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Abstract—In this letter, we consider a variational approximate
Bayesian inference framework, latent-space variational Bayes
(LSVB), in the general context of conjugate-exponential family
models with latent variables. In the LSVB approach, we integrate
out model parameters in an exact way and then perform the
variational inference over only the latent variables. It can be
shown that LSVB can achieve better estimates of the model evi-
dence as well as the distribution over the latent variables than the
popular variational Bayesian expectation-maximization (VBEM).
However, the distribution over the latent variables in LSVB has to
be approximated in practice. As an approximate implementation
of LSVB, we propose a second-order LSVB (SoLSVB) method. In
particular, VBEM can be derived as a special case of a first-order
approximation in LSVB (Sung et al. [1]). SoLSVB can capture
higher order statistics neglected in VBEM and can therefore
achieve a better approximation. Examples of Gaussian mixture
models are used to illustrate the comparison between our method
and VBEM, demonstrating the improvement.

Index Terms—Bayesian inference, conjugate-exponential family,
latent variable, mixture of Gaussians, model selection, variational
method.

I. INTRODUCTION

I N the Bayesian approach [2], we give a prior over
model parameters given a model . From this, we can ob-

tain a posterior over latent variables and model parameters
given data set

(1)

(2)

The posterior distribution is useful for cluster
analysis, dimensionality reduction, classification, and predic-
tion tasks. In particular, the probability , called mar-
ginal likelihood or model evidence, is an important quantity for
model comparison [3] since it penalizes overcomplex models by
automatically encoding Occam’s Razor [4].

Unfortunately, true Bayesian inferences are generally in-
tractable due to difficult integrals associated with the model
evidence in (2). Therefore, it has to be approximated in prac-
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tice. Based on factorization between latent variables and model
parameters, variational Bayesian expectation-maximization
(VBEM) [3], [5], a standard variational approximate Bayesian
inference method, alternatively maximizes a lower bound

of the log model evidence

(3)

with respect to approximating distributions in the VBE-step
and in the VBM-step. At the maximum, the lower bound
gives an approximate log model evidence and the approxi-
mating distribution provides an approximate posterior. The
quality of the approximations are evaluated by the tightness of
the lower bound. Compared with Markov chain Monte Carlo
(MCMC) methods, VBEM can require much less computation
and come with an easy to evaluate convergence criterion. How-
ever, VBEM can result in a significantly loose lower bound and
often fail to find a correct model from a given data set since
it ignores nontrivial correlations between latent variables and
model parameters due to its inherent independence assumption.
To simplify notation, we have here and will henceforth assume
a given particular model, , even when this is not explicitly
stated in the notation as in (3).

In this letter, we consider a more general variational Bayesian
approximate inference method, which we named latent-space
variational Bayes (LSVB). In this approach, we first integrate
out the model parameters in an exact way, leaving only the la-
tent variables. Assuming weak dependencies among the latent
variables over samples, we next attempt to maximize the lower
bound in the form of

(4)

with respect to a factorized approximating distribution
over samples, where denotes
complete-data marginal likelihood. Fundamentally, LSVB
can give a better solution than VBEM since its lower bound
is always tighter than the lower bound of VBEM, that is,

. Next, we will focus LSVB on a
general class of latent variable models called conjugate-expo-
nential family and introduce a second-order LSVB (SoLSVB)
method as a tractable implementation of LSVB.

II. CONJUGATE-EXPONENTIAL FAMILY

Consider a data set and a latent variable set
, where the index runs over samples. We as-

sume both and to be multidimensional. Each of them is
independently drawn from an exponential family [6] distribu-
tion parameterized by the model parameters

(5)
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where is a function of complete-data and is called
a natural parameter. The function is a constant with respect
to and ensuring that the distribution normalizes to one. A
conjugate prior over the model parameters to the complete-data
likelihood, , also has the same
form of exponential family

(6)

where and denote prior hyper-parameters and
denotes the normalizing function. In

particular, is a convex function of hyper-parameters since
its Hessian matrix is always positive semi-definite as given by a
covariance matrix of the natural parameters [6].

A class of models represented by the exponential family
distribution in (5) with the conjugate prior in (6) is called
the conjugate-exponential family [3] which has the posterior
over the model parameters in the same form as the prior, that
is, with posterior hyper-pa-
rameters and . The
conjugate-exponential family is broad and includes many
interesting latent variable models such as mixtures of Gaus-
sians, mixtures of factor analyzers, state-space models, hidden
Markov models, linear dynamical systems, and some kinds of
graphical models.

III. LATENT-SPACE VARIATIONAL BAYES

The conjugate-exponential family gives the complete-data
marginal likelihood which comprises analytically known func-
tions in the form of

(7)

This means that no optimization is needed to compute this com-
plete-data marginal likelihood. From this, the lower bound
in (4) with respect to a factorized approximating distribution

over samples can be formulated by

(8)

where

. We use the notation for the expectation
under a distribution and for the entropy defined by

.
Since the lower bound is a concave functional over ,

if we set the functional derivative of with respect to
to zero, we can find the optimal at the maximum of
in the form of

(9)

where . The notation denotes the ex-
clusion of the th sample. Generally, an analytical solution of

does not exist due to couplings among . However, we
can locally maximize by iteratively updating at one
time by fixing the others in somewhat round-robin (or random)
order, starting from an initial guess. We call this iterative maxi-
mization procedure LSVB algorithm, which never decreases the
lower bound and guarantees finding a local maximum of

.

It can be shown that LSVB is a more general and theoretically
better approximate inference approach than VBEM. Theorem 1
shows the relationship between LSVB and VBEM.

Theorem 1: For the conjugate-exponential family, the lower
bound of LSVB is tighter than the lower bound of VBEM: for
all

(10)

where the equality is satisfied when is a linear function of
. Proof is given in Appendix A
Since the lower bound of VBEM becomes tight

after the VBM step, it essentially reduces to the same form
of the first-order (linear) lower bound of . In other
words, VBEM for the conjugate-exponential family actually
maximizes the first-order lower bound of LSVB and can be
therefore viewed as a special case of first-order approximate
LSVB [1]. We note that the first-order approximation of a
nonlinear function is normally unreliable because some of the
important high-order information is ignored. This means that
VBEM can give a poor approximation of LSVB. An advan-
tage of our LSVB approach is that it provides a theoretical
framework to incorporate higher order information ignored by
VBEM. In Section IV, we show an example by the second-order
approximation method.

IV. SECOND-ORDER LSVB

The exact LSVB algorithm is generally hard to be done in
practice due to difficult expectations of the nonlinear function

. A standard and practical way to approximate the expecta-
tion of a nonlinear function is to approximate the nonlinear func-
tion by a simpler function. We consider here the second-order
(Gaussian) approximation, , of around

where and are gradient vector and Hessian matrix
of evaluated at , respectively. Generally, the expectation
of nonlinear function under a distribution can
be approximated by substituting by
around

(11)

where under
and under de-

note covariance matrices of natural parameters and posterior
hyper-parameters, respectively. The notation denotes
the standard matrix trace operation. For the exponential
family distribution, the covariance matrix of natural param-
eters is particularly given by the Hessian of , that is,

. This approximation technique for the
difficult expectation can be directly incorporated in and

in LSVB.
Incorporating

in (9) gives the second-order approximating in the form of

(12)
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where . We call an iterative al-
gorithm to update this second-order approximating instead
of the exact one SoLSVB. The SoLSVB algorithm incorporates
higher-order information and therefore captures some correla-
tions neglected by the VBEM algorithm.

The SoLSVB algorithm gives an estimate of the op-
timal of LSVB. From this, we can also estimate the
optimal of LSVB. Incorporating

with estimated by the SoLSVB
algorithm provides the second-order approximate of

(13)

The second-order in SoLSVB compensates for rough
in VBEM by taking into account uncertainties about

the natural parameters and the posterior hyper-parameters.
Therefore, SoLSVB can provide a much more accurate approx-
imation of than VBEM.

In contrast to VBEM, both LSVB and SoLSVB no longer
explicitly give an estimate of the posterior over the model pa-
rameters as they integrate out the model parameters. However,
from the estimated distribution over the latent variables, one can
later estimate a posterior over the model parameters. A simple
way used here is to take a single VBM step with estimated
by the SoLSVB algorithm, which reduces to

(14)

V. EXAMPLE OF MIXTURE OF GAUSSIANS

In order to demonstrate our method, we consider the mix-
ture of Gaussians (MoG), a standard latent variable model for
cluster analysis and density estimation of an unknown distribu-
tion. The number of components, , specifies the model
for MoGs. Suppose a -dimensional continuous data and
a discrete latent variable . For MoG, the
joint distribution given the model parameters

can be written in the form of

(15)

where the indicator function equals one if and
zero otherwise. The mixing coefficient satisfies
and . The standard normal density
with mean vector and precision matrix represents the th
mixture component. A standard conjugate prior over the model
parameters of MoG consists of Dirichlet distribution on

and Normal -Wishart distribution
on for all

(16)

where all standard distributions are given in Table I.
After converting (15) and (16) into the standard conjugate-

exponential form in (5) and (6), we can find the posterior hyper-
parameters given by

(17)

where , , and are sufficient statistics given by
, , and

TABLE I
STANDARD DISTRIBUTIONS

. The hyper-parameter does not play any
role for MoG and can be safely dropped. In addition, the
normalizing function has the form of

where denotes the standard gamma function. From the stan-
dard conjugate-exponential form for MoG above, both LSVB
and SoLSVB algorithms are straightforward as given in the pre-
vious Sections III and IV. Due to the lack of space, we leave
more detailed derivations to readers.

A. Numerical Results

We used default prior hyper-parameters with ,
, and (sample mean)

for all components. In particular, was set for under
the prior to be and then was set for the
precision of to be , where denotes the
maximum standard deviation of data set among dimensions.
Also, we initialized the distribution over the latent variables
such as with the
center of the th cluster found by the standard -means
algorithm. The algorithms were considered to be converged
when the successive changes in were very small such as

.
To see basic properties of the algorithms, we first used one-di-

mensional toy data sets of 20 data samples shown in Fig. 1(a).
They were generated from the mixture of two Gaussians with

, , , and .
For these small data sets, we can perform the exact inference
and the LSVB algorithm. Fig. 1 shows the results performed on
the model with . We can see that VBEM results in the
poorest distribution over the latent variables, showing the largest
KL divergence to the true distribution (Fig. 1(b)). In contrast, di-
rectly approximating the distribution over the latent variables in
LSVB, SoLSVB finds a good distribution over the latent vari-
ables, which is very close to LSVB (Fig. 1(b)). In addition,
as a result of correcting the loose first-order lower bound in
VBEM, SoLSVB gives a better estimate of the model evidence
than VBEM, showing a slightly more accurate approximation
to LSVB (Fig. 1(c)).

To examine differences of the algorithms in the task of model
selection for density estimation, we next used a three-dimen-
sional noisy shrinking spiral data set (see Fig. 2(a)), which
has been often used to demonstrate inference algorithms in
the machine learning literature [5]. For this data set, neither
the exact inference nor the LSVB algorithm is allowed. In
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Fig. 1. Results based on 30 trials with different data sets of 20 data samples,
randomly drawn from the mixture of two Gaussians. All inferences were per-
formed on the model with . (a) Single case of random data set, annotated
by sampling distribution. (b) KL divergence of the true posterior distribution
over the latent variables from the approximate distribution estimated by the al-
gorithms. (c) Estimated log model evidences: from left to right, for
Exact, for LSVB, for SoLSVB, and for VBEM.

Fig. 2. Example of spiral data set. (a) Data set of 800 data samples. (b) and (c):
Estimated log model evidences, for VBEM (b) and for SoLSVB
(c), compared with log variational predictive probabilities of the validation data
set, denoted by VPP, based on estimated by VBEM (b) and SoLSVB (c).
The results are averaged over 30 trials with different initial .

order to validate the estimated model evidence based on
training data set , we prepared an independent
validation data set on , both of which were
drawn from the same distribution. For each model, we then
evaluated the log variational predictive probability1 of , given
by , where the variational ap-
proximate posterior was estimated as given
in (14) based on the training data set . VPP measures how
well a learned model based on the training data set represents
the underlying true distribution in terms of generalization
performances. We note that VPP can be also used as a model
criterion but the additional validation data set required by VPP
is not always allowed to obtain in practice. In contrast, the
model evidence allows us to compare models based solely
on the training data set . For MoG, VPP has the form of
the mixture of student distributions and its detailed form can
be found in [7]. Fig. 2 shows the results over 30 trials with
different initial . Both VPPs based on estimated by
VBEM (Fig. 2(b)) and SoLSVB (Fig. 2(c)) are very similar and
commonly find the best model nearby . Also, we can
see that in all cases, VBEM underestimates the model evidence
compared with SoLSVB, finding a simpler model with
as the best (Fig. 2(b)). Moreover, VBEM gives a significantly
different shape from VPP, showing a poor generalization
performance. Correcting the loose first-order lower bound of
VBEM, SoLSVB gives a more reliable estimate of the model
evidence and shows a similar tendency with VPP (Fig. 2(c)). It
finds the best model with like VPP but, in contrast to
VPP, does not require an additional validation data set to do so.

1The variational predictive probability is a standard approximation for in-
tractable true predictive probability, .

VI. CONCLUSION

In this letter, we introduced the LSVB approach for vari-
ational approximate Bayesian inference and proposed the
SoLSVB method as its approximate implementation in the gen-
eral context of conjugate-exponential family. We successfully
illustrated our method using examples of Gaussian mixture
models, compared it with the popular VBEM method. It was
shown in numerical results that SoLSVB can be a more reliable
approximate inference method than VBEM since it captures
higher-order statistics ignored by VBEM. SoLSVB is generally
more expensive than VBEM since it requires an additional
computation of Hessian, cost of which depends on models.
However, it is still much more efficient than the MCMC
methods. A similar idea, integrating out model parameters first,
has been independently developed in [8], but they focused on a
specific latent variable model called latent dirichlet allocation
(LDA).2 Our approach to the conjugate-exponential family is
more general including LDA as its special case. We believe
that our proposed method will be promising to other interesting
latent variable models in the conjugate-exponential family.

APPENDIX

Proof of Theorem 1: Incorporating (5) and (6)
into (3), the lower bound of VBEM for the
conjugate-exponential model is reduced to

By the defi-
nition of convex function , we get the following inequality

. Furthermore, we can ob-
tain a lower bound of with respect to an arbi-
trary by using Jensen’s inequality [7]:

. Plugging
both inequalities above into , it
is trivial to see the relation

, where the equality is satisfied when is a
linear function of .
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