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Abstract

When building priors over trees for Bayesian
hierarchical models, there is a tension be-
tween maintaining desirable theoretical prop-
erties such as infinite exchangeability and im-
portant practical properties such as the abil-
ity to increase the depth of the tree to accom-
modate new data. We resolve this tension by
presenting a family of infinitely exchangeable
priors over discrete tree structures that al-
lows the depth of the tree to grow with the
data, and then showing that our family con-
tains all hierarchical models with certain mild
symmetry properties. We also show that
deep hierarchical models are in general inti-
mately tied to a process called a martingale,
and use Doob’s martingale convergence the-
orem to demonstrate some unexpected prop-
erties of deep hierarchies.

1 Introduction

One of the most fundamental questions we face in ma-
chine learning is what structure we should use to in-
terpret our data. Hierarchical modeling provides one
answer to this question — by modeling data at multi-
ple levels of abstraction, we can capture broad trends
over the entire data set while also taking advantage
of more specific patterns that only occur over small
portions of the data. A hierarchical structure over a
data set can thus provide a very powerful way of shar-
ing statistical strength over different parts of the data.
However, in most cases the hierarchical structure is not
known in advance and must instead be learned. There
are many heuristics for finding such structure, typi-
cally by iteratively merging together subtrees that are
similar under some metric (Duda et al., 2000; Heller
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and Ghahramani, 2005; Blundell et al., 2010). From
a statistical perspective, these approaches are trouble-
some — there is no principled way to add new data to
the tree, and it is unclear how to compare two differ-
ent trees over the same data set if they have different
numbers of internal nodes. Such heuristics also limit
the scope of the model — for instance, it is not clear
how to deal with hierarchies over latent parameters or
with missing data.

The Bayesian solution to these problems is to spec-
ify a probability distribution over tree structures. In
this way a hierarchical model has two components — a
prior over the possible tree structures, including where
the data lie in the tree, and a likelihood that specifies
a distribution over latent parameters, and how those
parameters affect the data. The task then is to find
a suitable prior for trees. There are four general pro-
posals for such a prior — Kingman coalescents (King-
man, 1982; Pitman, 1999; Teh et al., 2007), Dirichlet
diffusion trees (Neal, 2003; Knowles and Ghahramani,
2011), tree-structured stick breaking (Adams et al.,
2010), and nested Chinese restaurant processes (Blei
et al., 2010).

Kingman coalescents and Dirichlet diffusion trees are
both inherently continuous models, with paths either
splitting or merging according to some arrival process,
and the data associated with a path corresponding to
the final state of a diffusion process. In addition to be-
ing infinitely exchangeable, these models have the nice
property that the complexity of the implied tree struc-
ture can grow to accommodate increasing amounts of
data. Unfortunately, to use these models, one needs
a time-indexed stochastic process (such as a Wiener
process) to underlie the data. There is thus a distinc-
tion between discrete tree structures, where any likeli-
hood may underlie the data, and continuous structures
such as Dirichlet diffusion trees, where the likelihood
must correspond to some continuous process. In some
important cases, such as a hierarchical beta process
(Thibaux and Jordan, 2007), no underlying continu-
ous process is known to exist.

It is therefore important to also consider inherently
discrete distributions over trees. This is the approach
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of tree-structured stick breaking (TSSB) as well as the
nested Chinese restaurant process (nCRP). In both
cases, the tree is fixed to be countably deep, with every
node having countably many children; the interesting
structure emerges in the locations of the data.

In TSSB a stick breaking procedure is used to assign
a probability distribution over nodes: the root node
is given a constant portion of the probability mass
(drawn from a beta distribution), and the rest of the
mass is partitioned among subtrees of the root using a
Dirichlet process (Teh et al., 2004). The mass in each
subtree is then recursively divided in the same way. Fi-
nally, data are distributed throughout the tree accord-
ing to the resulting probability distribution. While
this model is infinitely exchangeable, the depth of the
tree is fixed by the prior — all data lie with high prob-
ability at some finite collection of depths that does not
increase with the size of the data. This is an impor-
tant way in which the complexity of the tree is unable
to grow to accommodate the data.

Kingman coalescents, Dirichlet diffusion trees, and
TSSB all separate out the prior over trees from the
likelihood for the latent parameters and the data. The
nCRP departs from this pattern. It associates each
data point with a path down the tree; there is then
an implicit tree structure based on where the different
paths branch. Because the paths are infinitely long,
care must be taken in choosing the likelihood to make
sure that the model is well-defined. In (Blei et al.,
2010), the likelihood is obtained by using a Dirich-
let process (DP) to form a mixture over distributions
given at each of the nodes in the path. This likelihood
has the important property that the mass that the DP
places on a tail of the path decays to zero; otherwise,
the resulting mixture distribution would not be well-
defined.

The nCRP makes the elegant decision to associate
data with paths rather than nodes. By doing so, the
depth of the tree can grow to accommodate new data.
The nCRP is therefore the only prior over trees that
is fully Bayesian, infinitely exchangeable, grows to ac-
commodate new data, and can handle inherently dis-
crete processes. However, these properties come at a
cost. Because of the convergence issues arising from
the infinite paths, it is unclear how to construct a con-
ditional distribution for a data point given its path,
except by a model similar to (Blei et al., 2010), which
in many cases does not accurately represent prior be-
liefs about the data.

The main contribution of this paper is to give a general
approach for constructing likelihoods for the nCRP
or any similar path-based model. Our construction
is universal for all path-based models (Theorem 2.3),

and works by taking limits of latent parameters along
paths down the tree, and using Doob’s martingale con-
vergence theorem (Lamb, 1973) to show that the limits
exist with probability 1. We use this fact to construct a
fully Bayesian hierarchical prior for both Dirichlet pro-
cesses (Teh et al., 2004) and beta processes (Thibaux
and Jordan, 2007). To show that inference is tractable
in our model, we implement it for a hierarchical beta
process (HBP).

It turns out that many existing hierarchical models al-
ready mimic our construction, except with finite rather
than infinite trees. A second contribution of our pa-
per is to use Doob’s theorem to analyze the asymp-
totic properties of these models as the hierarchies grow
deeper. This analysis yields some surprising results
about HBPs and HDPs (hierarchical Dirichlet pro-
cesses).

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our construction, introduce Doob’s
theorem, and use it to analyze several examples of deep
hierarchical models, as well as to show that our pro-
posed construction is both well-defined and universal.
In Section 3, we derive the asymptotic depths of the
nCRP and TSSB as a function of the data size and
hyperparameters. Finally, in Section 4, we construct
an infinitely deep HBP and show how to perform in-
ference in this model.

2 Model Description and Properties

In this section we present a general construction for
hierarchical models which associate data with paths in
the tree. For concreteness, we will use the nCRP as the
prior over tree structures. We start with an informal
description of the elements of our model, then formally
state our model and show that it is well-defined. First,
though, we need a bit of notation. Given a tree T and
a vertex v ∈ T , let p(v) denote the parent of v and
A(v) denote the ancestors of v. Also, let Root(T )
denote the root of T , Subtree(v) denote the subtree
of T rooted at v, and Depth(v) denote the depth of v
(with Depth(Root(T )) = 0).

2.1 Model Overview

We imagine that an infinite tree T underlies our data.
Eventually, each datum will be associated with an in-
finite path down the tree, and be defined in terms of
a limiting process of the latent parameters. We ignore
this aspect of the model for now, and merely assume
that at each node v in the tree there is an associated la-
tent parameter θv. Moreover, in order to even say that
the tree underlies the data, we should assume that θv
depends only on its ancestors A(v); more formally, we
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assume that p ({θv}v∈T ) factors as
∏
v∈T p(θv | θA(v)).

Note that p does not depend on v; this reflects the
philosophy that the latent parameters, and not just
the data itself, should satisfy an exchangeability prop-
erty. If a model factors in this way, and furthermore
the prior over a data point depends only on the pa-
rameters along its path, then we call it completely
exchangeable.

By replacing θv with θv∪A(v) (i.e. by concatenating all
the parameters on the path from Root(T ) to v), we
can always obtain a model where θv depends only on
its parent. In other words, the density can be assumed
to factor as

p ({θv}v∈T ) =
∏
v∈T

p(θv | θp(v)). (1)

We will therefore focus on this class of models for the
remainder of the discussion, keeping in mind that we
lose no generality in doing so.

It is often the case in models of the form given in (1)
that some key quantity f(θv) is preserved in expecta-
tion as we walk down the tree – more formally,

E[f(θv) | θp(v)] = f(θp(v)). (2)

For instance, in a hierarchical Dirichlet process, θv is a
probability distribution over the space of possible data,
and θv | θp(v) ∼ DP(cθp(v)) for some concentration
parameter c, where DP(µ) is a Dirichlet process with
base measure µ. In this case, E[θv | θp(v)] = θp(v); that
is, we can take f(θ) = θ.

If f satisfies (2), then f is said to be a martingale.
The martingale property will be important in the se-
quel. It turns out that data living infinitely deep in the
tree will have a well-defined distribution if and only if
they depend on a countable collection of L1-bounded
martingales.

2.2 Formal Description

We now formally define our model. We have a tree
T of countable depth, such that every node v has a
countable collection of children C(v). For each v ∈ T
we have parameters θv (a latent parameter governing
data in that subtree) and πv (a probability distribution
over C(v)). For each datum X, we have an associated
path {vn(X)}∞n=0 such that v0(X) = Root(T ) and the
parent of vn+1(X) is vn(X). The hyperparameters of
our model are a positive real number γ and conditional
distributions G and H, together with a function f that
is a martingale with respect to G.

The generative process for our model is as follows. For
each v:

1. πv ∼ DP(C(v), γ)

2. θv | θp(v) ∼ G(θp(v))

For each X:

1. v0(X) = Root(T )

2. vn+1(X) | vn(X), πvn(X) ∼ Multinomial(πvn(X))

3. X | {vn(X)}∞n=0 ∼ H
(

lim
n→∞

f(θvn(X))
)

Thus a datum X is obtained by first sampling a path
down the tree T (using the distributions {πv}v∈T to
choose which edge to follow at each point), then tak-
ing a limit of latent parameters along that path, and
finally sampling X from a distribution indexed by that
limit. (The skeptical reader may wonder whether the
limit in the last step exists. This is established later,
in Theorem 2.2.)

In the sequel, we will omit the dependence of vn on X
when it is clear from context. We will also say that
X ∈ Subtree(v) if vn(X) = v for some n.

2.3 Doob’s Theorem

The potential problem with the procedure specified
above is that lim

n→∞
f
(
θvn(X)

)
need not exist. This is

resolved by the following theorem (Lamb, 1973):

Theorem 2.1 (Doob’s martingale convergence the-
orem). Let {θn}∞n=0 be a Markov chain over a space
Θ and let f : Θ → R. Suppose that E[f(θn+1) |
θn] = f(θn) for each n. Furthermore, suppose that
supn E[|f(θn)|] < ∞. Then lim

n→∞
f(θn) exists with

probability 1.

Before exploring the consequences of Theorem 2.1 for
the model proposed in Section 2.2, we go over some
examples.

Example 1: Suppose that θ0 ∼ Beta(1, 1) and that
θn+1 | θn ∼ Beta(cθn, c(1 − θn)) for n ≥ 0. If
f(θ) = θ, then E[f(θn+1) | θn] = E[θn+1 | θn] =
E[Beta(cθn, c(1 − θn))] = θn.1 Furthermore, 0 ≤
θn ≤ 1, so supn E[|f(θn)|] ≤ 1 < ∞. Consequently,
limn→∞ θn exists with probability 1.

Since θn converges,
∑∞
n=0(θn+1 − θn)2 < ∞, hence

the variance of θn+1 | θn must converge to 0 in the

limit. The variance of Beta(cθ, c(1 − θ)) is θ(1−θ)
c+1 , so

we can therefore conclude that limn→∞
θn(1−θn)
c+1 = 0,

hence limn→∞ θn ∈ {0, 1} with probability 1. Figure 1
illustrates this behavior.

Note that this has interesting consequences for a hier-
archical beta process, since it implies that parameters

1We abuse notation and use Beta(α, β) to refer to a
random variable whose distribution is Beta(α, β).
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Figure 1: Examples of Doob’s martingale convergence theorem in action. Left: sequences of beta random
variables from Example 1, with c = 50. Center: sequences of gamma random variables from Example 2, with
λ = 50. Right: α

α+β from Example 3.

deep in the tree will necessarily be close to 0 or 1 with
high probability. A similar story holds for hierarchical
Dirichlet processes and hierarchical gamma processes
(Thibaux, 2008).

Example 2: Suppose that c0 ∼ Gamma(1, λ) and
that cn+1 | cn ∼ Gamma(cn, 1). Then E[cn+1 |
cn] = cn. Since cn+1 ≥ 0, we also have E[|cn+1| |
cn] = cn. Consequently, supn E[|cn|] = supn E[c0] =
λ < ∞. Thus limn→∞ cn exists with probability 1.
Since the variance of Gamma(cn, 1) is cn, we see that
limn→∞ cn = 0 with probability 1. The behavior of
the sequence cn is also illustrated in Figure 1.

Example 3: We now give an example of a mar-
tingale where f is not the identity function. Let
α0 ∼ Gamma(1, 1), β0 ∼ Gamma(1, 1), dn | αn ∼
Gamma(αn, 1), en | βn ∼ Gamma(βn, 1), and αn+1 |
αn ∼ αn+dn, βn+1 = βn+en. Note that the sequences
αn and βn are certainly not martingales. Indeed,
since E[αn+1 | αn] = αn + E[Gamma(αn, 1)] = 2αn,
and similarly for βn+1, the sequences {αn} and {βn}
both increase exponentially in expectation. However,
if we let f(αn, βn) = αn

αn+βn
, then (see Appendix

B) E[f(αn+1, βn+1) | αn, βn] = αn
αn+βn

. Therefore,
lim
n→∞

αn
αn+βn

exists with probability 1. This is again

illustrated in Figure 1.

Example 4: Doob’s theorem provides guarantees
on the convergence of real-valued sequences satisfy-
ing the martingale condition. But there are many
cases when we care about more than just a single real
number. For instance, in a hierarchical Dirichlet pro-
cess, we might care about a sequence {µn}∞n=0 where
µn+1 | µn ∼ DP(µn). Fortunately, we can still use
Doob’s theorem; since the output of a Dirichlet pro-
cess consists of countably many atoms, we only need
to worry about µn({p}) for the countably many points
p that are atoms of µ1. Since E[µn+1 | µn] = µn,
we also have E[µn+1({p}) | µn] = µn({p}), hence
lim
n→∞

µn({p}) exists almost surely for each p. Since

there are only countably many such p, we then have
that lim

n→∞
µn({p}) exists for all p almost surely. Also,

by logic similar to example 1, each µn({p}) must con-
verge to either 0 or 1, implying that the measure µn
converges to a single atom in the infinite limit.2

Example 5: We finally go over an example of a
martingale that does not converge. Let x0 = 0 and
let xn+1 | xn ∼ N (xn, 1). In other words, xn+1 is
equal to xn perturbed by Gaussian noise with vari-
ance 1. Then E[xn+1 | xn] = xn, so the sequence
{xn}∞n=0 is a martingale. However, E[|xn|] = Θ(

√
n),

so supn E[|xn|] = ∞. As a result, Theorem 2.1 does
not apply, and indeed, the sequence {xn} clearly does
not have a limit.

2.4 Constraints on the Likelihood

We hinted in Section 2.3 that Doob’s theorem would
give us conditions under which the process in Sec-
tion 2.2 leads to a well-defined generative distribution.
We now formalize this.

Theorem 2.2. Let θv | θp(v) ∼ G(θp(v)), and sup-
pose that E[f(θv) | θp(v)] = f(θp(v)). Further sup-
pose that f is an at most countable product {fk}∞k=1

of real-valued functions, and that each fk satisfies
supn E[|fk(θvn(X))|] < ∞. Then lim

n→∞
f(θvn(X)) exists

with probability 1.

Proof. By Doob’s theorem, limn→∞ fk(θvn) exists al-
most surely for each k individually. Since there
are only countably many fk, and the intersection of

2This actually requires a bit more of an argument than
before, as the µn could converge in distribution but not
almost surely; for instance we could have µn = δpn for
a countable sequence of distinct points pn, in which case
limn→∞ µn({p}) would be identically zero for all p, but
limn→∞ µn would not converge almost surely to any prob-
ability distribution. However, we will ignore these issues
for this example.
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a countable collection of almost-sure events is still
almost-sure, the theorem follows.

We thus end up with two constraints on the likelihood
that we need in order to use our model — the mar-
tingale condition, and the boundedness of E[|fk(θ)|].
Intuitively, we can think of a martingale sequence as
revealing gradually more information about a random
variable until it is completely determined. From this
perspective, the parameter θv captures information
that is true across all of Subtree(v), with the param-
eters at descendants containing more precise informa-
tion about their specific subtrees. However, Example
5 shows that this intuition is not perfect, which is why
we need the boundedness condition as well.

We note that the conditions of Theorem 2.2 hold for
any countable-dimensional martingale that is bounded
either above or below (see Example 2 of Section 2.3).
In particular, letting f(θ) = θ, they hold for hierar-
chical Dirichlet processes (G(θ) = DP(cθ)), hierarchi-
cal beta processes (G(θ) = BP(θ, c)), and hierarchical
gamma processes (G(θ) = GammaP(θ)), since these
are all non-negative and depend on only a countable
collection of atoms.

We next give a converse to Theorem 2.2, proved in
Appendix A, showing that the martingale and bound-
edness conditions are both necessary, and thus the con-
struction in Subsection 2.2 is universal for completely
exchangeable models.

Theorem 2.3. Consider any completely exchangeable
model where the data lie in a Polish space X. Then
there exists latent parameters θv ∈ Θ, a function f :
Θ→ [0, 1]N, and distributions G and H such that θv |
θp(v) ∼ G(θv), E[f(θv) | θp(v)] = f(θp(v)), and X |
{vn(X), θvn(X)}∞n=0 ∼ H

(
lim
n→∞

f(θvn(X))
)

.

A Polish space is a completely metrizable separable
space. This is the most generable space for which
a suitable notion of conditional probability exists.
Therefore, all spaces of interest in statistics are Pol-
ish.

Consider the hierarchical latent Dirichlet allocation
model of (Blei et al., 2010), where each node v in
the nCRP has a distribution µv over words, there is a
global distribution π over levels of the tree, and each
word in a document X with path {vn(X)}∞n=0 is drawn
from the mixture distribution

∑∞
n=0 πnµvn(X). Fur-

thermore, µv | µp(v) ∼ DP(cθv). We can recover this
model with our construction by having parameters µv
and θv at each node, where µv is as defined above and
the conditional distribution for θv at depth d is deter-

ministic and given by

θv | θp(v), µp(v), π =
(
∑d−1
i=0 πi)θp(v) + πlφv∑d

i=0 πi
.

The distribution for a word in X is then given by the
limiting value of θv.

3 Depth of the nCRP and TSSB

The key property of an nCRP that makes it desirable
over tree-structured stick breaking is the depth of the
resulting tree. Note that in an nCRP, every datum is
associated with an infinite path, and thus lies infinitely
deep in the tree. However, we can talk about the ef-
fective depth of a data point as the smallest depth at
which that point is the unique datum in its subtree.

Proposition 3.1. The effective depth of a data point

under nCRP(γ) is Θ
(

log(N)
ξ+ψ(1+γ)

)
with high probability,

where ξ = 0.5772 . . . is the Euler-Mascheroni constant
and ψ is the digamma function.

To prove Proposition 3.1, we first need a basic lemma
about Dirichlet processes:

Lemma 3.2. The posterior distribution of πvn(vn+1) |
X ∈ Subtree(vn+1) is equal to Beta(1, γ). In other
words, the mass assigned to a child conditioned on a
single datum having already been assigned to that child
is distributed as Beta(1, γ).

Proof. Note that DP (γ) can be obtained by draw-
ing a sample from DP (γU), where U is uniform on
[0, 1], and assigning the masses of the atoms to the
children of v. Therefore, if we let µ ∼ DP(γU) and
q ∼ Multinomial(µ), then the posterior distribution
of πvn(vn+1) | X ∈ Subtree(vn+1) is equivalent to
the distribution of µ({p}) | q = p. By conjugacy,
µ | q = p ∼ DP(δp + γU). Then, by the defining prop-
erty of a Dirichlet process, (µ({p}), µ([0, 1]\{p})) ∼
Dirichlet(1, γ), hence µ({p}) ∼ Beta(1, γ).

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let X be a data point.
The probability that Depth(X) ≤ d is the
probability that none of the other N − 1 data
points lie in Subtree(vd(X)), which is equal to(

1−
∏d−1
i=0 πvi(vi+1(X))

)N−1

. But
∏d−1
i=0 πvi(vi+1) =

e
∑d−1
i=0 log πvi (vi+1). The log πvi(vi+1) are independent,

and by Lemma 3.2 they are log Beta(1, γ)-distributed.
Since log Beta(1, γ) has finite variance, it follows

by Chebyshev’s inequality that
∑d−1
i=0 log πvi(vi+1) =

dE[log Beta(1, γ)] +O(
√
d) with high probability. One
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Figure 2: Trees drawn from the prior of the nCRP (top) and TSSB (bottom) models with N = 100 data points.
In both cases we used a hyper-parameter of γ = 1. For TSSB, we further set α = 10 and λ = 1

2 (these are
parameters that do not exist in the nCRP). Note that the tree generated by TSSB is very wide and shallow. A
larger value of α would fix this for N = 100, but increasing N would cause the problem to re-appear.
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Figure 3: Tree depth versus number of data points. We drew a single tree from the prior for the nCRP as well as
for tree-structured stick-breaking, and computed both the maximum and average depth as more data was added
to the tree. The above plots show that the depth of the nCRP increases with the amount of data, whereas the
depth of TSSB quickly converges to a constant. The different curves for the TSSB model correspond to different
settings of the hyperparameters α and λ.
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can show (see Appendix B) that E[log Beta(1, γ)] =
ψ(1)− ψ(1 + γ) = −ξ − ψ(1 + γ). Then

P[Depth(X) ≤ d] =
(

1− e−d(ξ+ψ(1+γ))+O(
√
d)
)N−1

.

If we let d = α log(N)
ξ+ψ(1+γ) , then the right-hand-side

above becomes

(
1−N

−α+O

(
1√

log(N)

))N−1

, which

decays quickly from 1 to 0 as α passes the threshold
value of 1. It follows that α = Θ(1) with high probabil-

ity, so d = Θ
(

log(N)
ξ+ψ(1+γ)

)
with high probability, which

completes the proposition.

In contrast to Proposition 3.1, the depth distribution
of a datum is constant in the TSSB model. As a review
of TSSB, the probability that a path stops at a node v
at depth d is drawn from Beta(1, αλd), and otherwise
the path continues to one of the children of v based
on a DP(γ) draw. If a path stops at v, then it creates
a new leaf as a child of v at which to place the data
point. Because the stopping criterion for a path is in-
dependent of the other data points, the depth of a path
under the prior is independent of the amount of data,
and the following proposition gives its dependence on
the hyperparameters:

Proposition 3.3. The depth of a data
point under TSSB(γ, α, λ) is equal to

Θ
(

min
(

log(α)
log(1/λ) ,

log(1+α(λ−1−1))
log(1/λ)

))
with high proba-

bility.

Note that the former term dominates except when λ
is close to 1.

Proof. Since the probability of a path stopping at any
given depth j is Beta(1, αλj)-distributed, the proba-
bility that a node lies at a depth of at least d is equal

to
∏d−1
j=0

(
1− 1

1+αλj

)
. It suffices to show that d is un-

likely to be much greater than log(α)/ log(1/λ), and
that if d is less than log(α)/ log(1/λ) then it is close to
log(1+α(λ−1−1))/ log(1/λ) with high probability. So,
first suppose that d � log(α)/ log(1/λ). Then a con-
stant fraction of the terms in the product are less than
1
2 , and thus the product is exponentially small. Now
suppose instead that d < log(α)/ log(1/λ). Then 1 −

1
1+αλj is within a constant factor of e−

1

αλj . Thus the

product is equal to e−Θ( 1
α

∑d
j=0 λ

−j), or e
−Θ
(

1
α
λ−d−1

λ−1−1

)
.

We thus want to find the range when 1
α
λ−d−1
λ−1−1 is equal

to Θ(1), which is when d = Θ
(

log(1+α(λ−1−1))
log(1/λ)

)
.

The constant depth of the TSSB leads to overly wide
and shallow trees. This is illustrated in Figures 2 and

3, where we show samples from the prior over tree
structures for both the nCRP and TSSB.

The TSSB model uses two extra hyperparameters (α
and λ) that do not occur in the nCRP. By setting α
to N and λ to e−ξ−ψ(1+γ), it is possible to approxi-
mate the depth distribution of the nCRP with tree-
structured stick breaking. However, the models are
still qualitatively different. While TSSB can mimic the
marginal depth distribution as measured from the root
of the tree, it cannot mimic the depth distribution as
measured from an arbitrary subtree. Separately, set-
ting α to N makes the prior data-dependent, which is
problematic in itself.

4 Implementation for a Hierarchical
Beta Process

We now show how our construction applies in the case
of a hierarchical beta process (Thibaux and Jordan,
2007). Recall that an HBP is a model that generates
an exchangeable sequence {Xn}∞n=1, where each Xn is
a finite collection of binary features. Typically a beta
process is used when the feature set is not known a
priori and is potentially infinite (Griffiths and Ghahra-
mani, 2011). For simplicity, however, we will assume
that the feature set is both finite and known in ad-
vance, so that each Xn can be represented as a binary
vector of some length L. We place a tree structure
over the Xn using an nCRP prior. For each internal
node v, we have a latent parameter θv ∈ [0, 1]L, and
our likelihood is given by:

1. θRoot(T ),l = 0.5 for all l ∈ {1, . . . , L}

2. θv,l | θp(v),l ∼ Beta(cθp(v),l, c(1− θp(v),l))

3. Xl | {vn(X), θvn(X)}∞n=0 = lim
n→∞

θvn(X),l

As shown in Example 1, limn→∞ θvn(X),l lies in {0, 1}
almost surely, so X lies in {0, 1}L.

Due to space constraints, we cannot give a full account
of how to perform inference in this model. Our goal in
the remainder of this section will be to give a high-level
overview, showing in particular how to tractably deal
with the infinitely long paths created by the nCRP.
A more detailed description of inference is given in
Appendices C and D.

Representing the tree The first issue is how to
represent the tree. The prior specifies infinitely long
paths for each datum, which is problematic for com-
putation. We deal with this using Lemma 4.1, which
implies that if a subtree contains only a single datum,
then we can analytically marginalize out all of the pa-
rameters of that subtree:
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Lemma 4.1. The marginal distribution of X | (X ∈
Subtree(v), θp(v)) is equal to Bernoulli(θp(v)). Further-
more, X | (X ∈ Subtree(v), θp(v)) is independent of Y
for any Y 6∈ Subtree(v).

We thus represent T by a truncated tree T ′ as follows:
each internal node v of T ′ corresponds to a node of T
with a non-empty subtree. Each leaf w of T ′ corre-
sponds to a data point X, which implicitly represents
an entire subtree of T that has been marginalized out
using Lemma 4.1. Subtrees with no data are omitted
altogether in T ′. As more data is added to a tree, a
new datum Y might end up taking a path through X.
In this case, X is replaced with an internal node that
then branches into new leafs containing X and Y (if
the paths of X and Y share many vertices, then many
new internal nodes will be created).

Incremental Gibbs Sampling Our specific ap-
proach to inference is incremental Gibbs sampling, al-
though other MCMC variants could be used as well.
There are three types of MCMC moves that we con-
sider: adding a data point, removing a data point, and
resampling the latent parameters. We outline each be-
low.

Adding a data point We can add a new data point
Y to T ′ either by making it the child of an already ex-
isting internal node v, or by expanding an external
node w. It is straightforward to calculate the likeli-
hood in the first case, as it is the probability that a
datum would take the path to v under the nCRP prior,
times the probability of creating a new table under the
CRP at node v, times the probability of generating Y
from Subtree(v) (which is given by Lemma 4.1). Ex-
panding an external node is more complicated, as we
need to create new internal nodes and sample their
parameters conditioned on X and Y . We also need
to compute the conditional distribution over how deep
the paths of X and Y first branch. Both of these cal-
culations can be made, and are given in Appendix C.

Removing a data point We remove the data point
and delete any nodes that now have zero data points in
their subtree. It is also now possible that an internal
node could have a single datum as its child and nothing
else, in which case that node should be collapsed.

Resampling the parameters An algorithm for re-
sampling the latent parameters of an HBP was first
proposed in (Thibaux and Jordan, 2007). Unfortu-
nately, this algorithm is not suited to sampling deep
hierarchies due to general numerical issues with hier-
archical Beta processes. The numerical issues occur
when we are resampling the parameters of a node and
one of the values of the children is very close to 0 or 1.

If a child parameter is very close to 0, for instance, it
actually matters for the likelihood whether the param-
eter is equal to 10−10 or 10−50 (or even 10−1000). Since
we cannot actually distinguish between these numbers
with floating point arithmetic, this introduces innacu-
racies in the posterior that push all of the parameters
closer to 0.5. To deal with this problem, we assume
that we cannot distinguish between numbers that are
less than some distance ε from 0 or 1. If we see such
a number, we treat it as having a censored value (so
it appears as P[θ < ε] or P[θ > 1 − ε] in the likeli-
hood). We then obtain a log-concave conditional den-
sity, for which efficient sampling algorithms exist (Ley-
dold, 2003).

Scalability If there are N data points, each with L
features, and the tree has depth D, then the time it
takes to add a data point is O(NL), the time it takes
to remove a data point is O(D), and the time it takes
to resample a single set of parameters is (amortized)
O(L). The dominating operation is adding a node, so
to make a Gibbs update for all data points will take
total time O(N2L).

Implementation To demonstrate inference in our
model, we created a data set of 53 stick figures deter-
mined by the presence or absence of a set of 29 lines,
which we treated as binary vectors in {0, 1}29. We
then ran incremental Gibbs sampling for 100 iterations
with hyperparameters of γ = 1.0, c = 20.0. The out-
put of the final sample is given in the supplementary
material.

5 Conclusion

We have presented an exchangeable prior over discrete
hierarchies that can flexibly increase its depth to ac-
commodate new data, and shown that our prior is uni-
versal for completely exchangeable models. We have
also implemented this prior for a hierarchical beta pro-
cess. Along the way, we identified a common model
property — the martingale property — that has in-
teresting and unexpected consequences in deep hierar-
chies.

This paper has focused on a general theoretical charac-
terization of infinitely exchangeable distributions over
trees based on the Doob martingale convergence the-
orem, on elucidating properties of deep hierarchical
beta processes as an example of such models, and on
defining an efficient inference algorithm for such mod-
els, which was demonstrated on a small binary data
set. A full experimental evaluation of nonparametric
Bayesian models for hierarchies is outside the scope of
this paper but clearly of interest.
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A Converse to Doob’s Theorem

Theorem 2.3. Consider any completely exchangeable
model where the data lie in a Polish space X. Then
there exists latent parameters θv ∈ Θ, a function f :
Θ→ [0, 1]N, and distributions G and H such that θv |
θp(v) ∼ G(θv), E[f(θv) | θp(v)] = f(θp(v)), and X |
{vn(X), θvn(X)}∞n=0 ∼ H

(
lim
n→∞

f(θvn(X))
)

.

Recall that a Polish space is a completely metrizable
separable space.

Proof of Theorem 2.3. Our strategy will be to find
a countable collection of bounded statistics that
uniquely determine any probability distribution over
X, then augment the original latent variables at each
node v with this collection. We will then show that
these statistics form a martingale, and that their limit
determines the conditional distribution of X given the
latent parameters on its path.

First, we show that there exist a countable collection
C of measurable subsets S of X such that knowing
Pp[X ∈ S] for all S ∈ C completely determines any
probability distribution p over X. Indeed, if X is Pol-
ish then the space D of probability measures on X is
also Polish in the topology generated by sets of the
form US,a,b := {p | a < Pp[X ∈ S] < b}. In particu-
lar, since D is a separable metric space, it is second-
countable. Let B be any countable base, and note
that every member U0 of B is second countable and
hence Lindelöf, so that we can find a countable col-
lection of the US,a,b that exactly covers U0. Unioning
over all the U0 in B gives us a countable basis B′ con-
sisting of sets of the form US,a,b. We then claim that
C := {S | US,a,b ∈ B′} is the desired collection of mea-
surable sets. Indeed, suppose that p and q are two dis-
tributions in D. Since D is Hausdorff, there exists some
US,a,b ∈ B′ such that p ∈ US,a,b and q 6∈ US,a,b, which
in particular implies that Pp[X ∈ S] 6= Pq[X ∈ S].
Taking the converse, if Pp[X ∈ S] = Pq[X ∈ S] for all
S ∈ C, then p = q, and hence knowing Pp[X ∈ S] for
all S ∈ C completely determines p.

Now let φv be equal to the countable tuple (P[X ∈ S |
X ∈ Subtree(v)])S∈C , and let ψv be the original latent
parameter at v in T . By the Markov property, ψv de-
termines φv, so if we let θv = (φv, ψv), then θv is statis-
tically equivalent to the original latent parameter ψv.
Since by assumption there exists a fixed conditional
distribution G0 for ψv | ψp(v), there also exists a fixed
conditional distribution G for θv | θp(v). On the other
hand, if we let f(θv) = φv, then f is clearly bounded
(since all its coordinates are probabilities and thus lie
in [0, 1]), and is a martingale since E[P[X ∈ S | X ∈
Subtree(v)] | θp(v)] = P[X ∈ S | X ∈ Subtree(p(v))].

Finally, let H(θv) be the unique distribution de-
fined by φv. To finish the proof, we need to show

that H
(

lim
n→∞

θvn(X)

)
is the distribution of X |

{vn(X), ψvn(X)}∞n=0. In other words, we need to
show that P[X ∈ S | {vn(X), ψvn(X)}] is equal to
lim
n→∞

P[X ∈ S | vn(X), θvn(X)] for all S ∈ C. This fol-

lows directly from Levy’s zero-one law, which states
that if F∞ is the minimal σ-algebra generated by
a filtration F0, F1, . . . of a probability space, then
lim
k→∞

E[Z | Fk] = E[Z | F∞] almost surely for any ran-

dom variable Z (in our case Z is the indicator for the
event that X ∈ S). So the θv are indeed the desired
set of latent variables, and the proof is complete.

B Statistics of Beta and Gamma
Functions

Lemma B.1. Let dn ∼ Gamma(αn, 1), en ∼
Gamma(βn, 1), αn+1 = αn + dn, and βn+1 = βn + en.

Then E
[

αn+1

αn+1+βn+1

]
= αn

αn+βn
.

Proof. We first note that if d and e are independent
and distributed as Gamma(α, 1) and Gamma(β, 1),
then the conditional distribution of d given that d+e =
s is equal to sBeta(α, β) (the proof is a straightforward
calculation of probability densities). Then we have

E
[

αn+1

αn+1 + βn+1

]
= Edn,en

[
αn + dn

αn + βn + dn + en

]
= Es

[
Edn

[
αn + dn

αn + βn + s
| dn + en = s

]]
= Es

[
Edn

[
αn + dn

αn + βn + s
| dn ∼ sBeta(αn, βn)

]]
= Es

[
αn + s αn

αn+βn

αn + βn + s

]

= Es
[

αn
αn + βn

]
=

αn
αn + βn

.

Lemma B.2. If X ∼ Beta(α, β), then E[log(X)] =
ψ(α) − ψ(α + β), where ψ is the digamma function
defined by ψ(x) = d

dx log Gamma(x).

Proof. Let F (α) =
∫ α
∞

(∫ 1

0
xα̃−1(1− x)β−1 log(x)dx

)
dα̃.

Then by the fundamental theorem of calculus, dF
dα =∫ 1

0
xα−1(1 − x)β−1 log(x)dx = Beta(α, β)E[log(X)].

We claim that F (α) = Beta(α, β). Indeed, we have
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F (α) =

∫ α

∞

∫ 1

0

xα̃−1(1− x)β−1 log(x)dxdα̃

=

∫ 1

0

(1− x)β−1

∫ α

∞
xα̃−1 log(x)dα̃dx

=

∫ 1

0

(1− x)β−1
(
xα̃−1

∣∣α
∞

)
dx

=

∫ 1

0

(1− x)β−1xα−1

= Beta(α, β)

Then it follows that

E[log(X)] =
d
dα Beta(α, β)

Beta(α, β)

=
d

dα
log Beta(α, β)

=
d

dα
(log Gamma(α)− log Gamma(α+ β))

= ψ(α)− ψ(α+ β),

which proves the lemma.

C Properties of Hierarchical Beta
Processes

In this section, we prove Lemma 4.1, and make some
additional calculations regarding the hierarchical beta
process model that will be useful for inference. We
deal with inference itself in the next section. We let X
denote a data point, Xl denote the lth coordinate of
X, and θn denote the parameter at the node at depth
n in the path corresponding to X. We also let θn,l
denote the lth coordinate of θn.

Lemma 4.1. The marginal distribution of X | (X ∈
Subtree(v), θp(v)) is equal to Bernoulli(θp(v)). Further-
more, X | (X ∈ Subtree(v), θp(v)) is independent of Y
for any Y 6∈ Subtree(v).

Proof of Lemma 4.1. Since Xl ∈ {0, 1}, we have
P[Xl = 1 | θp(v)] = E[Xl | θp(v)], hence Xl | θp(v) ∼
Bernoulli(E[Xl | θp(v)]). But

E[Xl | θp(v)] = E
[
Bernoulli

(
lim
n→∞

θn,l(X)
)
| θp(v)

]
= Bernoulli

(
E
[

lim
n→∞

θn,l(X) | θp(v)

])
= Bernoulli(θp(v),l),

where the last step uses the martingale property.3

This proves that X | (X ∈ Subtree(v), θp(v)) is

3In fact, we need something stronger, since the expec-

Bernoulli(θp(v))-distributed. The conditional indepen-
dence property then follows from the fact that the joint
distribution satisfies the Markov property for the tree
T .

Our next lemma is useful for determining the proba-
bility that a new datum Y would be generated given
that it lies in the subtree corresponding to an existing
datum X.

Lemma C.1. For any depth n ≥ 0, and any m ≥ n,
we have

E[θm,l | θn, X] =
(

c
c+1

)m−n
θn,l : Xl = 0

1−
(

c
c+1

)m−n
(1− θn,l) : Xl = 1

Furthermore, if Y is another datum and the least com-
mon ancestor of X and Y is at a depth d ≥ n, then

P[Yl = 1 | θn, X] =
(

c
c+1

)d−n
θn,l : Xl = 0

1−
(

c
c+1

)d−n
(1− θn,l) : Xl = 1

Proof of Lemma C.1. By Lemma 4.1, P[Xl = 1 | θi] =
θi,l for any i. Then, by the conjugacy of the Beta
distribution, θi+1,l | θi, X ∼ Beta(cθi,l + 1−Xl, c(1−
θi,l) +Xl). It follows that

E[θi+1,l | θi, X] =
(

c
c+1

)
θi,l : Xl = 0

1−
(

c
c+1

)
(1− θi,l) : Xl = 1

Iteratively applying this relation yields the first part of
the lemma. The second part of the lemma then follows
by applying Lemma 4.1 to see that

P[Yl = 1 | θn, X] = E[P[Yl = 1 | θd,l] | θn, X]

= E[θd,l | θn, X]

and then applying the first part of the lemma.

Lemma C.2. As in Lemma C.1, let d be the depth of
the least common ancestor of X and Y . Then, for any

tation of a limit does not necessarily equal the limit of the
expectation, as can be seen in Example 2 of Section 2.3.
However, if the random variables involved are uniformly
integrable, then a stronger version of Theorem 2.1 implies
that the limit of the expectation is indeed equal to the ex-
pectation of the limit. Since the θn,l are bounded, they are
uniformly integrable.
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n < d, we have the following relations:

θn+1,l | (θn, Xl 6= Yl) ∼
Beta(cθn,l + 1, c(1− θn,l) + 1)

θn+1,l | (θn, Xl = Yl = 0) ∼
ω1

ω1 + ω2
Beta(cθn,l + 2, c(1− θn,l))

+
ω2

ω1 + ω2
Beta(cθn,l + 1, c(1− θn,l) + 1)

θn+1,l | (θn, Xl = Yl = 1) ∼
ω3

ω3 + ω4
Beta(cθn,l, c(1− θn,l) + 2)

+
ω4

ω3 + ω4
Beta(cθn,l + 1, c(1− θn,l) + 1),

where

ω1 = c(1− θn,l) + 1

ω2 = cθn,l

(
1−

(
c

c+ 1

)d−n−1
)

ω3 = cθn,l + 1

ω4 = c(1− θn,l)

(
1−

(
c

c+ 1

)d−n−1
)
.

Proof of Lemma C.2. We will prove the assertion
when Xl = 0, since the argument when Xl = 1 is
identical. For brevity, we will drop the subscript of l

on θ, X, and Y . Also, we let r :=
(

c
c+1

)d−n−1

. Then

by Bayes’ rule, we have:

p(θn+1 | θn, X = 0, Y = 1)

∝ p(Y = 1 | θn+1, X = 0)p(X = 0 | θn+1)p(θn+1 | θn)

∝ rθn+1 × (1− θn+1)× Beta(θn+1; cθn, c(1− θn))

∝ Beta(θn; cθn + 1, c(1− θn) + 1).

Here we applied Lemma C.1 to compute p(Y = 1 |
θn+1, X = 0), and we applied Lemma 4.1 to compute
p(X = 0 | θn+1).

We now turn to the case when Y = 0. Then, using
Lemmas 4.1 and C.1 in the same way, we have

p(θn+1 | θn, X = 0, Y = 0)

∝ p(Y = 0 | θn+1, X = 0)p(X = 0 | θn+1)p(θn+1 | θn)

∝ [1− rθn+1]× (1− θn+1)

× Beta(θn+1; cθn, c(1− θn))

∝ [1− rθn+1]

× Beta(θn+1; cθn, c(1− θn) + 1)

∝ [(1− θn+1) + (1− r) θn+1]

× Beta(θn+1; cθn, c(1− θn) + 1)

∝ (c(1− θn) + 1) Beta(θn+1; cθn, c(1− θn) + 2)

+ cθn (1− r) Beta(θn+1; cθn + 1, c(1− θn) + 1),

where the extra terms in the last expression come from
the fact that Beta(·; cθn, c(1−θn)+2) and Beta(·; cθn+
1, c(1−θn)+1) have different normalization constants.

D Inference for Hierarchical Beta
Processes

Adding a Data Point

When we add a data point Y , there are two cases to
consider. First, we can add Y as a new child of an
internal node v (this happens if the CRP at that node
creates a new table), or we can add Y to the subtree
represented by a leaf w containing a datum X. Let
Z1(Y, v) denote the probability that a new node of T ′
is generated as a child of v and creates the datum Y ,
and let Z2(Y,w, k) denote the probability that a datum
first branches from the path of X k levels below w, and
that the resulting datum is Y .

Let the path to v be given by v0, v1, . . . , vn with
vn = v, and let Size(u) denotes the number of data
in Subtree(u). Also let θ denote the parameter at v.
Then we can calculate Z1(Y, v) as the probability that
a datum follows the path to v, times the probability
that a child of v would be equal to Y .

Z1(Y, v) =(
γ

γ + Size(v)

n−1∏
i=0

Size(vi+1)

Size(vi) + γ

)∏
l

θYll (1− θl)1−Yl .

Calculating Z2(Y, v, d) is a bit trickier. Let us adopt
notation similar to before, except with θ denoting the
parameter at p(w) and w0, . . . , wn denoting the path
to w. We can compute the probability that the path
of a datum goes through w in the same way as before.
Then we can use Lemma C.1 to compute the proba-
bility of Y given that X and Y first split into unique
subtrees at exactly k levels deeper than w. Letting

r =
(

c
c+1

)k
, the joint probability is given by

Z2(Y,w, k) =(
1

γ + Size(w)

n−1∏
i=0

Size(wi+1)

Size(wi) + γ

)(
1

1 + γ

)k
γ

1 + γ

×
∏

l:Xl=0

[rθl]
Yl [1− rθl]1−Yl

×
∏

l:Xl=1

[1− r(1− θl)]Yl [r(1− θl)]1−Yl .

The function Z2(Y,w, k) is a product of log-concave
factors in k, and is therefore itself log-concave. We
can thus find a rejection sampler with a constant ac-
ceptance rate of at least 0.25 (Leydold, 2003), and
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X

(X)

X Y

Figure 4: Illustration of how the tree is represented
and modified by the inference algorithm. Top: X is
a datum and thus corresponds to one of the leaves in
the tree T ′. In the original tree T , X corresponds
to the infinite path represented by the dashed nodes.
However, since no other data lie in that subtree, we
ignore all of the dashed nodes when moving from T
to T ′. Bottom: now a new datum Y is added to the
same subtree as X. The paths of X and Y first diverge
three levels below the old position of X. As a conse-
quence, three new internal nodes needed to be created,
and then X and Y are placed as the two children of
the deepest of these nodes. If Y were to be removed
from the tree, then these extra nodes would need to
be removed and X would return to its old position.

compute the normalization constant Ẑ2(Y,w) of the
enveloping function.

Now, to perform incremental Gibbs sampling, we add
a data point to an internal node with probability pro-
portional to Z1(Y, v), and we attempt to expand an ex-
ternal node with probability proportional to Ẑ2(Y,w).
In the case that we try to expand an external node, we
perform rejection sampling to determine what depth
the two data points should branch at. If the sampler
rejects, then we reject the Gibbs proposal, otherwise
we insert the new data point at the given depth. We
then need to sample all of the parameters at all of
the newly created internal nodes, which can be done
starting at the top and working iteratively towards the
bottom using Lemma C.2.

Resampling Parameters

Resampling an internal parameter is straightforward
in theory, since the conditional distribution over a pa-
rameter given its parent and children is log-concave
(it is proportional to the product of several beta and
Bernoulli densities). However, as noted before, there
exist numerical issues when parameters are too close to
either 0 or 1. We deal with this problem by assuming
that we cannot distinguish between numbers that are
less than some distance ε from 0 or 1. If we see such a
number, we treat it as having a censored value (so it
appears for instance as P[θ < ε] in the likelihood). A
straightforward calculation shows that

P[θv,l < ε | θp(v),l] ≈
εcθp(v),l

cθp(v),l
,

and similarly

P[θv,l > 1− ε | θp(v),l] ≈
εc(1−θp(v),l)

c(1− θp(v),l)
.

With this strategy for dealing with the numerical is-
sues, we now turn to the actual sampling algorithm.

The θv,l can be dealt with independently for different
values of l, so we will restrict our attention to a fixed
value of l. Suppose that θ is the parameter we want
to sample, θ0 is the value of its parent, θ1, . . . , θm are
the values of its children that are internal nodes, and
X1, . . . , Xp are the values of its children that are ex-
ternal nodes. Let a =

∑p
j=1Xj and b =

∑p
j=1 1−Xj .

Then, letting Beta(α, β) denote the normalization con-
stant of a beta distribution, the likelihood for θ is given
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by

p(θ | θ0, {θi}mi=1, {Xj}pj=1) ∝

θcθ0+a−1(1− θ)c(1−θ0)+b−1

×
∏

i:ε≤θi≤1−ε

θcθ−1
i (1− θi)c(1−θ)−1

Beta(cθ, c(1− θ))

×
∏
i:θi<ε

εcθ

cθ

×
∏

i:θi>1−ε

εc(1−θ)

c(1− θ)
.

One can check that this function is either (i) log-
concave, (ii) has infinite density at θ = 0, or (iii) has
infinite density at θ = 1. In the first case, we can sam-
ple from it efficiently (Leydold, 2003). In the second
case, θ is very likely to be less than ε; since our sampler
treats all numbers in the interval [0, ε) equivalently, we
can arbitrarily set θ to 0. Similarly, in the third case,
we can set θ to 1.

As a final note, we note that while this correction
avoids the numerical issues of the sampler in (Thibaux,
2008), there is no longer any guarantee that the sam-
pler converges to the true posterior distribution. While
it might be somewhat desirable to obtain a character-
ization of the stationary distribution of this sampler,
the real moral of the above is probably that the hierar-
chical beta process as it is currently formulated is not
suitable for deep hierarchies. An interesting direction
of future work would be to reformulate the HBP such
that it is well-behaved even for infinitely deep hierar-
chies.


