two dif-
ferent distributions implied by two different orderings, as explained in the text. Experi-
ments with synthetic data are shown in the bottom, and the bottom-right figure illustrates
major differences.

Figure 17 illustrates the difference that a smart choice of ordering can make. The top left graph
in Figure 17 depicts the progress of the marginal likelihood Monte Carlo estimator for the gene
expression problem using the graph given by the hypothesis testing procedure. The model has 55
parameters. We obtain three estimates, each using a sample of 100,000 points,which allows us
to observe how the estimates change at the initial stages. The variable ordering in this case is the
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ordering present in the original database (namely, DXPS1, DXPS2, DXPS3, DXR, MCT, CMK,
MECPS, HDS, HDR, IPPI1, GPPS, PPDS1 and PPDS2). The top right graph shows three runs
using the optimized ordering criterion. Convergence is much faster in this case, and both samplers
agree on the normalizing constant estimate.

As an illustration of the power of the procedure and its limitations, we generateda synthetic
sample of 1,000 training points from a graph with 25 nodes, using the same procedure of Section
7.2.1. A run of two different samplers is shown at the bottom left of Figure 17. They are seemingly
well-behaved, the ratio between the largest and median weight being at the order of one hundred
in the “optimally” ordered case. In contrast, the bottom right corner of Figure 17 illustrates the
method with a covariance matrix of 50 random variables and 1,000 training points. Notice this is a
particularly dense graph. Much bigger jumps are observed in this case and there is no clear sign of
convergence at 100,000 iterations.

While there is no foolproof criterion to evaluate the behavior of an importancesampler, the
relationship between orderings provides a complementary technique: if the normalizing constant
estimators vary substantially for a given set of random permutations of the variables, then the out-
comes are arguably not to be trusted even if the respective estimators appear to have converged.

Concerning the choice of priors, in this Section we exploited empirical priors. TheG -Inverse
Wishart matrix hyperparameter is a diagonal matrix where variance entries are the sample variances.
While this adds an extra bias towards diagonal matrices, at least in our experiments we performed
close to or better than other approaches—it is however not clear whetherwe could have done much
better. It is still an open question which practical “default” hyperparameters will prove useful for the
G -IW. Elicitation of subjective priors in the context of structural equation models can benefit from
pre-existing work on Bayesian regression, although again practical matters might be different for
theG -IW. Dunson et al. (2005) describe some limitations of default priors for structural equation
models. A thorough evaluation of methods for eliciting subjective priors is outof the context of
this work, but existing work on inverse Wishart elicitation provides a startingpoint (Al-Awadhi
and Garthwaite, 1998). As in the case of the inverse Wishart, theG -Inverse Wishart has a single
hyperparameter for specifying degrees of freedom, a limitation which might motivate new types of
priors (Brown et al., 1993).

7.3 Discrete Data Applications

We now show results on learning a discrete distribution that factorizes according to a mixed graph.
Drton and Richardson (2008a) describe applications on real-world binary data modeled according
to bi-directed graphs. The empirical contingency tables for two studies canbe found in the corre-
sponding technical report (Drton and Richardson, 2005). Drton andRichardson used a complete
parameterization for bi-directed binary models and a maximum likelihood estimation procedure.
In this section, we analyze these two data sets to illustrate the behavior of our Bayesian procedure
using the probit model. Our model imposes probit constraints that are not enforced by Drton and
Richardson, but it allows us to obtain Bayesian credible intervals and predictions.

The graphs used in the two studies are depicted in Figure 18. The first problem is a study on the
dependence between alcoholism and depression, as shown in Figure 18(a). A data point is collected
for a given pair of mono-zygotic twins. For each siblingSi , it is recorded whetherSi is/is not
alcoholic (Ai), and whetherSi suffers/does not suffer from depression (Di). The hypothesis encoded
by the graph is that alcoholism and depression do not share a common genetic cause, despiteA and
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A1

D1

A2

D2

Success Type of offense

Drugs

Prior sentence

Age

(a) (b)

Figure 18: Two learning problems with discrete data. In (a), the graph shows dependencies con-
cerning alcoholism (Ai) and depression (Di) symptoms for paired twins{1,2}. In (b), a
model for dependencies among features of a study on parole appeals, including the suc-
cess of the parole, if the type of offense was a person offense or not,and if the offender
had a dependency on drugs and was over 25 years old. All variables inthese studies are
binary and further details and references are provided by Drton and Richardson (2008a).
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Figure 19: Posterior distribution of some of the marginal contingency table entries for the twin
model.

D having some hidden (but different) genetic causes. IfA andD did have genetic common causes,
one would expect that the edgesA1↔ D2 andA2↔ D1 would be also required. The compounded
hypothesis of marginal independencies forAi andD j , i 6= j, can be tested jointly by testing a bi-
directed model. Notice that no reference to particular genetic hidden causes of alcoholism and
depression is necessary, which again illustrates the power of modeling by marginalizing out latent
variables.

The second study, as shown in Figure 18(b), concerns the dependencies among several variables
in an application for parole. The model implies, for instance, that the success of a parole application
(Successnode, in the Figure) is independent of the age of the offender being under 25 (Agenode).
However, if it is known that the offender had a prior sentence, these twovariables become dependent
(through the pathSuccess↔ Prior sentence↔ Age). As reported by Drton and Richardson, their
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Entry Estimates Entry Estimates
A1A2D1D2 E[Θ|D] MLE uMLE A1A2D1D2 E[Θ|D] MLE uMLE

0000 0.461 0.461 0.482 1000 0.018 0.018 0.013
0001 0.136 0.138 0.134 1001 0.003 0.004 0.007
0010 0.157 0.159 0.154 1010 0.021 0.020 0.013
0011 0.097 0.096 0.085 1011 0.009 0.009 0.015
0100 0.032 0.032 0.025 1100 0.008 0.010 0.005
0101 0.022 0.021 0.015 1101 0.003 0.002 0.003
0110 0.007 0.008 0.012 1110 0.003 0.005 0.007
0111 0.012 0.012 0.017 1111 0.006 0.005 0.012

Figure 20: The posterior expected value of the 16 entries in the twin study table (E[Θ|D]). Results
generated with a chain of 5,000 points. We also show the maximum likelihood estimates
of Drton and Richardson (MLE) and the maximum likelihood values obtained using an
unconstrained model (uMLE). Despite the probit parameterization, in this particular
study there is a reasonable agreement between the Bayesian estimator and the estimator
of Drton and Richardson.

binary bi-directed model passes a significance test. Drton and Richardson also attempted to learn
an undirected (Markov) network structure with this data, but the outcome was a fully connected
graph. This is expected, since Markov networks cannot represent marginal independencies unless
the graph is disconnected, which would introduce all sorts of other independencies and possibly
not fit the data well. If many marginal independencies exist in the data generating process, Markov
networks might be a bad choice of representation. For problems with symmetries such as the twin
study, DAGs are not a natural choice either.

7.3.1 RESULTS

For the twin data problem, we used a simple prior for the covariance matrix of theunderlying latent
variables: aG -inverse Wishart with 1 degree of freedom and a complete covariance witha value
of 2 for each element in the diagonal and 1 outside the diagonals. Thresholds are fixed at zero,
since we have binary data. We present the expected posterior values ofthe contingency table entries
in Figure 20. The outcome is essentially identical to the maximum likelihood estimates ofDrton
and Richardson despite the probit parameterization. Moreover, with our procedure we are able to
generate Bayesian confidence intervals, as illustrated in Figure 19. The results are very stable for a
chain of 1,000 points.

For the parole data, we used aG -inverse Wishart prior for the covariance matrix of underlying
variablesY⋆ with 1 degree of freedom and the identity matrix as hyperparameters. We compare the
effective sample size of the Gibbs sampler for our DMG model and the DAG model obtained by
using the ancillary latent parameterization of Section 7.1 for the underlying latent variable covari-
ance matrix.18 Boxplots for the 16 contingency table entries of the twin network and the 32 entries
of the parole study are shown in Figure 21. The setup is the same as in the democratization and

18. The priors used are as follows: the ancillary representation was given a prior with mean 1 and variance 1 for the
coefficientsXi j → Y⋆

j , for j > i, and set constant to 1, ifi < j. The means of the ancillary latents were fixed at
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industrialization experiment, where we run 80 independent chains and plotthe distribution of the
effective sample sizes to measure the mixing time. We ran a shorter chain of 2,000 points, since
computing the contingency table entries is expensive.

There is a substantial difference in effective sample size for the parole study. Notice that we are
comparing MCMC samples for the entries in the contingency table, which in the DAG case requires
integrating out not only the underlying latent variables implicit in the probit parameterization, but
also the ancillary latents that account for the bi-directed edges. This hierarchy of latent variables,
which does not exist in the DMG case, causes a considerable increase on autocorrelation of the
chain compared to the DMG model. The standard DMG parameterization can be seen as a way
of obtaining a collapsed Gibbs sampler, where the parameterization by construction reflects latent
variables that were analytically marginalized.
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Figure 21: Comparison of effective sample sizes for the twin data (a) and parole data (b). 80 in-
dependent chains of 2,000 points were obtained using the Gibbs sampling algorithm,
and the respective box-plots shown above. The Markov chain with the DMG approach
easily dominates the DAG one. For the parole data, the average effective sample size for
the DAG was as low as 60 points.

8. Conclusion

Directed mixed graph models are a generalization of directed graph models. Whenever a machine
learning application requires directed graphs, one should first consider whether directed mixed
graphs are a better choice of representation instead. DMGs representconditional independencies
of DAGs where hidden variables have been marginalized out. Given that inmost applications it is

0. Variance parameters were given(0.5,0.5) inverse gamma priors, which approximately matches the priors in the
DMG model.
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2Y1 Y3 Y4Y
2Y1 Y3 Y4Y

(a) (b)

Figure 22: In (a), a simple bi-directed chain with four random variables. In (b), the respec-
tive factor graph that is obtained from a Bartlett parameterization using the order-
ing ≺≡ {Y1,Y2,Y3,Y4}. In this case, the factors arep(Y1)× p(Y2|Y1)× p(Y3|Y1,Y2)×
p(Y4|Y1,Y2,Y3). A different choice of ordering (e.g., the perfect ordering) could pro-
vide simpler factors on average, but the presence of a factor linked to allvariables is
unavoidable.

unlikely that all relevant variables are known, DMGs are a natural representation to use. In this pa-
per, we introduced priors and inference algorithms for Bayesian learning with two popular families
of mixed graph models: Gaussian and probit. We discussed some implementationsand approxima-
tions to scale up algorithms. We showed examples of applications with real data,and demonstrated
that Bayesian inference in Gaussian and probit DMG models using MCMC can have substantially
faster mixing than in comparable DAGs.

It is part of the machine learning folklore that factor graphs can subsumedirected networks.
In an important sense, this is known not to be true: undirected and factor graphs only allow for
monotonic independence models, where explaining away is ruled out. This excludes a vast number
of realistic, non-monotonic, models. While factor graphs are perhaps thedata structuresof choice
for general message-passing algorithms (e.g., Yedidia et al., 2005), theyare far from being universal
modeling languagesfor independencies.

What is true is that for any distribution that is Markov with respect to a DAG orDMG there
is at least one corresponding factor graph model, but this is a vacuous claim of little interest: any
distribution can be represented by a single-factor model involving all variables. Some willrequire
a factor with all variables, even under the presence of a large number ofindependence constraints.
For instance, a factor graph corresponding to any given bi-directed chain will necessarily include
a factor node adjacent to all variable nodes, as illustrated in Figure 22. When parameterizing a
distribution with many marginal independencies (e.g., a bi-directed tree), the respective factor graph
would be no more than an unhelpful drawing. A better strategy for solving real-world problems is
to define a family of models according to the (directed/undirected/factor) graphs of choice, and let
the inference algorithm decide which re-expression of the model suits the problem. This has been
traditional in graphical modeling literature (Lauritzen, 1996). The strategyadopted in this paper
followed this spirit.

An alternative has been recently introduced by Huang and Frey (2008). This paper discusses
graphical families of marginal independence constraints (essentially identical to bi-directed graphs,
although other types of constraints might implicitly follow from the parameterization). Models are
parameterized using a very different strategy. The idea is to parameterizecumulative distribution
functions (CDFs) instead of densities or probability mass functions. A simple factorization criterion
can be defined in the space of CDFs, but densities have to be computed by anovel message-passing
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scheme. The particular application discussed by Huang and Frey (2008)could in principle be ap-
proached using the Gaussian bi-directed probit model of Section 5, but the parameterization in
Huang and Frey (2008) does not need to rely on Gaussian distributions.It is not clear, however,
how to efficiently perform Bayesian inference in this case and which constraints are implicitly im-
plied by the different choices of parameterization. The different perspective given by products of
CDFs is novel and promising. It should point out to new directions in mixed graph modeling.

The structural equation modeling literature also describes several pragmatic ways of specifying
non-linearities in the structural equations (Lee, 2007). Less common is the specification of non-
Gaussian models for the joint density of the error terms. Silva and Ghahramani (2009) introduce a
flexible mixture of Gaussians approach for models of marginal independence. There is a need on
how to combine this approach with flexible families of structural equations in a computationally
efficient way. Also, models with non-additive error terms remain to be explored.

Current interest in estimating sparse statistical models has lead to approaches that estimate struc-
tured covariance matrices (e.g., Bickel and Levina, 2008). This development could also lead to new
families of priors. In particular, different matrix decompositions have motivated different ways of
specifying priors on covariance matrices. For instance, Chen and Dunson (2003) propose a modified
Cholesky decomposition for the covariance matrix of random effect parameters: standard devia-
tions are parameterized separately with a prior that puts positive mass on zero variances (effectively
allowing the random effect to be neutralized). Wong et al. (2003) describe a prior for inverse corre-
lation matrices that is uniform conditioned on the number of structural zeros.Metropolis-Hastings
schemes are necessary in this case.

Shrinkage methods have also been applied to the estimation of covariance matrices. A common
approach, shrinkage towards a diagonal matrix (e.g., Daniels and Kass,1999), could be generalized
towards some sparse matrix corresponding to a bi-directed graph. Althoughshrinkage will not
generate structural zeros in the resulting matrix, allowing for sparse shrinkage matrices other than
the identity matrix could be interesting in prediction problems.

Some approaches can exploit an ordering for the variables, which is natural in some domains
such as time-series analysis. While theG -Inverse Wishart is invariant to a permutation of the vari-
ables, new types of priors that exploit a natural variable ordering should be of interest, as in the
original work of Brown et al. (1993) that motivated our approach.

Other directions and applications are suggested by recent papers:

• learning measurement models:the industrialization and democratization problem of Sec-
tion 7.1 provides an example of a measurement model. In such a family of problems, observed
variables are children of latent variables, and connections from latents toobservables define
the measurement model. Sparsity in the measurement can be exploited to allow formore
general dependencies connecting latent variables. One role of the bi-directed component is
to allow for extra dependencies connecting observed variables that arenot accounted by the
explicit latent variables in the model. Silva et al. (2006) describes a learningalgorithm for
mixed graph measurement models using the “ancillary” parameterization. The natural ques-
tion is which alternative optimization strategies could be used and how to scale them up;

• structural and relational learning: in prediction problems where given an input vectorX
we have to predict an output vectorY, the dependence structure ofY given X can also lie
within the directed mixed graph family. Silva et al. (2007) introduces mixed graphmodels
within the context of relational classification, whereY are labels of different data points
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not independently distributed. In such a class of problems, novel kinds of parameterization
are necessary since the dimensionality of the covariance matrix increases with the sample
size. Structural features of the graph are used to propose differentparameterizations of the
dependencies, and many other alternatives are possible;

• causal inference: mixed graphs have been consistently used as a language for represent-
ing causal dependencies under unmeasured confounding. Zhang (2008) describes recent ad-
vances in identifying causal effects with ancestral graphs. Algorithms for learning mixed
graph structures are described by Spirtes et al. (2000) and the recentadvances in parameter-
izing such models should result in new algorithms;

Many challenges remain. For instance, more flexible models for DMG discretemodels are
being developed (Drton and Richardson, 2008a), but for large graphs they pose a formidable com-
putational problem. An important question is which other less flexible, but moretractable, pa-
rameterizations could be used, and which approximation algorithms to develop.The probit family
discussed here was a choice among many. The parameterization by Drton and Richardson (2008a)
could be a starting point for trading-off flexibility and computational effort.And while it is true
that Gaussian copula models (Pitt et al., 2006) can be adapted to generalizethe approach introduced
here, it remains to be seen if other copula parameterizations easily lead to DMGmodels.
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Appendix A. Deriving the Sampling Distribution for the Monte Carlo Computation
of Normalizing Constants

We give here the details on how to derive the sampling distribution used for computing normalizing
constantsIG (δ,U), as described in Section 3.2.2.

Let A i ≡ Σsp≺(i),nsp≺(i)Σ−1
nsp≺(i),nsp≺(i). Recall from Equation (7) thatBi,nsp≺(i) = −Bi,sp≺(i)A i .

The original densityp(Bi | γi), as given by Lemma 1, is a multivariate Gaussian with the following
kernel:

exp
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 (22)

whereU{i−1},{i−1} in Lemma 1 was rearranged above as the partitioned matrix in (14). The pair
{M sp≺(i),Mnsp≺(i)} corresponds to the respective partition of the mean vectorM i . Plugging in the
expression forBi,nsp≺(i) in (22), we obtain the modified kernel
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which can be rewritten as

pb(Bi,sp≺(i);K imi ,γiK i) × (2π)#sp≺(i)/2|γi |
#sp≺(i)/2|K i(Φi−1)|

1/2

× exp

{

−
1
2

γ−1
i Ui

}

(24)

where #sp≺(i) is the size of setsp≺(i), pb(·;α,Σ) is the density function of a multivariate Gaussian
distribution with meanα and covarianceΣ, K i(Φi−1)≡K i to emphasize the contribution of previous
parameters, and

mi = (Uss−A iUns)M sp≺(i) +(Usn−A iUnn)Mnsp≺(i),

K−1
i = Uss−A iUns−UsnAT

i +A iUnnAT

i ,

Ui = MT

i U{i−1},{i−1}M i−mT

i K imi .

If sp≺(i) = /0, it follows thatBi = Bi,nsp≺(i) = 0. The kernel (23) reduces to exp(−0.5Ui/γi),
andUi ≡ MT

i U{i−1},{i−1}M i . If nsp≺(i) = /0, then the expression for the kernel does not change
(Ui ≡ 0), and Equation (24) corresponds to the original kernel in Equation (11).

Inserting the re-expressed kernel into the original function (11), we obtain

pb(Bi,sp≺(i);K imi ,γiK i)pg

(

γi ;
δ+ i−1+#nsp≺(i)

2
,
uii .{i−1},{i−1}+Ui

2

)

fi(Φi−1)

wherepg(·;α,β) is an inverse gamma density function and

fi(Φi−1) ≡ (2π)−
(i−1)−#sp≺(i)

2 |K i(Φi−1)|
1/2|U{i−1},{i−1}|

1/2

×
(uii .{i−1},{i−1}/2)(δ+i−1)/2

Γ((δ+ i−1)/2)

Γ((δ+ i−1+#nsp≺(i))/2)

((uii .{i−1},{i−1}+Ui)/2)(δ+i−1+#nsp≺(i))/2
.

Appendix B. Variational Updates for Gaussian Mixed Graph Models

The variational updates for the coefficient and intercept parameters are essentially identical to their
joint conditional distribution givenV andX, where occurrences ofV andX are substituted by expec-
tations

〈

V−1
〉

q(V)
and〈X〉q(X), respectively. LetVi j be thei j -th entry of

〈

V−1
〉

q(V)
. The covariance

matrix of (B,α) is the covariance matrix of the vectorvec(B,α). Such vector is constructed using
all (non-zero) coefficients and intercepts. We denote this covariance matrix by ΣB,α. For simplicity
of notation, we will treatαi as the coefficientbi(m+1), m being the number of variables. We will

also adopt the notationY(d)
m+1 ≡ 1 in the following derivations. As an abuse of notation, letY also
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refer to latent variables. In this case, ifYi andYj refer to latent variablesXhi andXh j , then define
Yi ≡ 〈Xhi 〉q(X), andYiYj ≡

〈

Xhi Xh j

〉

q(X)
.

Let bi j andbtv be ther-th ands-th entries ofvec(B,α), respectively. Thers-th entry of the
inverse matrixΣ−1

Bα is given by

(Σ−1
Bα)rs = Vit

n

∑
d=1

Y(d)
j Y(d)

v +1(i = t)1( j = v)
cb

i j

sb
i j

wherebxpx ≡ 0 if no edgeYx←Ypx exists in the graph, 1(·) is the indicator function, andcb
i j , sb

i j are
the given prior parameters defined in Section 4. Similarly to the factorization criterion explained
in Section 6, the matrixq(V) will in general be block-diagonal, and this summation can be highly
simplified.

Define now a vectorcb analogous to the Gibbs sampling case, where

cb
r =

m

∑
t=1

Vit

n

∑
d=1

Y(d)
j Y(d)

t +
cb

i j

sb
i j

.

The variational distributionq(B,α) is then aN(ΣB,αc,ΣB,α). The variational distribution for the
latent variables will exactly the same as the Gibbs distribution, except that references toB,α,V−1

are substituted by〈B〉q(B,α) ,〈α〉q(B,α) and
〈

V−1
〉

q(V)
.

Appendix C. Proofs

Proof of Lemma 2: Arrange the columns of the Jacobian such that their order corresponds to the
sequenceσ11,σ21,σ22,σ31,σ32,σ33, . . . ,σmm, excluding the entriesσi j that are identically zero by
construction. Arrange the rows of the Jacobian such that their order corresponds to the sequence
γ1,β21,γ2,β31,β32, . . . ,γm, excluding the entriesβi j that are not inΦG (i.e., exclude anyβi j corre-
sponding to a pair{Yi ,Yj} that is not adjacent in the graph).

By the definition of Bartlett’s decomposition,Σ{i},{i} andβst are functionally independent for
s > i. The same holds forΣ{i},{i} and γs. As such,∂σi j /∂βst = 0 and∂σi j /∂γs = 0 for s > i.
This implies thatJ(ΦG ) is a (lower) block triangular matrix of 2m−1 blocks: fork odd, thek-th
block is the singleton∂σii/∂γi = 1, wherei = (k+1)/2. Fork even, thek-th block is the Jacobian
∂Σi,sp≺(i)

/∂Bi,sp≺(i)
, wherei = 1+k/2 andΣi,sp≺(i)

is the vector of covariances ofYi and its preceding
spouses.

From the interpretation given by Equation (8), it follows thatBi,sp≺(i) can also be defined by the
regression ofYi onZ i . That is

Bi,sp≺(i) = ΣYi ,Z i Σ
−1
Z i ,Z i
≡ ΣYi ,Z i R

−1
i . (25)

However,ΣYi ,Z i = Σi,sp≺(i), sinceYi is independent of its non-spouses. From (25) we getΣi,sp≺(i) =
Bi,sp≺(i)Ri , and as such the submatrix∂Σi,sp≺(i)

/∂Bi,sp≺(i)
turns out to beRi .

Since the determinant of the block triangular JacobianJ(ΦG ) is given by the determinant of the
blocks, this implies

|J(ΦG )|=
m

∏
i=2
|Ri |.

By the matrix identity
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∣

∣

∣

∣

A B
C D

∣

∣

∣

∣

= |A||D−CA−1B|, (26)

|Σ{i−1},{i−1}| = |Σnsp≺(i),nsp≺(i)
||Σsp≺(i),sp≺(i)

− Σsp≺(i),nsp≺(i)
Σ−1

nsp≺(i),nsp≺(i)
Σnsp≺(i),sp≺(i)

| ≡

|Σnsp≺(i),nsp≺(i)
||Ri |. Since|Σ{i−1},{i−1}|= ∏i−1

t=1 γt , the second equality holds.�

Proof of Theorem 4: We first describe a mapping from each path inG to a path inG⋆, and vice-
versa (such mappings are not inverse functions of each other, since the number of paths inG⋆ is
larger than inG ). By construction, all bi-directed edges inG∗ have two UVs as endpoints, with
an one-to-one mapping between eachY⋆

s ↔Y⋆
t in G⋆ and eachYs↔Yt in G . All directed edges in

G⋆ are of two types:Ys→Y⋆
t , with s 6= t, or Y⋆

s →Ys. Therefore, one can define an unique pathP
in G as a function of a pathP⋆ in G⋆, obtained by relabeling eachY⋆ asY, and by collapsing any
Y→Y edges that might result from this relabeling into a single vertexY. A mapping in the opposite
direction is analogous as given by the construction rule of Type-II models.

A collider in a path is any vertex within a head-to-head collision in the path, that is, any vertex
Yt where the preceding and the next vertex in the path are connected toYt with an edge (directed
or bi-directed) intoYt . Yi andYj are m-separated byZ in an acyclic DMG if and only if there is no
active path connectingYi andYj . Like in d-separation, a path is active if all of its colliders have some
descendant inZ, and none of its non-colliders is inZ (Richardson, 2003). The mappings between
pathsP andP⋆ are such thatYt is a collider inP if and only ifYt is in P⋆ and is a collider, orY⋆

t is in
P⋆ and is a collider. Since by construction anyY⋆

t will have the sameY-descendants inG⋆ asYt has
in G , andZ ⊂ Y, the result follows.�

Proof of Theorem 7: The first of the two claims of the theorem trivially holds, since connectivity is
a transitive property and as such this partition will always exist (whereK(i) = 1 is a possibility). We
will prove the validity of the second claim by induction. Let{R1, . . . ,Rk} be the perfect sequence
that generated our perfect ordering. The second claim automatically holds for all vertices inRk,
sinceRk is a clique.

Assume the second claim holds for the subsequence{Rl+1,Rl+2, . . . ,Rk}. LetYi be an element
of Rl . Assume there is some non-spouseYq of Yi in Rl ′ , and some spouseYp of Yi in Rl ′′ , such that
l < l ′ ≤ l ′′. We will assume that bothYq andYp belong to the same componentVt and show this
leads to a contradiction.

Without loss of generality, we can assume thatYq andYp are adjacent: otherwise, the fact that
Yq andYp are in the connected setVt will imply there is a path connectingYq andYp in the subgraph
induced by{Rl+1, . . . ,Rk}. We can redefine{Yq,Yp} to be the endpoints of the first edge in the path
containing a non-spouse and a spouse ofYi . It will still be the case thatq > p, by the induction
hypothesis.

SinceYp ∈Rl ′′ , there is a separatorSl ′′ betweenH l ′′\Sl ′′ andRl ′′ . ButYi ∈H l ′′ , andYi is adjacent
to Yp, which impliesYi ∈ Sl ′′ . If l ′ < l ′′, this will also imply thatYq ∈ Sl ′′ , which is a contradiction,
sinceSl ′′ is a complete set. Ifl ′ = l ′′, this implies thatYi andYq are both inYP(l ′′), which is also a
contradiction sinceYP(l ′′) is a clique.�
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