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Abstract. Understanding the regulatory mechanisms that are responsi-
ble for an organism’s response to environmental changes is an important
question in molecular biology. A first and important step towards this
goal is to detect genes whose expression levels are affected by altered
external conditions. A range of methods to test for differential gene ex-
pression, both in static as well as in time-course experiments, have been
proposed. While these tests answer the question whether a gene is dif-
ferentially expressed, they do not explicitly address the question when a
gene is differentially expressed, although this information may provide
insights into the course and causal structure of regulatory programs.
In this article, we propose a two-sample test for identifying intervals of
differential gene expression in microarray time series. Our approach is
based on Gaussian process regression, can deal with arbitrary numbers
of replicates and is robust with respect to outliers. We apply our algo-
rithm to study the response of Arabidopsis thaliana genes to an infection
by a fungal pathogen using a microarray time series dataset covering
30,336 gene probes at 24 time points. In classification experiments our
test compares favorably with existing methods and provides additional
insights into time-dependent differential expression.

1 Introduction

Understanding regulatory mechanisms, in particular related to the response to
changing external conditions, is of great interest in molecular biology. Changes
in external conditions include environmental influences or treatments that an or-
ganism is exposed to, ranging from parasitic infections studied in plant biology
to drug responses that are of interest in pharmacogenomics. A first step towards
understanding these mechanisms is to identify genes that are involved in a par-
ticular response. This task can be reduced to a decision problem where we want
to tell whether a gene is differentially expressed or not. In the past, most avail-
able datasets were static, such that this decision was based on measurements of



gene expression at a single time point (e.g. (1)). Increasingly, studies are being
carried out that measure the expression profiles of large sets of genes over a time
course rather than a single static snapshot.

The basic task however remains the same: given an observed time series in
two conditions (treatment and control), the goal is to determine whether the
observations originate from the same biological process or whether they are bet-
ter described by means of independent processes specific to each condition. This
is referred to as a two-sample problem in statistics. In the bioinformatics and
statistics community, a wide range of methods have been proposed to test for dif-
ferential gene expression, both from static microarray experiments (1; 2; 3; 4; 5)
as well as from time series microarray data (6; 7; 8; 9). Among desirable prop-
erties of a useful test for time series data are the ability to handle multiple
replicates of the same condition and robustness with respect to outliers in mea-
sured expression levels. While most tests can be applied to multiple replicates,
only few of them are robust to outliers due to non-Gaussian errors (9). Further-
more, existing methods often make strong assumptions on the time series, for
instance, gene expression levels being described by a linear model or over a finite
basis (7; 8).

In this article, we propose a test for differential gene expression based on
Gaussian processes (GP), a nonparametric prior over functions. The GP ma-
chinery allows attractive properties of existing two-sample tests to be combined:
the capability to handle arbitrary numbers of replicates, robustness to outliers
and a flexible model basis. In addition, our method is able to identify patterns
of local differential expression, where gene expression levels are only differential
in subintervals of the full time series. This feature can be used to understand
when differential expression occurs. Such information is important in molecular
biology, because it provides insights on the temporal order in which genes are
activated or inhibited by environmental stimuli. For example, it allows to study
whether there is a delay in response, whether the effect of the treatment is only
temporary, or to identify a cascade of genes that trigger each other’s activation
during the response. The detection of intervals of differential expression can be
considered the second central step towards uncovering gene regulatory mecha-
nisms, which follows the first step of detecting differentially expressed genes. This
main contribution is illustrated in Figure 1 (Top), where in addition to a score
of differential expression, our test also allows to pinpoint the intervals in which
a gene exhibits differential expression, as indicated by the Hinton diagrams in
the top panel.

The remainder of this article is organized as follows. In Section 2 we de-
scribe our Gaussian process based two-sample test for microarray time series
data. In Section 2.2 we show how a heavy-tailed noise model can be incorpo-
rated to gain additional robustness with respect to outliers. Section 3 concludes
the methodological development by introducing a mixture model that can de-
tect differential expression over parts of the time course. In our experimental
evaluation, we compare our model to two state-of-the-art two-sample tests from
the literature. On time series data for 30, 336 probes from Arabidopsis thaliana,



Fig. 1: An example result produced by the GPTwoSample temporal test. Bottom:
Dashed lines represent replicates of gene expression measurements for control (green)
and treatment (red). Thick solid lines represent Gaussian process mean predictions of
the latent process traces; ±2 standard deviation error bars are indicated by shaded
areas. Top: Hinton diagrams illustrate the probability of differential expression for
different time points. Size of upper bars indicates the probability of the genes being
differentially expressed, size of lower bars that of being non-differentially expressed.

we assess the predictive performance (Section 2.4) and demonstrate that the
detection of differential expression in intervals is useful to gain insights in the
response of Arabidopsis to a fungal pathogen infection (Section 3.1).

2 GPTwoSample - a robust two-sample test for time

series using Gaussian processes

In line with previous approaches to test for differential expression, our test com-
pares two alternative hypotheses: Either the time series measured in two condi-
tions, A and B, can be described by a shared underlying process (f(t)), or they
are better described by means of two independent processes, one for each con-
dition (fA(t), fB(t)). Figure 2 shows a Bayesian network representation of both
hypotheses. We assume that in both conditions, expression levels of R biological
replicates are measured at discrete time points t1, . . . , tN . For notational conve-
nience, we assume that measurements from both conditions and for all replicates



are synchronized, i.e. share a common time discretization. However, this is not
a requirement of the Gaussian process framework which can deal with arbitrary
time representations and missing values.

The Bayes factor has been previously applied to test for differential expres-
sion (9; 10). Following this idea we score the two alternative hypotheses using the
logarithm of the ratio of the corresponding model evidences (i.e. the logarithm
of the Bayes factor)

Score = log
P (DA|HGP, θ̂I)P (DB |HGP, θ̂I)P (θ̂I)

P (DA,DB |HGP, θ̂S)P (θ̂S)
, (1)

where DA,B represent observed expression levels in both conditions A and B.
The notation HGP indicates that both models are Gaussian process models,
where P (θ̂I) and P (θ̂S) are prior distributions over the model hyperparameters.

The Bayes factor is computed conditioned on hyperparameters θ̂I and θ̂S of the
independent (I) and shared (S) model respectively. Hyperparameters are set to
their most probable value as described in the following.

(a) Shared model (b) Independent model

Fig. 2: Bayesian network for the two alternative models compared in the GPTwoSample
test: a) Shared model where both conditions are explained by means of a single pro-
cess f(t), b) Independent model with processes fA(t) and fB(t) for each condition.
Expression levels y

A,B
r,t of a given gene are observed in two biological conditions A, B

with r : 1, . . . , R biological replicates and at discrete time points t : t1, . . . , tN . Ob-
servation noise is split into a global noise level σ and a per-replicate noise level σA,B

r .
The smoothness induced by the Gaussian process priors is indicated by the thick band
coupling the latent function values at different time points.

The accuracy of this score crucially depends on the model used to represent
biological processes. A good model should provide sufficient flexibility to allow
for noise and variation between biological replicates, but at the same time be able



to detect true differential expression. In addition, there are microarray specific
requirements. Firstly, observations are likely to be sparse, i.e. only very few
observations are made and potentially in irregular intervals. Secondly, expression
data is highly susceptible to noise and prone to outliers which can obscure the
test result, if not modeled accurately.

All these requirements can be accommodated by a Gaussian process (GP).
This nonparametric prior over functions yields the required flexibility while still
allowing specific beliefs, for instance about smoothness and length scales of the
process, to be incorporated. Previously, Gaussian processes have been used to
model gene expression time dynamics in the context of transcriptional regula-
tion (11) and for biomarker discovery (12). In the context of hypothesis testing,
Gaussian processes have been applied to gene expression profiles by Yuan (10).

2.1 Gaussian process model

Let us first consider the shared model (Figure 2a), where observations from
both conditions are described by a single biological process f(t). We split up
the observation noise into a global noise component and a per-replicate noise
component by introducing latent replicate observations gc

r,t. The joint posterior
distribution over unobserved function values f and the replicate observations gc

r,t

for conditions c ∈ {A,B} follows as

P (f , {gc
r,t}|DA,DB ,θS) ∝N (f | 0,KT,T(θK))×

∏

c=A,B

R∏

r=1

N∏

n=1

N (gc
r,tn

| ftn
, σc

r)PL(yc
r,tn

| gc
r,tn

,θL),

(2)

where θS = {θK,θL, {σc
r}} denotes the set of all hyperparameters for kernel,

likelihood and the replicate noise levels respectively. The covariance matrix
KT,T(θK) is derived from the covariance function k(t, t′ |θK) which specifies
how function values at two time points t and t′ covary. We use a covariance
function that decays exponentially with squared time distance, kSE(t, t′) =

A exp{− 1
2

(t−t′)2

L2 }, which yields smooth functions with a typical squared am-
plitude A and a typical length-scale L. These kernel hyperparameters are sum-
marized as θK.

For simplicity, let us first assume Gaussian observation noise with variance σ,
PL(yc

r,t | g
c
r,t,θL) = N (yc

r,t | g
c
r,t, σ). Integrating out the latent replicate process

observations gc
r,t results in a standard Gaussian process with an effective noise

variance per replicate and condition

P (f | DA,DB ,θS) ∝ N (f | 0,KT,T(θK))
∏

c=A,B

R∏

r=1

N∏

n=1

N (yc
r,tn

| ftn
, σc

r), (3)

where σc
r =

√

σc
r
2 + σ2. Predictions from this model can be obtained by con-

sidering the joint distribution over training data and an unseen test input t⋆.



Completing the square leads to a Gaussian predictive distribution (see (13)) of
the corresponding function value f⋆ ∼ N (µ⋆, v⋆)

µ⋆ = K⋆,T [KTT + Σ]
−1

y

v⋆ = K⋆,⋆ − K⋆,T [KTT + Σ]
−1

KT,⋆, (4)

where Σ is a diagonal matrix constructed from the noise levels {σc
r} of the ob-

served expression levels. Note that the dependence of the covariance matrices
on hyperparameters θK is omitted for clarity. The Bayes factor in Eqn. 1 re-
quires the evaluation of the log marginal likelihood. Again, this quantity can be
calculated in closed form

log P (DA,DB |HGP,θS) = −
1

2
log detKT,T(θK) −

1

2
yTK−1

T,Ty −
N

2
log 2π. (5)

The most probable parameter settings θ̂S are determined by finding the maxi-
mum of the posterior probbility

θ̂S = arg max
θS

[log P (DA,DB |HGP,θS) + log P (θS)] , (6)

where P (θS) are priors on the hyperparameters. Prior distributions are set to
incorporate a priori beliefs about parameter values. The prior on the amplitude
A is uninformative and set to a broad gamma distribution A ∼ Γ (0.001, 1000).
To ensure that noise is not explained by extremely short length scales, we set
the prior on L such that the expectation value of the gamma prior corresponds
to one fifth of the total length of the time series with a standard deviation of
50%. The noise hyperparameters are set to σ ∼ Γ (0.1, 10) and σc

r ∼ Γ (0.01, 10),
which favors that noise variance is explained by the shared noise variance where
possible.

The optimized marginal likelihood of the alternative hypothesis, assuming in-

dependent biological processes, log P (DA|HGP, θ̂I)+log P (DB|HGP, θ̂I)+log P (θ̂I),
can be obtained analogously. Hyperparameters of the independent model are op-
timized jointly for both processes fA(t) and fB(t) where kernel parameters θK

and the global noise variance σ are shared and hence the number of explicit
hyperparameters is identical for both models.

2.2 Robustness with respect to outliers

The presentation of the Gaussian process model so far makes a crucial simplifi-
cation, namely that observation noise is Gaussian. However, for our full model
we use a heavy-tailed noise model to acknowledge that a small fraction of the
data points can be extremely noisy (outliers) while others are measured with
considerably more precision. To reflect this belief we use a mixture model (14)

PL(yc
r,t | g

c
r,t,θL) = π0 N (yc

r,t|g
c
r,t, σ) + (1 − π0)N (yc

r,t|g
c
r,t, σinf), (7)



where π0 represents the probability of the datum being a regular observation and
(1− π0) of being an outlier. The variance of the outlier component σinf is much
larger than for regular observations and hence allows outliers to be discarded.
Unfortunately when using this likelihood model the posterior in Eqn. 2 is no
longer computable in closed form. To overcome this problem we use Expectation
Propagation (EP) (15), a deterministic approximate inference algorithm. EP
approximates the true posterior by a Gaussian process and is efficient enough to
allow the algorithm to be applied on large scale datasets. EP for non-Gaussian
likelihoods in Gaussian process models is discussed in (13); robust Gaussian
process regression has been previously applied to biological data in (16). The
derivation of EP for the robust likelihood and further references can be found in
Appendix A.

2.3 Runtime

The computational complexity of a Gaussian process models scales with (RN)3,
where N is the number of observations per condition and R the number of
replicates. Since microarray time series datasets are typically small in the sense
that they cover few time points per gene this is not prohibitive. The robust
Gaussian process method requires multiple cycles of EP updates which result
in constant factor of additional computation. For the datasets studied below,
including 24 time points with 4 replicates, the robust test takes approximately
10 seconds per gene on a standard desktop machine.

2.4 Differential gene expression in Arabidopsis thaliana after fungal

infection

We applied GPTwoSample to study plant response to biotic stress on a dataset
of microarray time series. Plant stress responses involve a significant degree of
transcriptional change, with different stress stimuli activating common signalling
components (17).

In this particular experiment, the stress response of interest is an infection of
Arabidopsis thaliana by the fungal pathogen Botrytis cinerea. The ultimate goal
is to elucidate the gene regulatory networks controlling plant defense against
this pathogen. Finding differentially expressed genes and intervals of differential
gene expression are important steps towards this goal.

Data were obtained from an experiment in which detached Arabidopsis leaves
were inoculated with a B. cinerea spore suspension (or mock-inoculated) and
harvested every 2h up to 48h post-inoculation (i.e. a total of 24 time points). B.

cinerea spores (suspended in half-strength grape juice) germinate, penetrate the
leaf and cause expanding necrotic lesions. Mock-inoculated leaves were treated
with droplets of half-strength grape juice. At each time point and for both treat-
ments one leaf was harvested from four plants in identical conditions (i.e. 4 bi-
ological replicates). Full genome expression profiles were generated from these
whole leaves using CATMA arrays (18). Data preprocessing and normalization
was carried out using a pipeline based on the MAANOVA package (19). The



experimental design is longitudinal in that subsequent time points should show
related expression patterns, but also cross-sectional in that the biological repli-
cates are all from independent plants. Due to this specific study design we expect
particularly noisy observations and outliers within the time course of a single
replicate plant. For each probe in the dataset, we applied our Gaussian process
based test, including the robust noise model (GP robust) to the time courses mea-
sured in both conditions and all four replicates. As comparison we also applied
two state-of-the-art methods from the literature, the timecourse method (TC)
of Tai and Speed (8), and the F-Test (FT) as implemented in the MAANOVA
package (19). For each of the three methods, we rank all probes based on their
likelihood of being differentially expressed in descending order.

On a subset of 2000 randomly selected probes we asked a human expert to
manually label each probe as either ‘differentially expressed’, ‘not differentially
expressed’, or ‘dubious case’. After removing the dubious cases, we used the
remaining 1890 labeled probes as gold standard to benchmark the three methods.
Figure 3 shows the area under the ROC curve for each method. To check the
impact of our outlier-robust model, we also computed the area under the ROC
curve for a variant of GPTwoSample that is not robust to outliers and instead
uses a standard Gaussian noise model (GP standard). The area under the curve
can be interpreted as the probability that a classifier ranks a randomly chosen
positive instance (a differentially expressed gene) higher than a randomly chosen
negative example (a non-differentially expressed gene). Hence a ‘perfect’ test
would reach an AUC of 1, while a consistently failing test would yield an AUC
of 0. On this randomly selected set, GPTwoSample with robust noise model
(GP robust, AUC 0.986) and the simpler non-robust variant (GP standard,
AUC 0.944) outperformed both benchmark models, F-Test (FT, AUC 0.859)
and the timecourse method (TC, AUC 0.869). The model GP robust achieved
an additional improvement over GP standard, showing the merits of a robust
noise model.

As a second evaluation, we wanted to get an idea of how the different meth-
ods perform on reference datasets of ‘controlled difficulty’ (rather than a random

subset). For this purpose we created reference sets with 400 genes for every
method. In each of these sets 100 genes were correctly classified as differentially
expressed and 100 correctly as non-differentially expressed. The remaining two
hundred genes were false positives and false negatives to equal proportions. Fol-
lowing this procedure, we obtained three labeled reference datasets of 400 genes
for GP robust, FT and TC. On each of these datasets, we assessed the predic-
tions of the remaining two methods by computing AUC scores (see Table 1).
On the timecourse reference dataset, our GP robust achieved a higher area un-
der the curve than the F-Test, and it outperformed timecourse on the F-Test
reference dataset as well. Hence its ability to correctly detect differential gene
expression on these reference datasets is again more than competitive with that
of the state-of-the-art two-sample tests F-Test (7) and timecourse (8).

To further validate the quality of the gene list produced by GPTwoSample we
clustered genes considered to be differentially expressed using the SplineCluster
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Fig. 3: Predictive accuracy of four different methods measured by the area under the
ROC curve. Each method has been evaluated on the random benchmark dataset of
1890 genes as described in the text.

Dataset / Method GP robust TC FT

GP robust dataset ——— 0.937 0.929
TC dataset 0.959 ——— 0.805
FT dataset 0.986 0.956 ———

Table 1: AUC scores of three methods on reference datasets created from genome-wide
results on GP robust, TC, and FT.

method of Heard et al. (20; 21). We analyzed the resulting clusters for statisti-
cally significantly over-represented Gene Ontology(GO) annotations related to a
given cluster of genes. The probability that this over-representation is not found
by chance can be calculated by the use of a hypergeometric test, implemented
in the R/Bioconductor package GOstats (22). Because of the effects of multiple
testing, a subsequent correction of the p-values is necessary. We apply a Bon-
ferroni correction, which gives a conservative (and easily calculated) correction
for multiple testing. In the supplementary material (23) we show the GO anno-
tations for the clusters which are significant at Bonferroni-corrected p-values of
0.01 and 0.05. These GO groupings of the clusters derived from GPTwoSample
are intuitively meaningful in the context of plant-pathogen interactions.

3 Detecting intervals of differential gene expression

On knowing that a particular gene is differentially expressed, it is interesting to
ask in which time intervals this difference in expression is present and in which
time intervals the time series are similar. To tackle this questions we use a mix-
ture model, switching between the two hypotheses, corresponding either to the
shared model (Figure 2a) or the independent model (Figure 2b) as a function of



Fig. 4: Bayesian network for the time local mixture model. At each observed time point
tn binary indicator variables ztn

determine whether the observation is explained by
the single Gaussian process expert (f(t)) or the expert corresponding to the indepen-

dent model (fA(t) and fB(t)). This switch is graphically represented as dotted boxes
around the processes f(t) and fA(t), fB(t) respectively. If the switch is true (T) the
independent expert is used, if the switch is false (F) the shared expert.

time. Figure 4 shows the Bayesian network representation of this temporal two-
sample test. This model is related to mixtures of Gaussian process experts, which
have been studied previously (24; 25). In our setting, we have a fixed number of
two experts, where one expert is a single Gaussian process describing both condi-
tions, while the second expert models each condition with a separate process. In
order to retain the computational speed required to apply this algorithm on large
scale, performing thousands of tests, we use a simplistic gating network. Binary
switches ztn

at every observed time point determine which expert describes the
expression level at this particular time point. A priori the indicator variables are
independent Bernoulli distributed, P (ztn

) = Bernoulli(ztn
| 0.5), assigning both

experts equal probability.
The joint probability of both experts and all model parameters, conditioned

on the observed data from both conditions, can be written as

P (f , fA, fB ,Z | DA,DB ,θS,θI) ∝ P (f |θK)P (fA |θK)P (fB |θK)×

R∏

r=1

N∏

n=1

[
N (ftn

| yA
r,tn

, σA
r )N (ftn

| yB
r,t, σ

B
r )

](ztn
=0)

×

[
N (fA

tn
| yA

r,tn
, σA

r )N (fB
tn

| yB
r,t, σ

B
r )

](ztn
=1)

, (8)



where P (f |θK)P (fA |θK)P (fB |θK) denotes the independent Gaussian process
priors on all three processes. Again we simplify the presentation by considering
a Gaussian noise model.

Inference in this model is achieved using a variational approximation (26).
The joint posterior distribution (Eqn. 8) is approximated by a separable distri-

bution of the form Q(f)Q(fA)Q(fB)
∏N

n=1 Q(ztn
).

Iterative variational inference updates the approximate posteriors over the la-
tent processes Q(f), Q(fA), Q(fB) given the current state of Q(Z) and vice versa,
until convergence is reached. A variational approximation per se is not suited to
perform inference in a mixture of Gaussian process model, due to the coupling
of target values induced by the GP priors. However, in this specific application,
the approximate posteriors over the indicator variables are sufficiently accurate.
Finally, to decide whether a time point is differentially expressed, we use the
inferred mixing state Q(ztn

) with a threshold value of 0.5.

3.1 Detecting transition points in the Arabidopsis time series data

We applied the temporal GPTwoSample model to detect intervals of differen-
tial expression of genes from the same Arabidopsis time series dataset as in
Section 2.4. Figure 5 shows raw data and the inference results for two selected
example genes.

(a) Delayed differential expression (b) Periodic differential expression

Fig. 5: Two example results of the temporal GPTwoSample model on the Arabidop-

sis data. The bottom panel in each plot illustrates the inferred posterior distributions
from the Gaussian processes (blue: the process describing the shared biological behav-
ior; red and green: the two separate processes modelling differential gene expression).
The Hinton diagrams in the top panel indicate whether at a given point in time the
gene is likely to be differentially expressed or not. The size of the dots in each row is
proportional to the probability of differential expression (top row) and of no differential
expression (bottom row).



Delayed differential expression Having the inferred time intervals of differ-
ential and non-differential expression at hand, it is possible to analyze the time
information and its distribution over genes.
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Fig. 6: Histogram of the most likely start of differential expression for the top 9000
differentially expressed genes.

Here we took the top 9000 genes which have a score suggesting significant
differential expression and determined the first time point where the proba-
bility of differential expression exceeded 0.5. Figure 6 shows the histogram of
this start time. Identification of transition points for individual gene expression
profiles shows that a significant change in the transcriptional program begins
around 20h post inoculation. This program of gene expression change appears
to have two waves peaking around 22h and 26h after inoculation. We expect
transcription factors (if regulated by differential expression) to be expressed at
earlier time points than the downstream genes whose expression they control.
Hence transcription factor genes whose expression first changes in the 22h wave
(or earlier) would be of particular interest when designing further experiments
to elucidate transcriptional networks mediating the defense response against B.

cinerea.

4 Conclusion

Detecting differential gene expression and patterns of its temporal dynamics are
important first steps towards understanding regulatory programs on a molecular
level. In this paper, we proposed a Gaussian process framework which provides
answers to these problems. Our test not only determines which genes are dif-
ferentially expressed, but also infers subintervals of differential expression over
time. The analysis carried out on the Arabidopsis thaliana expression datasets



demonstrates that this additional knowledge can be used to gain an understand-
ing of pathways and the timing in which, as in this example, the effect of a fungus
infection spreads. Source code and additional information about the used dataset
is available online (23).

The natural next question to ask is in which manner these genes interact as
part of a regulatory program. The algorithmic task is here to infer a network
of regulatory interactions from gene expressions measurements and prior knowl-
edge. In future work, we will study how the detection of differential expression
can be combined with regulatory network inference.
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A Expectation Propagation for robust Gaussian process

regression

Predictions (Eqn. 4) and the log marginal likelihood (Eqn. 5) are only available
in closed form for a Gaussian likelihood model PL. When using a complicated
likelihood function, such as the mixture model in Eqn. 7, Expectation Propaga-
tion (EP) (15) can be used to obtain a tractable approximation.

In our application the exact posterior distribution over latent functions f(t)
for a given dataset D = {tn, yn}N

n=1 is

P (f |D,θ) ∝ N (f | 0,KTT(θK))

N∏

n=1

PL (yn | fn,θL) (9)

= N (f | 0,KTT(θK))

N∏

n=1

[π0 N (yn|fn, σ) + (1 − π0)N (yn | fn, σinf)] ,

where again we define θ = {θK,θL}. The goal of EP is to approximate this exact
posterior with a tractable alternative

Q(f | D,θ) ∝ N (f | 0,KT,T(θK))

N∏

n=1

gn (fn) , (10)

where gn (fn) denote approximate factors. Following (14) we choose unnormal-
ized Gaussians as approximate factors

gn (fn |Cn, µ̃n, ν̃n) = Cn exp

(

−
1

2ν̃n

(fn − µ̃n)2
)

, (11)



which leads to an approximate posterior distribution of f(t) that is a Gaussian
process again. Evaluated at the training inputs the distribution over function
values is a multivariate Gaussian

Q(f | D,θK,θL) ∝ N (f | 0,KT,T(θK))
N∏

n=1

gn (fn |Cn, ν̃n, ν̃n) (12)

= N (f | 0,KT,T(θK))N (f | µ̃, Σ̃), (13)

where we define µ̃ = {ν1, . . . , νN} and Σ̃ = diag
(
{ν2

1 , . . . , ν2
N}

)
.

The idea of EP is to iteratively update one approximate factor leaving all
other factors fixed. This is achieved by minimizing the Kullback–Leibler (KL)
divergence, a distance measure for distributions (27). Updates for a single ap-
proximate factor i can be derived by minimizing

KL

[

N (f | 0,KT,T(θK))
∏

n6=i

qn (fn |Cn, µ̃n, ν̃n)

exact factor
︷ ︸︸ ︷

PL(yi | fi,θL)
∣
∣
∣
∣

N (f | 0,KT,T(θK))
∏

n6=i

qn (fn |Cn, µ̃n, ν̃n) gi (fi |Ci, µ̃i, ν̃i)
︸ ︷︷ ︸

approximation

]

(14)

with respect to the ith factor’s parameters µ̃i, ν̃i and Ci. This is done by match-
ing the moments between the two arguments of the KL divergence which can
then be translated back into an update for factor parameters. It is convenient
to work in the natural parameter representation of the distributions where mul-
tiplication and division of factors are equivalent to addition and subtraction of
the parameters.

There is no convergence guarantee for EP, but in practice it is found to
converge for the likelihood model we consider (14). The fact that the mixture of
Gaussians likelihood is not log-concave is problematic, as it may cause invalid
EP updates, leading to a covariance matrix that is not positive definite. We
avoid this problem by damping the updates (14; 28).

After EP converged, we obtain a Gaussian process as approximate posterior
distribution again and hence can evaluate a predicted mean and variance as for
the Gaussian noise model (Eqn. 4).

By capturing the zeroth moment of the exact distribution with the explicit
normalization constant Cn, we obtain an approximation to the log marginal



likelihood

log P (D|θK,θL) = ln

∫

df N (f | 0,KT,T(θK))

N∏

n=1

PL (fn | yn,θL)

≈ ln

∫

df N (f | 0,KT,T(θK))

N∏

n=1

gn (fn |Cn, µ̃n, ν̃n) (15)

=
1

2

N∑

n=1

(
ln ν̃2

n + lnCn

)
−

1

2
ln

∣
∣
∣KT,T(θK) + Σ̃

∣
∣
∣

−
1

2
µ̃T

(

KT,T(θK) + Σ̃
)

µ̃. (16)

This log marginal likelihood approximation enables us to optimize hyperparam-
eters of the kernel θK, as well as the from likelihood θL and serves as approxi-
mation when evaluating the Bayes factor in Eqn. 1.
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