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ABSTRACT

The unscented Kalman filter (UKF) is a widely used method
in control and time series applications. The UKF suffers
from arbitrary parameters necessary for a step known as
sigma point placement, causing it to perform poorly in non-
linear problems. We show how to treat sigma point place-
ment in a UKF as a learning problem in a model based view.
We demonstrate that learning to place the sigma points cor-
rectly from data can make sigma point collapse much less
likely. Learning can result in a significant increase in pre-
dictive performance over default settings of the parameters
in the UKF and other filters designed to avoid the problems
of the UKF, such as the GP-ADF. At the same time, we
maintain a lower computational complexity than the other
methods. We call our method UKF-L.

1. INTRODUCTION

Filtering in linear dynamical systems (LDS) and nonlinear
dynamical systems (NLDS) is frequently used in many ar-
eas, such as signal processing, state estimation, control, and
finance/econometric models. Filtering (inference) aims to
estimate the state of a system from a stream of noisy mea-
surements. Imagine tracking the location of a car based on
odometer and GPS sensors, both of which are noisy. Se-
quential measurements from both sensors are combined to
overcome the noise in the system and to obtain an accurate
estimate of the system state. Even when the full state is
only partially measured, it can still be inferred; in the car
example the engine temperature is unobserved, but can be
inferred via the nonlinear relationship from acceleration. To
exploit this relationship appropriately, inference techniques
in nonlinear models are required; they play an important
role in many practical applications.

LDS and NLDS belong to a class of models known as
state-space models. A state-space model assumes that there
exists a sequence of latent states xt that evolve over time
according to a Markovian process specified by a transition
function f . The latent states are observed indirectly in yt
through a measurement function g. We consider state-space

models given by

xt = f(xt−1) + ε , xt ∈ RM ,
yt = g(xt) + ν , yt ∈ RD .

(1)

Here, the system noise ε ∼ N (0,Σε) and the measurement
noise ν ∼ N (0,Σν) are both Gaussian. In the LDS case,
f and g are linear functions, whereas the NLDS covers the
general nonlinear case.

Kalman filtering [1] corresponds to exact (and fast) in-
ference in the LDS, however it can only model a limited set
of phenomena. For the last few decades, there has been in-
terest in NLDS for more general applicability. In the state-
space formulation, the nonlinear systems do not generally
yield analytically tractable algorithms.

The most widely used approximations for filtering in
NLDS are the extended Kalman filter (EKF) [2] and the un-
scented Kalman filter (UKF) [3]. The EKF linearizes f and
g at the current estimate of xt and treats the system as a
nonstationary linear system even though it is not. The UKF
propagates several estimates of xt through f and g and re-
constructs a Gaussian distribution assuming the propagated
values came from a linear system. The locations of the esti-
mates of xt are known as the sigma points. Many heuristics
have been developed to help set the sigma point locations
[4]. Unlike the EKF, the UKF has free parameters that de-
termine where to put the sigma points. The key idea in this
paper, is that the UKF and EKF are doing exact inference in
a model that is somewhat perverted from the original model
described in the state-space formulation. The interpretation
of EKF and UKF as models, not just approximate methods,
allows us to better identify their underlying assumptions. It
also enables us to learn the free parameters in the UKF in
a model based manner from training data. If the settings
of the sigma point are a poor fit to the underlying dynam-
ical system, the UKF can make horrendously poor predic-
tions. This paper’s contribution is a strategy for improving
the UKF through a novel learning algorithm for appropriate
sigma point placement: we call this method UKF-L.



2. UNSCENTED KALMAN FILTERING

We first review how filtering and the UKF works and then
explain the UKF’s generative assumptions. Filtering meth-
ods consist of three steps: time update, prediction step, and
measurement update. They iterate in a predictor-corrector
setup. In the time update we find p(xt|y1:t−1):

p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1) dxt−1 , (2)

using p(xt−1|y1:t−1). In the prediction step we predict the
observed space, p(yt|y1:t−1) using p(xt|y1:t−1):

p(yt|y1:t−1) =
∫
p(yt|xt)p(xt|y1:t−1) dxt . (3)

Finally, in the measurement update we find p(xt|yt) using
information from how good (or bad) the prediction in the
prediction step is:

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) . (4)

In the linear case all of these equations can be done ana-
lytically using matrix multiplications. The EKF explicitly
linearizes f and g at the point E [xt] at each step. The
UKF uses the whole distribution on xt, not just the mean,
to place sigma points and implicitly linearize the dynamics,
which we call the unscented transform (UT). In one dimen-
sion the sigma points roughly correspond to the mean and
α-standard deviation points; the UKF generalizes this idea
to higher dimensions. The exact placement of sigma points
depends on the unitless parameters {α, β, κ} ∈ R+ through

X 0 := µ, X i := µ± (
√

(D + λ)Σ)i (5)

λ := α2(D + κ)−D , (6)

where
√
·i refers to the ith row of the Cholesky factoriza-

tion.1 The sigma points have weights assigned by:

w0
m := λ/(D + λ), w0

c := λ/(D + λ) + (1− α2 + β)

wim := wic := 1/2(D + λ) , (7)

where wm is used to reconstruct the predicted mean and wc
used for the predicted covariance. We can loosely interpret
the unscented transform as approximating the input distri-
bution by 2D + 1 point masses at X with weight w. Once
the sigma points X , have been calculated the filter accesses
f and g as black boxes to find Yt, either f(Xt) or g(Xt)
depending on the step. The UKF reconstructs the mean and
variance of the propagated distribution from Yt had the dy-
namics been linear. It does not guarantee the moments will
match the moment of the true non-Gaussian distribution.

1If
√
P = A ⇒ P = A>A, then we use the rows in (5). If P =

AA>, then we use the columns.

Algorithm 1 Sampling data from UKF’s implicit model
1: p(x1|∅)← (µ0,Σ0)
2: for t = 1 to T do
3: Prediction step: p(yt|y1:t−1) using p(xt|y1:t−1)
4: Sample yt from prediction step distribution
5: Measurement update: p(xt|y1:t) using yt
6: Time update: find p(xt+1|y1:t) using p(xt|y1:t)
7: end for

Both the EKF and the UKF approximate the nonlinear
state-space as a nonstationary linear system. The UKF de-
fines its own generative process that linearizes the nonlinear
function f and g wherever in xt a UKF filtering the time se-
ries would expect xt to be. Therefore, it is possible to sam-
ple synthetic data from the UKF by sampling from its one-
step-ahead predictions as seen in Algorithm 1. The sam-
pling procedure augments the filter: predict-sample-correct.
If we use the UKF with the same {α, β, κ} used to generate
synthetic data, then the one-step-ahead predictive distribu-
tion will be the exact same distribution the data point was
sampled from.

2.1. Setting the parameters

We summarize all the parameters as θ := {α, β, κ}. For any
setting of θ the UKF will give identical predictions to the
Kalman filter if f and g are both linear. Many of the heuris-
tics for setting θ assume f and g are linear (or close to it),
which is not the problem the UKF solves. For example, one
of the heuristics for setting θ is that β = 2 is optimal if the
state distribution p(xt|y1:t) is exactly Gaussian [5]. How-
ever, the state distribution will seldom be Gaussian unless
the system is linear, in which case any setting of θ is exact!
It is often recommended to set the parameters to α = 1,
β = 0, and κ = 2.

3. THE ACHILLES’ HEEL OF THE UKF

The UKF can have very poor performance because its pre-
dictive variances can be far too small if the sigma points
are placed in inconvenient locations. A too small predictive
variance will cause observations to have too much weight
in the measurement update, which causes the UKF to fit to
noise. Meaning, the UKF will perform poorly even when
evaluated on root-mean-square-error (RMSE), which only
uses the predictive mean.

In the most extreme case, the UKF can give a delta spike
predictive distribution. We call this sigma point collapse.
As seen in Fig. 1, when the sigma points are arranged to-
gether horizontally the UKF has no way to know the func-
tion varies anywhere. We aim to learn the parameters θ in
such a way that collapse becomes unlikely. Anytime col-



lapse happens in training the marginal likelihood will be
very low. Hence, the learned parameters will avoid any-
where this delta spike occurred in training. Maximizing the
marginal likelihood is tricky since it is not well behaved for
settings of θ that cause sigma point collapse.
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Fig. 1. An illustration of a good and bad assignment of
sigma points. The lower panel shows the true input distri-
bution. The center panel shows the sinusoidal system func-
tion f (blue) and the sigma points for α = 1 (red crosses)
and α = 0.68 (green rings). The left panel shows the true
output distribution (shaded), the output distribution under
α = 1 (red spike) and α = 0.68 (green). Using a different
set of sigma points we can get either a completely degener-
ate solution (a delta spike) or a near optimal approximation
within the class of Gaussian approximations.

4. MODEL BASED LEARNING

A common approach to estimating model parameters θ in
general is to maximize the log marginal likelihood

`(θ) := log p(y1:T |θ) =
T∑
t=1

log p(yt|y1:t−1, θ) . (8)

Hence we can equivalently maximize the sum from the one-
step-ahead predictions. One might be tempted to apply a
gradient based optimizer on (8), but as seen in Fig. 2 the
marginal likelihood can be very noisy. The noise, or in-
stability in the likelihood, is likely the result of the phe-
nomenon explained in Section 3, where a slight change in
parameterization can avoid problematic sigma point place-
ment. This makes the application of a gradient-based opti-
mizer hopeless.

It is also possible to apply Markov chain Monte Carlo
(MCMC) and integrate out the parameters. However, this
is usually overkill as the posterior on θ is usually highly
peaked unless T is very small. Tempering must be used as
mixing will be difficult if the chain is not initialized inside

the posterior peak. Even in the case when T is small enough
to spread the posterior out, we would still like a single point
estimate for computational speed on the test set.2

We will focus on learning using a Gaussian process (GP)
based optimizer [6]. Since the marginal likelihood surface
has an underlying smooth function but contains what amounts
to additive noise, a probabilistic regression method seems a
natural fit for finding the maximum.

5. GAUSSIAN PROCESS OPTIMIZERS

Gaussian processes form a prior over functions. Estimat-
ing the parameters amounts to finding the maximum of a
structured function: the log marginal likelihood. Therefore,
it seems natural to use a prior over functions to guide our
search. The same principle has been applied to integration
in [7].

GP optimization (GPO) allows for effective derivative
free optimization. We consider the maximization of a like-
lihood function `(θ). GPs allow for derivative information
∂θ` to be included as well, but in our case that will not be
very useful due to the function’s instability.

GPO treats optimization as a sequential decision prob-
lem in a probabilistic setting, receiving reward r when us-
ing the right input θ to get a large function value output
`(θ). At each step GPO uses its posterior over the objective
function p(`(θ)) to look for θ it believes have large function
value `(θ). A maximization strategy that is greedy will al-
ways evaluate the function p(`(θ)) where the mean function
E [`(θ)] is the largest. A strategy that trades-off exploration
with exploitation will take into account the posterior vari-
ance Var [`(θ)]. Areas of θ with high variance carry a possi-
bility of having a large function value or high reward r. The
optimizer is programmed to evaluate at the maxima of

J(θ) := E [`(θ)] +K
√

Var [`(θ)] , (9)

whereK is a constant to control the exploration exploitation
trade-off. The optimizer must also find the maximum of J ,
but since it is a combination of the GP mean and variance
functions it is easy to optimize with gradient methods.

6. EXPERIMENTS AND RESULTS

We test our method on filtering in three dynamical systems:
the sinusoidal dynamics used in [8], the Kitagawa dynamics
used in [9, 10], and pendulum dynamics used in [9]. The
sinusoidal dynamics are described by

xt+1 = 3 sin(xt) + w, w ∼ N (0, 0.12) , (10)

yt = σ(xt/3) + v, v ∼ N (0, 0.12) . (11)

2If we want to integrate the parameters out we must run the UKF with
each sample of θ|y1:T during test and average. To get the optimal point
estimate of the posterior we would like to compute the Bayes’ point.
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Fig. 2. Illustration of the UKF when applied to a pendulum system. Cross section of the marginal likelihood (blue line)
varying the parameters one at a time from the defaults (red vertical line). We shift the marginal likelihood, in nats/observation,
to make the lowest value zero. The dashed green line is the total variance diagnostic D := E [log(|Σ|/|Σ0|)], where Σ is the
predictive variance in one-step-ahead prediction. We divide out the variance Σ0 of the time series when treating it as iid to
make D unitless. Values of θ with small predictive variances closely track the θ with low marginal likelihood.

where σ(·) represents a sigmoid. The Kitagawa model is
described by

xt+1 = 0.5xt +
25xt

1 + x2
t

+ w, w ∼ N (0, 0.22) , (12)

yt = 5 sin(2xt) + v, v ∼ N (0, 0.012) . (13)

The Kitagawa model was presented as filtering problem in
[10]. The pendulum dynamics is described by a discretized
ordinary differential equation (ODE) at ∆t = 400 ms. The
pendulum possesses a mass m = 1 kg and a length l =
1 m. The pendulum angle ϕ is measured anti-clockwise
from hanging down. The state x = [ϕ, ϕ̇]> of the pen-
dulum is given by the angle ϕ and the angular velocity ϕ̇.
The ODE is

d

dt

[
ϕ̇
ϕ

]
=
[−mlg sinϕ

ml2

ϕ̇

]
, (14)

where g the acceleration of gravity. This model is com-
monly used in stochastic control for the inverted pendulum
problem [11]. The measurement function is

yt =

arctan
(
p1−l sin(ϕt)
p1−l cos(ϕt)

)
arctan

(
p2−l sin(ϕt)
p2−l cos(ϕt)

) , [p1

p2

]
=
[

1
−2

]
, (15)

which corresponds to bearings only measurement since we
do not directly observe the velocity. We use system noise
Σw = diag([0.12 0.32]) and Σv = diag([0.22 0.22]) as ob-
servation noise.

For all the problems we compare to UKF-D, EKF, the
GP-UKF, and GP-ADF, and the time independent model
(TIM); we use UKF-D to denote a UKF with default pa-
rameter settings, and UKF-L for learned parameters. The
TIM treats the data as iid normal and is inserted as a refer-
ence point. The GP-UKF and GP-ADF use GPs to approx-
imate f and g and exploit the properties of GPs to make

tractable predictions. The Kitagawa and pendulum dynam-
ics were used by [9] to illustrate the performance of the GP-
ADF and the very poor performance of the UKF. [9] used
the default settings of α = 1, β = 0, κ = 2 for all of
the experiments. We used exploration trade off K = 2 for
the GPO in all the experiments. Additionally, GPO used
the squared-exponential with automatic relevance determi-
nation (SE-ARD) covariance function plus a noise term of
0.01 nats/observation. We set the GPO to have a maximum
number of function evaluations of 100, even better results
can be obtained by letting the optimizer run longer to hone
the parameter estimate. We show that by learning appro-
priate values for θ we can match, if not exceed, the perfor-
mance of the GP-ADF and other methods.

The models were evaluated on one-step-ahead predic-
tion. The evaluation metrics were the negative log-predictive
likelihood (NLL), the mean squared error (MSE), and the
mean absolute error (MAE) between the mean of the pre-
diction and the true value. Note that unlike the NLL, the
MSE and MAE do not account for uncertainty. The MAE
will be more difficult for approximate methods than MSE.
For MSE, the optimal action is to predict the mean of the
predictive distribution, while for the MAE it is the median.
Most approximate methods attempt to moment match to a
Gaussian and preserve the mean; the median of the true pre-
dictive distribution is implicitly assumed to be the same as
mean. Quantitative results are shown in Table 1.

6.1. Sinusoidal dynamics

The models were trained on T = 1000 observations from
the sinusoidal dynamics, and tested on R = 10 restarts
with T = 500 points each. The initial state was sampled
from a standard normal x1 ∼ N (0, 1). The UKF optimizer
found the optimal values α = 2.0216, β = 0.2434, and
κ = 0.4871.



Table 1. Comparison of the methods on the sinusoidal, Kitagawa, and pendulum dynamics. The measures are supplied with 95%
confidence intervals and a p-value from a one-sided t-test under the null hypothesis UKF-L is the same or worse as the other methods. NLL
is reported in nats/observation, while MSE and MAE are in the units of y2 and y, respectively. Since the observations in the pendulum
data are angles we projected the means and the data to the complex plane before computing MSE and MAE.

Method NLL p-value MSE p-value MAE p-value
Sinusoid (T = 500 and R = 10)

UKF-D 10−1× -4.58±0.168 <0.0001 10−2× 2.32±0.0901 <0.0001 10−1× 1.22±0.0253 <0.0001
UKF-L ? −5.53± 0.243 N/A 1.92± 0.0799 N/A 1.09± 0.0236 N/A
EKF -1.94±0.355 <0.0001 3.03±0.127 <0.0001 1.37±0.0299 <0.0001
GP-ADF -4.13±0.154 <0.0001 2.57±0.0940 <0.0001 1.30±0.0261 <0.0001
GP-UKF -3.84±0.175 <0.0001 2.65±0.0985 <0.0001 1.32±0.0266 <0.0001
TIM -0.779±0.238 <0.0001 4.52±0.141 <0.0001 1.78±0.0323 <0.0001

Kitagawa (T = 10 and R = 200)
UKF-D 100× 3.78±0.662 <0.0001 100× 5.42±0.607 <0.0001 100× 1.32±0.0841 <0.0001
UKF-L ? 2.24± 0.369 N/A 3.60± 0.477 N/A 1.05± 0.0692 N/A
EKF 617±554 0.0149 9.69±0.977 <0.0001 1.75±0.113 <0.0001
GP-ADF 2.93±0.0143 0.0001 18.2±0.332 <0.0001 4.10±0.0522 <0.0001
GP-UKF 2.93±0.0142 0.0001 18.1±0.330 <0.0001 4.09±0.0521 <0.0001
TIM 48.8±2.25 <0.0001 37.2±1.73 <0.0001 4.54±0.179 <0.0001

Pendulum (T = 200 = 80 s and R = 100)
UKF-D 100× 3.17±0.0808 <0.0001 10−1× 5.74±0.0815 <0.0001 10−1× 11.5±0.0988 <0.0001
UKF-L ? 0.392± 0.0277 N/A 1.93± 0.0378 N/A 6.14±0.0577 N/A
EKF 0.660±0.0429 <0.0001 1.98±0.0429 0.0401 6.11± 0.0611 0.779
GP-ADF 1.18±0.00681 <0.0001 4.34±0.0449 <0.0001 10.3±0.0589 <0.0001
GP-UKF 1.77±0.0313 <0.0001 5.67±0.0714 <0.0001 11.6±0.0857 <0.0001
TIM 0.896±0.0115 <0.0001 4.13±0.0426 <0.0001 10.2±0.0589 <0.0001

6.2. Kitagawa

The Kitagawa model has a tendency to stabilize around x =
±7 where it is linear. The challenging portion for filtering
is away from the stable portions where the dynamics are
highly nonlinear. [9] evaluated the model using R = 200
independent starts of the time series allowed to run only
T = 1 time steps, which we find somewhat unrealistic.
Therefore, we allow for T = 10 time steps with R = 200
independent starts. In this example, x1 ∼ N (0, 0.52).

The learned value of the parameters where, α = 0.3846,
β = 1.2766, κ = 2.5830.

6.3. Pendulum

The models were tested onR = 100 runs of length T = 200
each, with x1 ∼ N ([−π 0], [0.12 0.22]). The initial state
mean of [−π 0] corresponds to the pendulum being in the
downward position. The models were trained on R = 5
runs of length T = 200. We found that in order to perform
well on NLL, but not on MSE and MAE, multiple runs of
the time series were needed during training; otherwise, TIM
had the best NLL. This is because if the time series is initial-

ized in one state the model will not have a chance to learn
the needed parameter settings to avoid rare, but still present,
sigma point collapse in other parts of the state-space. A
short period single sigma point collapse in a long time se-
ries can give the models a worse NLL than even TIM due to
incredibly small likelihoods. The MSE and MAE losses are
more bounded so a short period of poor performance will
be hidden by good performance periods. Even when R = 1
during training, sigma point collapse is much rarer than in
UKF-L than UKF-D. The UKF found optimal values of the
parameters to be α = 0.5933, β = 0.1630, κ = 0.6391.
It is further evidence that the correct θ are hard proscribe
a priori and must be learned empirically. We compare the
predictions of the default and learned settings in Fig. 3.

6.4. Analysis of sigma point collapse

We find that the marginal likelihood is extremely unstable
in regions of θ that experience sigma point collapse. When
sigma point collapse occurs, the predictive variances be-
come far too small making the marginal likelihood much
more susceptible to noise. Hence, the marginal likelihood
is smooth near the optima, as seen in Fig. 2. As a diagnostic
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Fig. 3. Comparison of default and learned for one-step-
ahead prediction for first element of yt in the Pendulum
model. The red line is the truth, while the black line and
shaded area represent the mean and 95% confidence inter-
val of the predictive distribution.

D for sigma point collapse we look at the mean |Σ| of the
predictive distribution.

6.5. Computational Complexity

The UKF-L, UKF, and EKF have test set computational
time O(DT (D2 + M)). The GP-UKF and GP-ADF have
complexityO((D3 +D2MN2)T ), where N is the number
of points used in training to learn f and g. If a large number
of training points N is needed to approximate f and g well
the GP-ADF and GP-UKF can become much slower than
the UKF.

6.6. Discussion

The learned parameters of the UKF performed significantly
better than the default UKF for all error measures and data
sets. Likewise, it performed significantly better than all
other methods except against the EKF on the pendulum data
on MAE, where the two methods are essentially tied. We
found that results could be improved further by averaging
the predictions of the UKF-L and the EKF.

7. CONCLUSIONS

We have presented an automatic and model based mecha-
nism to learn the parameters of a UKF, {α.β, κ}, in a prin-
cipled way. The UKF can be reinterpreted as a genera-
tive process that performs inference on a slightly different
NLDS than desired through specification of f and g. We
demonstrate how the UKF can fail arbitrarily badly in very
nonlinear problems through sigma point collapse. Learning
the parameters can make sigma point collapse less likely to
occur. When the UKF learns the correct parameters from
data it can outperform other filters designed to avoid sigma
point collapse, such as the GP-ADF, on common benchmark
dynamical systems problems.
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