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a b s t r a c t

The unscented Kalman filter (UKF) is a widely used method in control and time series applications. The

UKF suffers from arbitrary parameters necessary for sigma point placement, potentially causing it to

perform poorly in nonlinear problems. We show how to treat sigma point placement in a UKF as a

learning problem in a model based view. We demonstrate that learning to place the sigma points

correctly from data can make sigma point collapse much less likely. Learning can result in a significant

increase in predictive performance over default settings of the parameters in the UKF and other filters

designed to avoid the problems of the UKF, such as the GP-ADF. At the same time, we maintain a lower

computational complexity than the other methods. We call our method UKF-L.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Filtering in linear dynamical systems (LDS) and nonlinear
dynamical systems (NLDS) is frequently used in many areas, such
as signal processing, state estimation, control, and finance/econo-
metric models. Filtering (inference) aims to estimate the state of a
system from a stream of noisy measurements. Imagine tracking
the location of a car based on odometer and global positioning
system (GPS) sensors, both of which are noisy. Sequential mea-
surements from both sensors are combined to overcome the noise
in the system and to obtain an accurate estimate of the system
state. Even when the full state is only partially measured, it can
still be inferred; in the car example the engine temperature is
unobserved, but can be inferred via the nonlinear relationship
from acceleration. To exploit this relationship appropriately,
inference techniques in nonlinear models are required; they play
an important role in many practical applications.

LDS and NLDS belong to a class of models known as state-space
models. A state-space model assumes that there exists a sequence of
latent states xt that evolve over time according to a Markovian
process specified by a transition function f. The latent states are
observed indirectly in yt through a measurement function g. We
consider state-space models given by

xt ¼ f ðxt�1Þþe , xt ARM ,

yt ¼ gðxtÞþm, yt ARD: ð1Þ

Here, the system noise e �N ð0,REÞ and the measurement noise
m �N ð0,RnÞ are both Gaussian. In the LDS case, f and g are linear
functions, whereas the NLDS covers the general nonlinear case.
ll rights reserved.

x: þ44 1223 332662.
Kalman filtering [1] corresponds to exact (and fast) inference
in the LDS, which can only model a limited set of phenomena. For
the last few decades, there has been interest in NLDS for more
general applicability. In the state-space formulation, nonlinear
systems do not generally yield analytically tractable algorithms.

The most widely used approximations for filtering in NLDS are
the extended Kalman filter (EKF) [2], the unscented Kalman filter
(UKF) [3], and the cubature Kalman filter (CKF) [4]. The EKF
linearizes f and g at the current estimate of xt and treats the system
as a nonstationary linear system even though it is not. The UKF and
CKF propagate several estimates of xt through f and g and recon-
structs a Gaussian distribution assuming the propagated values
came from a linear system. The locations of the estimates of xt are
known as the sigma points. Many heuristics have been developed to
help set the sigma point locations [5]. Unlike the EKF, the UKF has
free parameters that determine where to put the sigma points.

Our contribution is a strategy for improving the UKF through a
novel learning algorithm for appropriate sigma point placement:
we call this method UKF-L. The key idea in the UKF-L is that the
UKF and EKF are doing exact inference in a model that is some-
what ‘‘perverted’’ from the original model described in the state
space formulation. The interpretation of EKF and UKF as models,
not merely approximate methods, allows us to better identify
their underlying assumptions. This interpretation also enables us
to learn the free parameters in the UKF in a model based manner
from training data. If the settings of the sigma point are a poor fit
to the underlying dynamical system, the UKF can make horren-
dously poor predictions.
2. Unscented Kalman filtering

We first review how filtering and the UKF works and then
explain the UKF’s generative assumptions. Filtering methods consist
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Fig. 1. An illustration of a good and bad assignment of sigma points. The lower

panel shows the true input distribution. The center panel shows the sinusoidal

system function f (blue) and the sigma points for a¼ 1 (red crosses) and a¼ 0:68

(green rings). The left panel shows the true predictive distribution (shaded), the

predictive distribution under a¼ 1 (red spike) and a¼ 0:68 (green). Using a

different set of sigma points we get either a completely degenerate solution
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of three steps: time update, prediction step, and measurement
update. They iterate in a predictor-corrector setup. In the time
update we find pðxt9y1:t�1Þ

pðxt9y1:t�1Þ ¼

Z
pðxt9xt�1Þpðxt�19y1:t�1Þ dxt�1 ð2Þ

using pðxt�19y1:t�1Þ. In the prediction step we predict the observed
space, pðyt9y1:t�1Þ using pðxt9y1:t�1Þ

pðyt9y1:t�1Þ ¼

Z
pðyt9xtÞpðxt9y1:t�1Þ dxt : ð3Þ

Finally, in the measurement update we find pðxt9ytÞ using
information from how good (or bad) the prediction in the
prediction step is

pðxt9y1:tÞppðyt9xtÞpðxt9y1:t�1Þ: ð4Þ

In the linear case all of these equations can be done analytically
using matrix multiplications. The EKF explicitly linearizes f and g

at the point E½xt� at each step. The UKF uses the whole distribu-
tion on xt , not just the mean, to place sigma points and implicitly
linearize the dynamics, which we call the unscented transform

(UT). In one dimension the sigma points roughly correspond to
the mean and a-standard deviation points; the UKF generalizes
this idea to higher dimensions. The exact placement of sigma
points depends on the unitless parameters fa,b,kgARþ through

X0 :¼ l, X i :¼ l7 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDþlÞR

p
Þi, ð5Þ

l :¼ a2ðDþkÞ�D, ð6Þ

where
ffiffi
�
p

i refers to the ith row of the Cholesky factorization.1 The
sigma points have weights assigned by

w0
m :¼

l
Dþl

, w0
c :¼

l
Dþl

þð1�a2þbÞ, ð7Þ

wi
m :¼ wi

c :¼
1

2ðDþlÞ
, ð8Þ

where wm is used to reconstruct the predicted mean and wc used
for the predicted covariance. We interpret the unscented trans-
form as approximating the input distribution by 2Dþ1 point
masses at X with weights w. Once the sigma points X have been
calculated the filter accesses f and g as black boxes to find Yt ,
either f ðX tÞ or gðX tÞ depending on the step. The UKF reconstructs
a Gaussian predictive distribution with the mean and covariance
determined from Yt pretending the dynamics had been linear.
In other words, the equation used to find the approximating
Gaussian is such that the UKF is exact for linear dynamics model
f and observation model g. It does not guarantee the moments
will match the moment of the true non-Gaussian distribution. The
UKF is a black box filter as opposed to the EKF which requires
derivatives of f and g.

Both the EKF and the UKF approximate the nonlinear state-
space as a nonstationary linear system. The UKF defines its own
generative process, which linearizes the nonlinear functions f and g

wherever in xt a UKF filtering the time series would expect xt

to be. Therefore, it is possible to sample synthetic data from
the UKF by sampling from its one-step-ahead predictions as seen
in Algorithm 1. The sampling procedure augments the filter:
predict-sample-correct. If we use the UKF with the same fa,b,kg
used to generate synthetic data, then the one-step-ahead pre-
dictive distribution will be the exact same distribution the data
point was sampled from. Note that in an LDS, if we sample from
the one-step-ahead predictions of a Kalman filter we are sampling
1 If
ffiffiffi
P
p
¼A) P¼A>A, then we use the rows in (5). If P¼AA> , then we use

the columns.
from the same process as if we sampled from the latent states x
and then sampled from the observation model to get y.

Algorithm 1. Sampling data from UKF’s implicit model
(a delta s

approxima

(For inter

referred to
1:
 pðx19|Þ’ðl0,R0Þ
2:
 for t¼1 to T do

3:
 Prediction step: pðyt9y1:t�1Þ using pðxt9y1:t�1Þ
4:
 Sample yt from prediction step distribution

5:
 Measurement update: pðxt9y1:tÞ using yt
6:
 Time update: find pðxtþ19y1:tÞ using pðxt9y1:tÞ
7:
 end for
2.1. Setting the parameters

We summarize all the parameters as y :¼ fa,b,kg. For any
setting of y the UKF will give identical predictions to the Kalman
filter if f and g are both linear. Many of the heuristics for setting y
assume f and g are linear (or close to it), which is not the problem
the UKF solves. For example, one of the heuristics for setting y is
that b¼ 2 is optimal if the state distribution pðxt9y1:tÞ is exactly
Gaussian [6]. However, the state distribution will seldom be
Gaussian unless the system is linear, in which case any setting
of y gives exact inference! It is often recommended to set the
parameters to a¼ 1, b¼ 0, and k¼ 3�D [7,8]. The CKF can be
constructed as a special case of a UKF with a¼ 1, b¼ 0, and k¼ 0.
3. The Achilles’ heel of the UKF

The UKF can have embarrassingly poor performance because
its predictive variances can be far too small if the sigma points are
placed in unlucky locations. Insufficient predictive variance will
cause observations to have too much weight in the measurement
update, which causes the UKF to fit to noise. Meaning, the UKF
will perform poorly even when evaluated on root-mean-square-
error (RMSE), which only uses the predictive mean. On the NLL,
the situation is even worse where too small predictive variances
are heavily penalized.

In the most extreme case, the UKF can give a delta spike
predictive distribution. We call this sigma point collapse. As seen
in Fig. 1, when the sigma points are arranged together horizon-
tally the UKF has no way to know the function varies anywhere.
We aim to learn the parameters y in such a way that collapse
pike) or a near optimal approximation within the class of Gaussian

tions. The parameters b and k are fixed at their defaults in this example.

pretation of the references to color in this figure legend, the reader is

the web version of this article.)



0 3
0

2

4

6

8

lo
g 

lik
el

ih
oo

d 
(n

at
s/

ob
s)

1 2 4
−2.5

−2

−1.5

−1

−0.5

d

0 2 3
0

0.5

1

lo
g 

lik
el

ih
oo

d 
(n

at
s/

ob
s)

1 4
−1.5

−1

−0.5

d

0

1

2

lo
g 

lik
el

ih
oo

d 
(n

at
s/

ob
s)

1 2 3 4 5
−2

−1

0

d

Fig. 2. Illustration of the UKF when applied to a pendulum system. Cross-section of the marginal likelihood (blue line) varying the parameters one at a time from the

defaults (red vertical line). We shift the marginal likelihood, in nats per observation, to make the lowest value zero. The dashed green line is the total variance diagnostic

d :¼ E½logð9R9=9R09Þ�, where R is the predictive variance in one-step-ahead prediction. We divide out the variance R0 of the time series when treating it as iid to make d

unitless. Values of y with small predictive variances closely track the y with low marginal likelihood. Note that the ‘‘noise’’ is a result of the sensitivity of the predictions to

parameters y due to sigma point collapse, not randomness in the algorithm as is the case with a particle filter. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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becomes unlikely. Anytime collapse happens in training the
marginal likelihood will be substantially lower. Hence, the
learned parameters will avoid anywhere this delta spike occurred
in training. Maximizing the marginal likelihood is tricky since it is
not well-behaved for settings of y that cause sigma point collapse.
4. Model based learning

A common approach to estimating model parameters y in
general is to maximize the log marginal likelihood

‘ðyÞ :¼ log pðy1:T9yÞ ¼
XT

t ¼ 1

log pðyt9y1:t�1,yÞ: ð9Þ

Hence we can equivalently maximize the sum from the one-step-
ahead predictions. One might be tempted to apply a gradient
based optimizer on (9), but as seen in Fig. 2 the marginal
likelihood can be very unstable. The instability in the likelihood
is likely the result of the phenomenon explained in Section 3,
where a slight change in parameterization can avoid problematic
sigma point placement. This makes the application of a gradient-
based optimizer hopeless.

We could apply Markov chain Monte Carlo (MCMC) and
integrate out the parameters. However, this is usually ‘‘over kill’’
as the posterior on y is usually highly peaked unless T is very
small. Tempering must be used as mixing will be difficult if the
chain is not initialized inside the posterior peak. Even in the case
when T is small enough to spread the posterior out, we would
still like a single point estimate for computational speed on the
test set.2

We focus on learning using a Gaussian process (GP) based
optimizer [10,11]. Since the marginal likelihood surface has an
underlying smooth function but contains what amounts to
additive noise, a probabilistic regression method seems a natural
fit for finding the maximum.
5. Gaussian process optimizers

Gaussian processes form a prior over functions. Estimating the
parameters amounts to finding the maximum of a structured
function: the log marginal likelihood. Therefore, it seems natural
to use a prior over functions to guide our search. Given that
Gaussian processes form a prior over functions we can use them
2 If we want to integrate the parameters out we must run the UKF with each

sample of y9y1:T during test and average. To get the optimal point estimate of the

posterior we would like to compute the Bayes’ point [9].
for global optimization. The same principle has been applied to
integration in Rasmussen and Ghahramani [12].

GP optimization (GPO) allows for effective derivative free

optimization. We consider the maximization of a likelihood func-
tion ‘ðyÞ. GPs allow for derivative information @y‘ to be included as
well, but in our case that will not be very useful due to the
function’s instability.

GPO treats optimization as a sequential decision problem in a
probabilistic setting, receiving reward r when using the right
input y to get a large function value output ‘ðyÞ. This setup is
also known as a Markov decision process (MDP) [13, Chapter 1].
At each step GPO uses its posterior over the objective function
pð‘ðyÞÞ to look for y it believes has a large function value ‘ðyÞ.
A maximization strategy that is greedy will always evaluate the
function pð‘ðyÞÞ where the mean function E½‘ðyÞ� is the largest.
A strategy that trades-off exploration with exploitation will take
into account the posterior variance Var½‘ðyÞ�. Areas of y with high
variance carry a possibility of having a large function value or
high reward r. The optimizer is programmed to evaluate at the
maxima of

JðyÞ :¼ E½‘ðyÞ�þK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½‘ðyÞ�

p
, ð10Þ

where K is a constant to control the exploration exploitation
trade-off. The objective J is known as the upper confidence bound
(UCB), since it optimizes the maximum of a confidence interval on
the function value. The UCB has recently been analyzed theore-
tically by Srinivas et al. [11]. The optimizer must also find the
maximum of J, but since it is a combination of the GP mean and
variance functions it is easy to optimize with gradient methods.

We summarize the method in Algorithm 2, the subroutine to
compute J is shown in Algorithm 3.3 GPO assumes that we provide
a feasible set of y to search within. We can do the optimization
using ‘ as the objective h in Algorithm 2. Algorithm 3 optionally
adds a barrier to make sure that new candidate points for
evaluation stay within the feasible set. For instance, if the feasible
set is the unit cube, the 20th norm JyJ20 forms an effective barrier.
Alternatively, a constrained optimization routine could be used.
Every iteration we consider another set of C candidate points to
evaluate ‘ðyÞ.

We illustrate the iterations of GPO in Fig. 3. The function in the
figure is highly non-convex and the global approach of the GP
helps greatly. We consider a feasible region of yA ½0;10� and
initialize the search by evaluating the function at the edges and
3 We use the notation A\y equivalently to A�1y except that we expect the

computation to be done using matrix back substitution rather than explicit

calculation of the inverse and then multiplying.
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Fig. 3. Illustration of GPO in one dimension. The red line represents the (highly non-convex) function we are attempting to optimize with respect to its input y. Its true

maximum is shown by the green circle. The black line and the shaded region represent the GP predictive mean and two standard deviation error bars. The blackþshows

the points that have already been evaluated. The red � is the maximum of JðyÞ shown by the red horizontal line. Here we use K¼2 so the UCB criterion J corresponds to the

top of the two standard deviation error bars shown in the plot. Every iteration GPO merely evaluates the function where the top of the error bars is highest. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the midpoint: {0,5,10}. The figure illustrates how the UCB criterion
J trades-off exploitation with exploration. For instance, a purely
explorative strategy would evaluate the function at y¼ 9 in
Fig. 3(f), since the error bars are the largest even though the
optima does not occur there. Likewise, a purely (greedy) exploita-
tive strategy would get stuck evaluating the function at y¼ 5 in
Fig. 3(a) and never discover the maximum at y¼ 1.

Algorithm 2. Gaussian process optimization
1:
 function GPO(Range,h,C)
2:
 Set E to be the dimension of inputs x
3:
 x Use end points and midpoints of feasible set

4:
 x’multiGridðRangeÞARE�3E
5:
 x Evaluate hðxÞ at all 3 � E grid points
6:
 y’hðxÞAR3E
7:
 for i¼1 to maximum function evaluations do

8:
 Pre-compute L, Cholesky of GP cov. matrix

9:
 for j¼1 to C do

10:
 x Sample a random initial point

11:
 x0 �N ðE½x�,Cov xÞARE
12:
 x Maximize the UCB criterion J w.r.t. x%
13:
 x x% initialized at x0
14:
 ðSj,FjÞ’maxx%
UCBðx%,x,y,K ,LÞ
15:
 end for

16:
 x Find best init. zAf1, . . . ,Cg from list of

candidates solutions S and values F
17:
 append SðargmaxzFÞ to x x x now RE�3Eþ i
18:
 append hðSðargmaxzFÞÞ to y x y now R3Eþ i
19:
 end for
20:
 Return xðargmax yÞ

21:
 end function
Algorithm 3. Upper confidence bound
1:
 function UCB(x%,x,y,K ,L)

2:
 x compute E½x%9x,y� and Var½x%9x,y� using a GP in

numerically stable way

3:
 find K%%ARþ and Kx,%AR9x9�1
4:
 a’L>\L\y

5:
 h’K>x,%a x E½x%9x,y�
6:
 b’L>\L\Kx,%
7:
 hsd’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K%%�K>x,%b

q
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½x%9x,y�

q

8:
 J’hþKhsd x find the UCB

9:
 Add a barrier to J, e.g. Jx%J20 x Optional

10:
 Compute dJ w.r.t. x%
11:
 Return J and its derivatives dJ
12:
 end function
6. Experiments and results

We test our method on filtering in three dynamical systems:
the sinusoidal dynamics used in Turner et al. [14], the Kitagawa
dynamics used in Deisenroth et al. [15], Kitagawa [16], and
pendulum dynamics used in Deisenroth et al. [15]. The sinusoidal
dynamics are described by

xtþ1 ¼ 3 sinðxtÞþw, w�N ð0;0:12
Þ, ð11Þ
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yt ¼ sðxt=3Þþv, v�N ð0;0:12
Þ, ð12Þ

where sð�Þ represents a logistic sigmoid. The Kitagawa model is
described by

xtþ1 ¼ 0:5xtþ
25xt

1þx2
t

þw, w�N ð0;0:22
Þ, ð13Þ

yt ¼ 5 sinð2xtÞþv, v�N ð0;0:012
Þ: ð14Þ

The Kitagawa model was presented as a filtering problem in
Kitagawa [16]. The pendulum dynamics is described by a dis-
cretized ordinary differential equation (ODE) at Dt ¼ 400 ms. The
pendulum possesses a mass m¼ 1 kg and a length l¼1 m. The
pendulum angle j is measured anti-clockwise from the upward
position. The state x¼ ½j _j�T of the pendulum is given by the
angle j and the angular velocity _j. The ODE is

d

dt

_j
j

" #
¼

�mlg sin j
ml2

_j

2
64

3
75, ð15Þ

where g is the acceleration of gravity. This model is commonly
used in stochastic control for the inverted pendulum problem
[17]. The measurement function is

yt ¼

arctan
p1�l sinðjtÞ

p1�l cosðjtÞ

� �

arctan
p2�l sinðjtÞ

p2�l cosðjtÞ

� �
2
6664

3
7775,

p1

p2

" #
¼

1

�2

� �
, ð16Þ

which corresponds to bearings only measurement since we do
not directly observe the velocity. We use system noise Rw ¼

diagð½0:12 0:32
�Þ and Rv ¼ diagð½0:22 0:22

�Þ as observation noise.
For all the problems we compare the UKF-L with the UKF-D,

CKF, EKF, GP-UKF, and GP assumed density filter (GP-ADF), and
time independent model (TIM); we use UKF-D to denote a UKF
with default parameter settings, and UKF-L for learned
Table 1
Comparison of the methods on the sinusoidal, Kitagawa, and pendulum dynamics. The m

t-test under the null hypothesis UKF-L is the same or worse as the other methods. NLL i

respectively. Since the observations in the pendulum data are angles we projected the

Method NLL p-Value MSE

Sinusoid (T¼500 and R¼10)

UKF-D 10�1
��4:5870:168 o0:0001 10�2

� 2:327
UKF-Ln �5:5370:243 N/A 1:9270:0799
EKF �1.9470.355 o0:0001 3.0370.127

CKF �2.0770.390 o0:0001 2.2670.100

GP-ADF �4.1370.154 o0:0001 2.5770.0940

GP-UKF �3.8470.175 o0:0001 2.6570.0985

TIM �0.77970.238 o0:0001 4.5270.141

Kitagawa (T¼10 and R¼200)

UKF-D 100
� 3:7870:662 o0:0001 100

� 5:4270

UKF-Ln 2:2470:369 N/A 3:6070:477
EKF 6177554 0.0149 9.6970.977

CKF 4 1000 0.1083 5.2170.600

GP-ADF 2.9370.0143 0.0001 18.270.332

GP-UKF 2.9370.0142 0.0001 18.170.330

TIM 48.872.25 o0:0001 37.271.73

Pendulum (T ¼ 200¼ 80 s and R¼100)

UKF-D 100
� 2:61170:0750 o0:0001 10�1

� 5:037
UKF-Ln 0:39270:0277 N/A 1:9370:0378
EKF 0.66070.0429 o0:0001 1.9870.0429

CKF 1.1270.0500 o0:0001 3.0170.0550

GP-ADF 1.1870.00681 o0:0001 4.3470.0449

GP-UKF 1.7770.0313 o0:0001 5.6770.0714

TIM 0.89670.0115 o0:0001 4.1370.0426
parameters. The TIM treats the data as iid normal and is inserted
as a reference point. The GP-UKF and GP-ADF use GPs to
approximate f and g and exploit the properties of GPs to make
tractable predictions. The Kitagawa and pendulum dynamics
were used by Deisenroth et al. [15] to illustrate the performance
of the GP-ADF and the very poor performance of the UKF.
Deisenroth et al. [15] used the default settings of a¼ 1, b¼ 0,
k¼ 2 for all of the experiments; we use k¼ 3�D. We used
exploration trade off K¼2 for the GPO in all the experiments.
Additionally, GPO used the squared-exponential with automatic
relevance determination (SE-ARD) covariance function,

kxðyi,yjÞ ¼ s2
0 expð�1

2ðyi�yjÞ
>Mðyi�yjÞÞ, ð17Þ

M :¼ diagð‘Þ�1, ð18Þ

x :¼ fs2
0,‘gAðRþ Þ9y9þ1

¼ ðRþ Þ4, ð19Þ

plus a noise term with standard deviation 0.01 nats per observa-
tion. We set the GPO to have a maximum number of function
evaluations of 100, even better results can be obtained by letting
the optimizer run longer to hone the parameter estimate. We
show that by learning appropriate values for y we can match, if
not exceed, the performance of the GP-ADF and other methods.

The models were evaluated on their one-step-ahead predic-
tions. The evaluation metrics were the negative log-predictive
likelihood (NLL), the mean squared error (MSE), and the mean
absolute error (MAE) between the mean of the prediction and the
true value. Note that unlike the NLL, the MSE and MAE do not
account for uncertainty. The MAE will be more difficult for
approximate methods than MSE. For MSE, the optimal action is
to predict the mean of the predictive distribution, while for the
MAE it is the median [18, Chapter 1]. Most approximate methods
attempt to moment match to a Gaussian and preserve the mean;
the median of the true predictive distribution is implicitly assumed
to be the same as mean. Quantitative results are shown in Table 1.
easures are supplied with 95% confidence intervals and a p-value from a one-sided

s reported in nats per observation, while MSE and MAE are in the units of y2 and y,

means and the data to the complex plane before computing MSE and MAE.

p-Value MAE p-Value

0:0901 o0:0001 10�1
� 1:2270:0253 o0:0001

N/A 1:0970:0236 N/A

o0:0001 1.3770.0299 o0:0001

o0:0001 1.1770.0260 o0:0001

o0:0001 1.3070.0261 o0:0001

o0:0001 1.3270.0266 o0:0001

o0:0001 1.7870.0323 o0:0001

:607 o0:0001 100
� 1:3270:0841 o0:0001

N/A 1:0570:0692 N/A

o0:0001 1.7570.113 o0:0001

o0:0001 1.3070.0830 o0:0001

o0:0001 4.1070.0522 o0:0001

o0:0001 4.0970.0521 o0:0001

o0:0001 4.5470.179 o0:0001

0:0760 o0:0001 10�1
� 10:670:0940 o0:0001

N/A 6.1470.0577 N/A

0.0401 6.1170.0611 0.779

o0:0001 7.7970.0760 o0:0001

o0:0001 10.370.0589 o0:0001

o0:0001 11.670.0857 o0:0001

o0:0001 10.270.0589 o0:0001
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6.1. Sinusoidal dynamics

The models were trained on T¼1000 observations from the
sinusoidal dynamics, and tested on R¼10 restarts with T¼500
points each. The initial state was sampled from a standard
normal x1 �N ð0;1Þ. The UKF optimizer found the optimal values
a¼ 2:0216, b¼ 0:2434, and k¼ 0:4871.

6.2. Kitagawa

The Kitagawa model has a tendency to stabilize around x¼77
where it is linear. The challenging portion for filtering is away
from the stable portions where the dynamics are highly non-
linear. Deisenroth et al. [15] evaluated the model using R¼200
independent starts of the time series allowed to run only T¼1
time steps, which we find somewhat unrealistic. Therefore, we
allow for T¼10 time steps with R¼200 independent starts. In this
example, x1 �N ð0;0:52

Þ.
The learned value of the parameters were a¼ 0:3846,

b¼ 1:2766, k¼ 2:5830.

6.3. Pendulum

The models were tested on R¼100 runs of length T¼200 each,
with x1 �N ð½�p 0�,½0:12 0:22

�Þ. The initial state mean of ½�p 0�
corresponds to the pendulum being in the downward position.
The models were trained on R¼5 runs of length T¼200. We found
that in order to perform well on NLL, but not on MSE and MAE,
multiple runs of the time series were needed during training;
otherwise, TIM had the best NLL. This is because if the time series
is initialized in one state the model will not have a chance to learn
the needed parameter settings to avoid rare, but still present,
sigma point collapse in other parts of the state-space. A short
period single sigma point collapse in a long time series can give
the models a worse NLL than even TIM due to incredibly small
likelihoods. The MSE and MAE losses are more bounded so a short
period of poor performance will be hidden by good performance
periods. Even when R¼1 during training, sigma point collapse is
much rarer in UKF-L than UKF-D. The UKF found optimal values of
the parameters to be a¼ 0:5933, b¼ 0:1630, k¼ 0:6391. This is
further evidence that the correct y is hard to proscribe a priori and
must be learned empirically. We compare the predictions of the
default and learned settings in Fig. 4.
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Fig. 4. Comparison of default and learned for one-step-ahead prediction for first eleme

shaded area represent the mean and 95% confidence interval of the predictive distribut

figure legend, the reader is referred to the web version of this article.)
6.4. Analysis of sigma point collapse

We find that the marginal likelihood is extremely unstable in
regions of y that experience sigma point collapse. When sigma
point collapse occurs, the predictive variances become far too
small making the marginal likelihood much more susceptible to
noise. Hence, the marginal likelihood is smooth near the optima,
as seen in Fig. 2. As a diagnostic d for sigma point collapse we look
at the mean 9R9 of the predictive distribution.
6.5. Computational complexity

The UKF-L, UKF, and EKF have test set computational
time OðDTðD2

þMÞÞ. The GP-UKF and GP-ADF have complexity
OðDTðD2

þDMN2
ÞÞ, where N is the number of points used in

training to learn f and g. This means that if N2
bD then UKF-L

will have a much smaller computation complexity than the
GP-ADF, which also attempts to avoid sigma point collapse.
Typically it will take much more than N points to approximate
a function in D dimensions, which implies that we will almost
always have N2

bD. The D3 term in GP-ADF comes from the
covariance calculations in the GP. This is usually not problematic
as D is typically small, unlike T. If a large number of training
points N is needed to approximate f and g well the GP-ADF and
GP-UKF can become much slower than the UKF.
6.6. Discussion

The learned parameters of the UKF performed significantly
better than the default UKF for all error measures and data sets.
Likewise, it performed significantly better than all other methods
except against the EKF on the pendulum data on MAE, where the
two methods are essentially tied. We found that results could be
improved further by averaging the predictions of the UKF-L and
the EKF.

There exists another set of parameters rarely addressed in the
UKF. The Cholesky factorization is typically used for

ffiffiffiffi
R
p

. How-
ever, any matrix square-root can be used. Meaning, we can apply
a rotation matrix to the Cholesky factorization R and get a valid
UKF, which gives us OðD2

Þ extra degrees of freedom (parameters).
However, the beauty of the UKF-L is that the number of para-
meters to learn is three regardless of D.
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7. Conclusions

We have presented an automatic and model based mechanism
to learn the parameters of a UKF, fa,b,kg, in a principled way. The
UKF can be reinterpreted as a generative process that performs
inference on a slightly different NLDS than desired through
specification of f and g. We demonstrate how the UKF can fail
arbitrarily badly in very nonlinear problems through sigma point
collapse. Learning the parameters can make sigma point collapse
less likely to occur. When the UKF learns the correct parameters
from data it can outperform other filters designed to avoid sigma
point collapse, such as the GP-ADF, on common benchmark
dynamical system problems.
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