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ABSTRACT
We present methods to do fast online anomaly detection us-
ing scan statistics. Scan statistics have long been used to de-
tect statistically significant bursts of events. We extend the
scan statistics framework to handle many practical issues
that occur in application: dealing with an unknown back-
ground rate of events, allowing for slow natural changes in
background frequency, the inverse problem of finding an un-
usual lack of events, and setting the test parameters to max-
imize power. We demonstrate its use on real and synthetic
data sets with comparison to other methods.

1. INTRODUCTION

Scan statistics are a powerful method for detecting unusu-
ally high rates of events, also called anomalies. Scanning
for bursts of events has many applications in diverse fields
such as telecommunications, epidemiology, molecular biol-
ogy, astronomy, quality control, and reliability [1, 2]. In
monitoring and control of communication networks, scan
statistics can be used to monitor the occurrence of events
in time, a point process, such as status messages, alarms,
and faults. We are not looking for outliers, but rather un-
usual bursts in events. In an online application for events
occurring in time, the number of events which have oc-
curred in the scanning window [t − w, t], where t is the
current time and w is the scanning window size, are com-
pared with the number of events expected to have occurred
in that window under normal conditions. If that number of
events is large compared to what is expected, then an alert
of an abnormal condition can be given. Scan statistics can
be used to compute the distribution of events under normal
conditions (the null hypothesis, H0) to determine what is a
significantly large number (the critical value) in the scan-
ning window, while properly controlling the false positive
rate (FPR), which is the probability of exceeding the critical
value for any scanning window of size w in the larger time
interval [0, T ) under H0. A key advantage of scan statistics
is that they allow for computationally simple implementa-
tion; therefore, it is possible to monitor many processes at
once with a small computational burden.

In the usual treatment of scan statistics the times of events
occurring in the interval [0, T ) are assumed to be generated
by a Poisson process under H0.1

This paper’s contribution addresses four practical prob-
lems with scan statistics: finding the optimal window size
to optimize power (Section 3.1), controlling the FPR in the
presence of an unknown background rate (Section 3.2), de-
tecting an unusual lack of events (Section 3.3), and allow-
ing for slow natural changes in the background rate (Sec-
tion 3.4). We present a very fast method for updating the
estimated background rate. Finally, in Section 4 we test our
methods on synthetic and real-world data sets from meteo-
rology and geology.

2. SCAN STATISTICS

Assuming that λ is known, the scan statistic is defined as
follows. Let X1, X2, . . ., XN denote the ordered values of
the events occurring in the interval [0, T ) and let Yt(w) be
the number of points (X’s) in the interval [t − w, t].2 The
scan statistic Sw is then defined as the maximum number of
points to be found in any subinterval of [0, T ) of length w.
That is,

Sw := max
w≤t≤T

Yt(w) = max
t

N∑
i=1

I{t− w ≤ Xi ≤ t} . (1)

A related statistic is Wk, the minimum subinterval of [0, T )
containing k points

Wk := min
0≤w≤T

{w : Sw ≥ k} = min
1≤i

(Xi+k−1 −Xi) . (2)

The distributions of these statistics are related by P (Sw ≥
k) = P (Wk ≤ w). Equivalently, Sw and Wk are inverses:
SWk

= k for k ≤ N .3 The key trick in scan statistics is
1In a Poisson process with rate λ over [0, T ), the number of events is

given by Poisson(λT ). The inter-arrival times are iid distributed according
to Exponential(λ). Conditional on there being k events, the times of the
events are distributed uniformly in [0, T ).

2Extensions of scan statistics exist in discrete time and on circular data,
such as time of year, but we do not focus on them here.

3One should also note the edge cases of Sw and Wk: Wk = ∞ for
k > N , W1 = 0 and S0 = 1 for N ≥ 1, and ST = N .



controlling the FPR by accounting for the overlapping mul-
tiple comparisons that are a result of the rolling scan win-
dow while maintaining more power than simple Bonferroni
correction.

For a Poisson process with mean rate λ per unit time
over the interval [0, T ), [3] (see also [4]) gives the following
approximation for the distribution P (Sw ≥ k |µ,L), where
µ := λw and L := T/w (also equal to P (Wk ≤ w |µ,L)).
Let p(k;µ) be the probability of exactly k events occurring
for a Poisson distribution with mean µ and F (k;µ) the cu-
mulative distribution function (CDF) for the Poisson, then

P (Sw ≥ k |µ,L) ≈ 1−Q2(Q3/Q2)L−2 , (3)

Q2 := F (k − 1, µ)2 − (k − 1)p(k;µ)p(k − 2;µ)
− (k − 1− µ)p(k;µ)F (k − 3;µ) ,

Q3 := F (k − 1, µ)3 −A1 +A2 +A3 −A4 , (4)

where

A1 := 2 p(k;µ)F (k − 1;µ)
× [(k − 1)F (k − 2;µ)− µF (k − 3;µ)] ,

A2 := 0.5 p(k;µ)2 [(k − 1)(k − 2)F (k − 3;µ)

− 2(k − 2)µF (k − 4;µ) + µ2F (k − 5;µ)] ,

A3 :=
k−1∑
i=1

p(2k − i;µ)F (i− 1;µ)2 ,

A4 :=
k−1∑
i=2

p(2k − i;µ)p(i;µ)

× [(i− 1)F (i− 2;µ)− µF (i− 3;µ)] .

To test the null hypothesis, H0, that the background rate
λ = λ0 = constant at the significance level α, find the
smallest k, which we call kCrit, such that

P (Sw ≥ kCrit |µ0, L) ≤ α , (5)

where µ0 := λ0w. For an online test with fixed w, if at
time t (the current time) the number of points, k, occurring
in the time interval of length w ending at t, [t − w, t], is
≥ kCrit, then the null hypothesis is rejected at significance
level α and an alert may be given indicating that the rate of
events has likely increased. An equivalent alternative test is
to determine the length of time separating the most recent
kCrit points, WCrit := Xi −Xi−kCrit+1, where Xi = t. If
WCrit ≤ w then an alert may be given.

3. FOUR PROBLEMS WITH SCAN STATISTICS

In this section we address four practical problems with scan
statistics. Firstly, we would like to make the choice ofw less
arbitrary. Second, we want to estimate λ while accounting
for the estimation error. Third, define a test to look for an
unusual lack of points. Finally, we look at updating our
estimate of λ online.

3.1. The Window Size Problem

The window size w in scan statistics is typically treated as
arbitrary and ignored in the literature. We can get much
different results depending on the window size, so it is un-
satisfactory to have it set arbitrarily. Smaller windows will
be quicker to alert while larger windows will detect smaller
changes in rate. We show how to set the window size based
on the rate change we would like to detect.

We wish to maximize the power of detection for an al-
ternative hypothesis where there is an abrupt change in the
rate of the Poisson process from λ0 to λ1 = cλ0, where
c > 1. We would like to choose the w that minimizes the
expected time to detention (TTD): E [TTD].

Using (3) we can solve for the CDF on TTD:

P (TTD ≤ t) = P (Alert|Observed in [0, t)) (6)
= P (Sw ≥ kCrit |µ = λ1w,L = t/w)

P (TTD/w ≤ L) = max(0, 1−Q2e
log(Q3/Q2)(L−2)) ,

= max(0, 1− e−r(L−L0)) , (7)

L0 := log(a)/r, a := Q3
2/Q

2
3, r := log(Q2/Q3) , (8)

where Q2 and Q3 have been computed using λ1 and kCrit.
p(TTD) is in the form of a shifted exponential distribution.
Therefore, E [TTD] = w(log(a) + 1)/r.

The problem is reduced to the following optimization:

min E [TTD] = w(log(a) + 1)/r wrt kCrit ∈ N, w ∈ R+

st P (Sw ≥ kCrit |µ0, L) ≤ α . (9)

Increasing w will lower the TTD if the increase is small
enough that the inequality does not require kCrit to increase
too. Therefore, we can make (9) an equality constraint since
the optima will always occur when (9) is an equality. We
can implement the joint optimization on kCrit and w in a
nested way. In the outer loop we can do a binary search on
kCrit that minimizes E [TTD] using the appropriate w. In
the inner loop, we find the appropriate w given kCrit using
a bisection search to solve P (Sw ≥ kCrit |µ0, L) = α.

Alternatively, the same solution is approximately given
by setting w such that: cλ0w = λ1w = kCrit. This imple-
mentation uses bisection search on w in the outer loop and
binary search on kCrit in the inner loop.

We have presented an optimization routine that can be
used to set the window in a principled manner. The compu-
tational burden is small since the routine only needs to be
run when configuring the test.

3.2. The Background Rate Problem

Formulation in [4] assumes known background rate λ. In
most real-world applications the true background rate is un-
known and must be estimated by λ̂ from a period of time,



the training period [0, TTrain], where the system is assumed
to be in a normal state. Underestimating the true rate can
lead to a FPR much higher than α per test period of length
T . Therefore, we must account for the estimation error of
λ during training. A common choice for estimating λ is the
maximum likelihood estimate (MLE) λ̂ = N/TTrain, where
N is the number of events in [0, TTrain]. However, it is hard
to control for the estimation error using the MLE. Given a
procedure for estimating λ, such as the MLE, we can calcu-
late the false positive rate in test FPR(λ):

FPR(λ) =
∫

FPR(λ̂|λ)p(λ̂|λ)dλ̂ , (10)

where FPR(λ̂|λ) is the false positive rate in a test period of
time T if we plug in λ̂ to the scan statistic if the true back-
ground rate is λ. In the hypothesis testing framework we
want to control the FPR of our statistic in the worst-case,
meaning we want to control the quantity maxλ FPR(λ) ≤
α. Consequently, we bound FPR(λ) to remove the require-
ment of knowing the true rate λ by simplifying (10):

FPR(λ)

= FPR(λ|λ̂ < λ)︸ ︷︷ ︸
≤1

P (λ̂ < λ) + FPR(λ|λ̂ ≥ λ)︸ ︷︷ ︸
≤α

P (λ̂ ≥ λ)

≤ P (λ̂ < λ) + αP (λ̂ ≥ λ) = β + α(1− β) (11)
≤ β + α, ∀λ . (12)

This means the natural way to bound the FPR is by using
the upper end of a one-sided confidence interval on λ, with
coverage 1 − β, for λ̂. If the coverage is not exact then the
weaker bound (12) must be used instead of (11). We can
now provably control the FPR and do not have to reserve
residual concern on our results due to estimation error in λ̂.

3.3. The Low End Problem

Typically, scan statistics focus on finding unusual bursts of
events, which is desirable when events are viewed as bad
things. However, in some applications the absence of an
event might be cause for concern. For instance, if an event is
a network synchronization, a long period without one would
be justification for alert. For this purpose we define an anal-
ogous scan statistic to (2)

W̃k := max
1≤i

(Xi+k+1 −Xi) . (13)

For simplicity we focus on the k = 0 case; we use the
longest inter-arrival time as the test statistic in this case.

In order to use W̃k, we must compute its sample dis-
tribution. To do this we first consider the case where N is
known, then we will marginalize N out as a second step in
the analysis. We also consider T = 1 for the time being

without loss of generality as the time units can always be
rescaled. In the following analysis we make use of the fact
that conditional on N the events are uniformly distributed.
In the case of N = 0 the distribution is trivial:

p(W̃0 ≥ w|N = 0) = 1, w ∈ [0, 1] . (14)

For higher N ,

p(W̃0 ≥ w|N = 1) = 1, w ∈ [0, 1/2],
2(1− w), w ∈ [1/2, 1] (15)

p(W̃0 ≥ w|N = 2) = 1, w ∈ [0, 1/3],

1− (3w − 1)2, w ∈ [1/3, 1/2],

3(1− w)2, w ∈ [1/2, 1] (16)

Consistent with these equations we find the following bounds:

p(W̃0 ≥ w|N) ≤ (N + 1)(1− w)N (17)

p(W̃0 ≥ w|N) ≥ min(1, 1− ((N + 1)w − 1)N ) (18)

The upper bound, (17), is quite tight in the tail region, usu-
ally around p ≤ 0.3, and is exact for w ≥ 1/2. Now we
must marginalize out N as it is not known a priori:

p(W̃0 ≥ w) =
∞∑
N=0

p(W̃0 ≥ w|N)p(N) (19)

≤
∞∑
N=0

(N + 1)(1− w)NλNe−λ/N ! (20)

= e−wλ
∞∑
N=0

(N + 1)/N !(λ(1− w))Ne−λ(1−w)

= e−wλE [N + 1] , N ∼ Poisson(λ(1− w))

= e−wλ(1 + λ(1− w)) . (21)

For the case of general T we have: p = e−wλ(1+λ(T−w)).
We can bound the FPR below α in false alarms in T by only
alerting when p ≤ α. The bound is quite tight in the tail of
small α and is an effective test for low end problems.

3.4. The Online Problem

In many applications we only want to identify a sudden
change in background rate. For instance, in a network-
ing application a sudden spike in packets on a router might
mean a failure on another route; while a gradual increase in
rate might simply be the result of a network gaining more
users. We would like a method that can distinguish between
these two scenarios.

We extend scan statistics to allow the test to ignore grad-
ual enough changes in λ over time that a domain expert de-
termines them to be irrelevant. A first step in dealing with
a null hypothesis that has a changing background rate is to



explicitly estimate the background rate. For computational
simplicity we consider a kernel intensity estimator (KIE),
the rate analog of kernel density estimation (KDE). The KIE
without edge correction is

λ̂(t) =
N∑
i=1

k

(
t− ti
u

)
, (22)

where u is the bandwidth, the time scale over which the rate
naturally changes without concern. We denote the smooth-
ing kernel by k(·) and refer to the time of the ith event with
ti. When exponential kernels are used,

k(x) = ue−ux, x ≥ 0 , (23)

the online updating can be made very efficient even for large
N . Given we know the estimate λ̂(t) we can update after a
period ∆t:

λ̂(t+ ∆t) =
N∑
i=1

ue−u(t+∆t−ti) = e−u∆t
N∑
i=1

ue−u(t−ti)

= e−u∆tλ̂(t) . (24)

If a new event has occurred at ∆t we must add k(0) at the
end: λ̂(t+ ∆t) = e−u∆tλ̂(t) + u. This estimator is highly
biased toward low rate estimates near t = 0. We must apply
an edge correction to remove this bias. [5] recommends
using the correction

λ̂(t) =
N∑
i=1

k

(
t− ti
u

)
/

∫
A

k

(
t− τ
u

)
dτ︸ ︷︷ ︸

=:Z

, (25)

where A is the region observed, usually [0, t]. This estima-
tor is unbiased in the case when the true rate is constant. In
the case of an exponential kernel Z = 1−e−ut. The update
equations with edge correction are

λ̂(ti) = λ̂(t−i ) +
u

1− e−uti
, (26)

λ̂(t−i ) = λ̂(ti−1 + ∆t), ∆t = ti − ti−1 , (27)

λ̂(t+ ∆t) = λ̂(t)
1− e−ut

eu∆t − e−ut
, (28)

where the time t−i represents the time immediately before
the ith event. Note that as t→∞ these equations approach
those without edge correction, (24), as expected. This setup
is computationally trivial, each update is O(1) in computa-
tion and memory as opposed to O(N) for exact calculation
for general KIE; at the same time, we attain the desired be-
havior ignoring gradual changes.

It is also possible to do efficient online updating us-
ing boxcar kernels implemented using a queue data struc-
ture rather than manipulating exponentials. More general

smoothing kernels can be created by averaging over expo-
nentials or boxcar kernels smoothers of different bandwidths
u, which maintains both the unbiasedness property and the
tractability of a simple exponential.

The methods in this section find a background rate by
smoothing events over time. It is worth noting that if multi-
ple draws of the point processes are observed in parallel we
can smooth across point processes. This was done by [1]
for scan statistics on spatial count data.

4. EXPERIMENTS AND RESULTS

We evaluate our methods on two real and two synthetic data
sets. For synthetic data we analyze the power of the scan
statistic when the true rate function λ(t) is 1) a step function
that increases in rate and 2) a short lived pulse. We compare
it to the CUSUM method, linear trend methods, and uni-
formity tests. Retrospective performance is evaluated by
the use of receiver operator characteristic (ROC) curves;
online performance is gauge by time to detection (TTD)
curves. For real data we investigate changes in frequency of
1) global earthquakes with magnitude 5.0 or greater4 and 2)
occurrences of snow storms in Whistler, BC, Canada.5 The
ROC and TTD curves augment the results showing a bound
on the FPR below α. ROC and TTD curves do not reward
calibration and therefore only show that scan statistics do
not lose anything by controlling FPR.

4.1. Synthetic Data

We first consider the step rate function with a 1.3× rate in-
crease at the step and a pulse function with a 2× rate in-
crease. We constructed the results using N = 5, 000 sam-
ples from either a Poisson process with λ0 = 1 or λA(t);
we randomly select between the two cases with even prob-
ability. In retrospective analysis, the method must provide
a score to classify the observed points as either the high or
low rate, after observing all the data. For this task the ROC
curve can be used: a different threshold on the score will re-
sult in different false positive rates (FPR) and true positive
rates (TPR). In the online case, the methods must provide a
score after each event. For this task we use the time to de-
tection curve. For each score threshold we plot the expected
time until the first alert under H0, the low rate, and HA the
high rate. Under both curves, we would ideally like to see
the curves passing through the upper left corner.

The CUSUM method [6] was originally developed to
handle discrete time problems, and has been shown to have
optimal power when the data follows a Brownian motion.

4http://earthquake.usgs.gov/earthquakes/
eqarchives/epic/epic_global.php/

5http://www.climate.weatheroffice.ec.gc.ca/
Whistler Roundhouse, id 1108906
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Fig. 1. Synthetic Data: The top row shows ROC curves for scan statistics compared to other methods. The bottom row shows the TTD
curves. The left column shows results when the positive case is generated from a step in the rate function from λ = 1.0 to λ = 1.3 at
t = 50. The middle column shows when λ = 2.0 for t ∈ [50, 60]. The right column shows λ = 2.0 for 10 time units starting at uniformly
distributed point in [0, 90]. In all cases the negative case is generated from a homogeneous Poisson process with λ = 1.0.

We can convert a point process problem into a CUSUM
problem by binning the points using a small bin size; we
have found that a bin size such that there will be 5 points in
the bin under λ0 works well in practice. A bin size giving an
expectation near 15 points will become fairly close to nor-
mally distributed, matching the CUSUM’sH0 assumptions.
Too large a bin size will lead to a slightly longer alerting and
throws more information away. Once the points are binned
we can also apply a rolling test for a linear trend, where we
consider five bins at a time here. We can also apply a unifor-
mity χ2 test to measure how reasonable the homogeneous
Poisson process assumption is.

We also compare to the Bayes’ optimal solution: com-
paring the likelihood ratios assuming we know the different
rate functions being considered. We compute the ratio us-
ing the true change time. Consequently, it provides a gold
standard for the other methods to be compared to.

Figure 1 shows that the linear trend method (LTM) only
does slightly better than random on the ROC and TTD curves.
We show the area under the curve (AUC) scores in Table 1.
The CUSUM has reasonably good performance, but not as
good as the scan statistic. The Bayes’ optimal method does
better than the scan statistic when the time of the λ change
is known in advance, giving it an (unfair) advantage over

Table 1. Comparison on area under the curve (AUC) of the ROC
curves on three tasks: step 1.3×, pulse 2×, and random pulse 2×.
We separate Bayes’ Optimal, which uses information about where
the step occurs. The random classifier has AUC 0.5.

Method Step 1.3× Pulse 2× R-pulse 2×
Bayes’ Optimal 0.948 0.964 0.766
Scan Stats ? 0.896 0.851 0.854
CUSUM 0.797 0.804 0.732
Uniform 0.620 0.822 0.722
LTM 0.539 0.562 0.586

the other methods. When the pulse location is not known in
advance, Fig. 1(c) and 1(f), the scan statistic dominates the
other curves by a large margin on the ROC and TTD.

4.2. Snowfall Data

We consider the task of determining a long run change in
large snow storm frequency in Whistler, BC, Canada during
1972–2008. We define the event of snow storm to be any
day where it snows more than 30 cm, approximately the
top 5% of snow days. Clearly the rate function will change
as storm frequency depends on the time of year and will



be much higher in winter than summer. So we control for
time of year by removing all but one of the months from
each year of data, and consider each month independently.
For example, we consider if major storms in January are
becoming more likely.

We applied the online and offline scan statistics. In the
offline case the rate was trained on the first 300 time steps
or 6.5 years of data for any given month. We used an FPR
period of T = 35 years and α = 0.05. The window sizes
were set automatically to optimize power for a rate increase
of 10%. The online scan statistic did not find any significant
bursts in any month. The offline method did not alert when
controlling for the estimation error in λ. However, when
the ordinary MLE was used the offline scan statistic alerted
in the April and November data sets. This is likely due to
there being few major snow storms in these months and the
estimation error in their frequency will be larger, and it must
be accounted for. It appears our more conservative offline
method avoided spurious alerts that would have occurred
had a normal scan statistic been used.

4.3. Earthquake Data

Finally, we consider the frequency of global earthquakes
during 1973–2010 with magnitude greater than 5.0 on the
Richter scale. We use an FPR period of 40 years and a sig-
nificance level of α = 0.05. In the constant rate setup we
train the background rate using the first 10 years of data. We
find an MLE λMLE = 4.16 earthquakes per day, to bound
the FPR we use the top of a 97.5% (β = 0.025) confidence
interval to get λCI = 4.23 earthquakes per day. Using a
window of 100 days we get a critical value of 510 events,
optimal power for a 20% increase. If λ were known this
would be an FPR of α = 0.025, but since we only have λ̂
we can only bound the FPR to α+ β = 0.05 by (12).

Figure 2 shows that the scan statistic alerts many times
on the earthquake data suggesting there are bursts of quakes
or that the rate is changing over time.

5. CONCLUSION

We have shown scan statistics are a useful tool for online
anomaly detection. Four key practical issues have been ad-
dressed. First, we have presented a simple rule for optimiz-
ing the power, E [points in w under HA] = kCrit, by picking
a window size w, an often ignored and arbitrary parame-
ter. Second, the upper end of a confidence interval on λ
can be used to provably control the FPR, solving the often
ignored issue of finding the background event rate. Third,
scan statistics have traditionally focused on unusual bursts
of events, but we have shown how to detect an unusual ab-
sence of events. Fourth, kernel estimates of the intensity
λ(t) can be used for extremely fast updating a changing
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Fig. 2. Earthquake data: Estimated rate function (blue, solid)
using KIE with Gaussian basis functions and edge correction. The
MLE of the rate (red, dashed). The red portions of the rate function
mark areas where the scan statistic alerts when no online updating
of λ is used. The green dots mark alerts with online updating using
KIE with exponential kernels and a bandwidth of 10 years, signal-
ing that the rate is expected to naturally change on that time scale
without case of for alert. The vertical red line marks the end of
training for the offline scan statistic.

background; we can allow for slow changes in the back-
ground rate without setting off an alert. The allowable speed
of the background changes can be tuned by the bandwidth
u. In addition to controlling FPR we have shown it is still
a powerful method with regard to ROC and quick time to
detection, and demonstrated its use on real-world data sets.
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