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Inference and learning in linear dynamical systems have long been studied in signal processing,
machine learning, and system theory for tracking, localization, and control. In the linear Gaussian
case, closed form solutions to inference and learning, also called system identification, are known as
the Kalman Filter. For nonlinear dynamical systems (NLDSs), inference and system identification
typically require approximations, such as the Extended Kalman Filter (EKF).

We consider the case of the NLDS being given by the state-space formulation

xt = f(xt−1) + εt ∈ RM , yt = g(xt) + νt ∈ RD , (1)

where the latent state x evolves according to a Markovian process. At each time instance t, we
obtain a measurement yt which depends on the latent state xt. The terms ε and ν denote Gaussian
system noise and Gaussian measurement noise, respectively.

Assume for a moment that the transition function f : RM → RM and the measurement function
g : RM → RD in Eq. (1) are known and a sequence Y = y1, . . . ,yT of measurements has been
obtained. Then, inference aims to determine a posterior distribution over the latent state sequence
X := x1:T . The requirement for inference in latent space is that the transition function f and the
measurement function g are known.

The contribution of this paper is the GPIL algorithm for system identification in nonlinear dynamic
systems for the special case where f and g are described by Gaussian processes (GPs). We learn
GP models for both the transition function f and measurement function g without the necessity of
ground truth observations of the latent states.

General Setup

To train a GP, training inputs and training targets are required. Here, training inputs in latent space
are not available since the latent states are not observed. Therefore, to learn the GPs GPf and
GPg for f and g, we parameterize them by pseudo training sets, which are similar to the pseudo
training sets used in sparse GP approximations [3]. The pseudo training set for GPf consists of N
independent pairs of states xi and successor states f(xi)+εi. The parameters of GPf are then given
by the kernel hyper-parameters, the pseudo training inputs α = {αi ∈ RM}Ni=1 and the pseudo
training targets β = {βi ∈ RM}Ni=1. GPg is parameterized by kernel hyper-parameters, pseudo
training inputs ξ = {ξi ∈ RM}Ni=1 in latent space and pseudo training targets υ = {υi ∈ RD}Ni=1
in observed space. The role of these pseudo data sets, is simply to provide a flexible parameterization
of distributions over nonlinear functions, f and g. Note that the pseudo training sets are not given
by a time series x1:T and the corresponding measurements y1:T . Given the GP “parameters”, we
predict according to

xti = fi(xt−1) + εti ∼ GPf (xt−1|α,βi), ytj = gj(yt) + νtj ∼ GPg(xt|ξ,υj) ,

where xti is the ith dimension of xt and ytj is the jth dimension of yt.

System identification determines appropriate “parameters” for GPf and GPg , such that the time
series y1:T can be explained. We use the Expectation Maximization (EM) algorithm to determine
the “parameters” of both GP models. EM iterates between two steps. In the E-step (inference step),
we determine a posterior distribution p(X|Y,Θ) on the hidden states for a fixed parameter setting
Θ. In the M-step, we find parameters Θ∗ of the GP state-space model that maximize the expected
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log-likelihood Q = EX [log p(X,Y|Θ)], where the expectation is taken with respect to p(X|Y,Θ),
the E-step distribution.

System Identification with EM

For analytic inference (E-step), we extend the filtering algorithm of [1] to smoothing in GP state-
space models. The algorithm is based on approximate moment matching but we do not give the
details here. In the M-Step, we seek the parameters Θ that maximize the likelihood lower bound
Q = EX [log p(X,Y|Θ)] where the expectation is computed under the distribution from the E-Step,
meaning X is treated as the random variable. We decompose Q into

Q=EX [log p(X,Y|Θ)]=EX

log p(x1|Θ) +
T∑

t=2

log p(xt|xt−1,Θ)︸ ︷︷ ︸
Transition

+
T∑

t=1

log p(yt|xt,Θ)︸ ︷︷ ︸
Measurement

 . (2)

In the following we use the notation µi(x) = Efi
[fi(x)] to refer to the expected value of the ith

dimension of f when evaluated at x. Likewise, σ2
i (x) = Varfi

[fi(x)] refers to the variance of the
output of ith dimension of f when evaluated at x.

We focus on finding a lower bound approximation to the contribution from the transition function,

EX [log p(xt|xt−1,Θ)] = −1
2

M∑
i=1

EX

[
(xti − µi(xt−1))2

σ2
i (xt−1)

]
︸ ︷︷ ︸

Data Fit Term

+ EX

[
log σ2

i (xt−1)
]

︸ ︷︷ ︸
Complexity Term

+ const. (3)

Eq. (3) amounts to an expectation over a nonlinear function of a normally distributed random vari-
able since X is approximately Gaussian (E-step). Note that in contrast to most other NLDS system
identification algorithms the variance of f(xt−1) depends on the location of xt−1.

Data fit. We first consider the data fit term in eq. (3), which is an expectation over the square
Mahalanobis distance. For tractability, we approximate the expectation of the ratio

EX

[
(xti − µi(xt−1))2

σ2
i (xt−1)

]
≈

EX

[
(xti − µi(xt−1))2

]
EX [σ2

i (xt−1)]
. (4)

Complexity penalty. We next approximate the complexity penalty in eq. (3), which penalizes
uncertainty. The contribution from the logarithm can be lower bounded by Jensen’s inequality,

EX

[
log σ2

i (xt−1)
]
≤ log EX

[
σ2

i (xt−1)
]
. (5)

Nearly identical expressions to and eq. (4) and eq. (5) exist for the measurement model.

Results

We evaluate our EM based system identification on both real and synthetic data sets using one-
step-ahead prediction. We compare GPIL predictions to eight other methods, the time independent
model (TIM) with yt ∼ N (µc,Σc), the Kalman filter, the UKF, the EKF, NDFA, GPDM, the
Autoregressive GP (ARGP) trained on a set of pairs (yi,yi+1), and the GP-UKF [2], which uses
the GPIL pseudo training set. Note that the EKF, the UKF, and the GP-UKF require access to the
true functions f and g. For synthetic data, f and g are known, for the real data set, we used “true”
functions that resemble the mean functions of the GPIL learned GP models.

Real data. We use historical snowfall data in Whistler, BC, Canada to evaluate GPIL on real data.
We evaluate the models’ ability to predict next day’s snowfall using 35 years of test data; we trained
on daily snowfall from Jan. 1 1972–Dec. 31 1973 and tested on next day predictions for 1974–2008.
The results are shown in table 1. Snowfall time series have many observations of zero, corresponding
to days when it does not snow.

The GPIL learns a GP model for a close-to-linear stochastic latent transition function (Fig. 1(a)).
A possible interpretation of the results is that the daily precipitation is almost linear. Note that for
positive temperatures no snow occurs, which results in a hinge measurement model. The GPIL
learns a hinge like function for the measurement model, Fig. 1(b), which allows for predicting a
high probability of zero snowfall the next day. The Kalman filter is incapable of such predictions
since it assumes linear functions f and g, respectively.
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(a) Learned GP model for the stochastic tran-
sition function (real data set).
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(b) Learned measurement function with log
histogram (real data set)

Figure 1: The gray area is twice the predictive standard deviation. The histograms (black) represents the
marginal distribution on xt (left panel) and on yt (right panel).

Table 1: Comparison of the GPIL with eight other methods on the sinusoidal dynamics example and the
Whistler snowfall data. We trained on daily snowfall from Jan. 1 1972–Dec. 31 1973 and tested on next day
predictions for 1974–2008. We report the NLL per data point and the RMSE as well as the NLL 95% error
bars. We do not report results for GPDM on the real data since it was too slow to run on the large test set.

Method NLL synth. RMSE synth. NLL real RMSE real
general TIM 2.21±0.0091 2.18 1.47±0.0257 1.01

Kalman 2.07±0.0103 1.91 1.29±0.0273 0.783
ARGP 1.01±0.0170 0.663 1.25±0.0298 0.793
NDFA 2.20±0.00515 2.18 14.6±0.374 1.06
GPDM 3330±386 2.13 N/A N/A
GPIL ? 0.917± 0.0185 0.654 0.684± 0.0357 0.769

requires UKF 4.55±0.133 2.19 1.84±0.0623 0.938
prior EKF 1.23±0.0306 0.665 1.46±0.0542 0.905
knowledge GP-UKF 6.15±0.649 2.06 3.03±0.357 0.884

Discussion and Conclusions

We proposed a general method for inference and learning (system identification) in nonlinear
stochastic state-space models, where both the transition function and the measurement function are
modeled by GPs. The GPs are parameterized by their hyper-parameters and a pseudo training set
that are similar to the pseudo training sets in sparse GP approximations. Based on EM, where the
inference step can be performed in closed form, we learn the parameters of the transition GP and the
measurement GP, respectively.

Note that in our model, the latent states xt are never observed directly. We solely have access to
noisy measurements yt to train the latent dynamics and measurement functions. By contrast, [1]
and [2] require direct access to ground truth observations of a latent state sequence to train the
dynamics model. We showed that our learning approach can successfully learn nonlinear (latent)
dynamics based on noisy observations only. Moreover, in our experiments, our algorithm performs
better than commonly used approaches for time series predictions.
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