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We present a split-and-merge expectation-maximization (SMEM) algo-
rithm to overcome the local maxima problem in parameter estimation of
finite mixture models. In the case of mixture models, local maxima often
involve having too many components of a mixture model in one part of
the space and too few in another, widely separated part of the space. To
escape from such configurations, we repeatedly perform simultaneous
split-and-merge operations using a new criterion for efficiently select-
ing the split-and-merge candidates. We apply the proposed algorithm to
the training of gaussian mixtures and mixtures of factor analyzers using
synthetic and real data and show the effectiveness of using the split-
and-merge operations to improve the likelihood of both the training data
and of held-out test data. We also show the practical usefulness of the
proposed algorithm by applying it to image compression and pattern
recognition problems.

1 Introduction

Mixture density models, in particular normal mixtures, have been used
extensively in the field of statistical pattern recognition (MacLachlan & Bas-
ford, 1987). Recently, more sophisticated mixture density models such as
mixtures of latent variable models (e.g., probabilistic PCA and factor anal-
ysis) have been proposed to approximate the underlying data manifold
(Hinton, Dayan, & Revow, 1997; Tipping & Bishop, 1997; Ghahramani &
Hinton, 1997). The parameters of these mixture models can be estimated
using the expectation-maximization (EM) algorithm (Dempster, Laird, &
Rubin, 1977) based on the maximum likelihood framework. A common and
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serious problem associated with these EM algorithms, however, is the local
maxima problem. Although this problem has been pointed out by many
researchers, the best way to solve it, in practice, is still an open question.

Two of the authors have proposed the deterministic annealing EM
(DAEM) algorithm (Ueda & Nakano, 1998), where a modified posterior
probability parameterized by temperature is derived to avoid local max-
ima. However, when mixture density models are involved, local maxima
arise when there are too many components of a mixture model in one part
of the space and too few in another. The DAEM algorithm and other algo-
rithms are not very effective at avoiding such local maxima because they are
not able to move a component from an overpopulated region to an under-
populated region without passing through positions that give a lower like-
lihood. We therefore introduce a discrete move that simultaneously merges
two components in an overpopulated region and splits a component in an
underpopulated region.

The idea of performing split-and-merge operations has been successfully
applied to clustering (Ball & Hall, 1967) and vector quantization (Ueda &
Nakano, 1994). Recently, split-and-merge operations have also been pro-
posed for Bayesian normal mixture analysis (Richardson & Green, 1997).
Since they use split-and-merge operations with a Markov chain Monte Carlo
method, it is computationally much more costly than our algorithm. In addi-
tion, we introduce new split-and-merge criteria to select the split-and-merge
candidates efficiently.

Although the proposed method, unlike the DAEM algorithm, is limited
to mixture models, we have experimentally confirmed that our split-and-
merge EM (SMEM) algorithm obtains better solutions than the DAEM al-
gorithm. We have already given a basic idea of the SMEM algorithm (Ueda,
Nakano, Ghahramani, & Hinton, 1999). This article describes the algorithm
in detail and shows real applications, including image compression and
pattern recognition.

2 EM Algorithm

Before describing our SMEM algorithm, we briefly review the EM algorithm.
Suppose that a set Z consists of observed data X and unobserved data Y .
Z = (X ,Y) and X are called complete data and incomplete data, respectively.
Assume that the joint probability density of Z is parametrically given as
p(X ,Y;2), where 2 denotes parameters of the density to be estimated.
The maximum likelihood estimate of 2 is a value of 2 that maximizes the
incomplete data log-likelihood function:

L(2;X ) def= log p(X ;2)
= log

∫
p(X ,Y;2)dY . (2.1)

The characteristic of the EM algorithm is to maximize the incomplete data
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log-likelihood function by iteratively maximizing the expectation of the
complete data log-likelihood function:

Lc(2;Z) def= log p(X ,Y;2). (2.2)

Suppose that2(t) denotes the estimate of2obtained after the tth iteration
of the algorithm. Then, at the t + 1th iteration, the E-step computes the
expected complete data log-likelihood function denoted by Q(2|2(t)) and
defined by

Q(2|2(t)) def= E{Lc(2;Z)|X ;2(t)}, (2.3)

and the M-step finds the 2 maximizing Q(2|2(t)). The convergence of the
EM steps is theoretically guaranteed (Dempster, Laird, & Rubin, 1977).

3 Split-and-Merge EM Algorithm

3.1 Split-and-Merge Operations. We restrict ourselves here to mixture
density models. The probability density function (pdf) of a mixture of M
density models is given by

p(x;2) =
M∑

m=1

αmpm(x; θm), (3.1)

where αm is the mixing proportion of the mth model1 and satisfies αm ≥ 0
and

∑M
m=1 αm = 1. The pm(x; θm) is a d-dimensional density model corre-

sponding to the mth model. Clearly, 2 = {(αm, θm), m = 1, . . . ,M} is an
unknown parameter set.

In the case of mixture models, the model index m ∈ {1, . . . ,M} is un-
known for an observed data xn and therefore m corresponds to the unob-
served data mentioned in section 2. Noting that the pdf of the complete data
is p(x,m;2) = αmpm(x; θm) in this case, we have

Q(2|2(t)) =
N∑

n=1

M∑
m=1

{logαmpm(xn; θm)}P(m|xn;2(t)). (3.2)

Here, P(m|xn;2(t)) is a posterior probability and is computed as

P(m|xn;2(t)) = α
(t)
m pm(xn; θ(t)m )∑M

l=1α
(t)
l pl(xn; θ(t)l )

. (3.3)

N is the number of observed data points.

1 Strictly speaking, we should call it the mth model component or model component
ωm, but to simplify the notation and wording, we call it model m or the mth model hereafter.
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Looking at equation 3.2 carefully, one can see that the Q function can be
represented in the form of a direct sum,

Q(2|2(t)) =
M∑

m=1

qm(θm|2(t)), (3.4)

where

qm(θm|2(t)) =
N∑

n=1

P(m|xn;2(t)) logαmpm(xn; θm) (3.5)

and depends on only αm and θm.
Let2∗ denote the parameter values estimated by the usual EM algorithm.

Then, after the EM algorithm has converged, the Q function can be rewritten
as

Q∗ = q∗i + q∗j + q∗k +
∑

m,m6=i,j,k

q∗m. (3.6)

We then try to increase the first three terms of the right-hand side of equa-
tion 3.6 by merging models i and j to produce a model i′, and splitting the
model k into two models j′ and k′.

3.1.1 Initialization. To reestimate the parameters of these new models,
we have to initialize the parameters corresponding to the new models using
2∗. Intuitively natural initializations are given below. The initial parameter
values for the merged model i′ are set as linear combinations of the original
ones before the merge:

αi′ = α∗i + α∗j and θi′ =
α∗i θ∗i + α∗j θ∗j
α∗i + α∗j

. (3.7)

Noting that the mixing proportion is estimated as the average of posterior
over data, α∗l = 1/N

∑N
n=1 P(l|xn;2∗). One can see that the initialization of

θi′ is the linear combination of θ∗i and θ∗j , weighted by the posteriors.
On the other hand, as for models j′ and k′, we set

αj′ = αk′ =
α∗k
2

θj′ = θ∗k + ε and θk′ = θ∗k + ε′, (3.8)

where ε or ε′ is some small, random perturbation vector or matrix (i.e.,
‖ε‖ ¿ ‖θ∗k ‖). In the case of mixture gaussians, covariance matrices 6j′ and
6k′ should be positive definite. In this case, we can initialize them as

6j′ = 6k′ = det(6∗k )
1/dId (3.9)
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Figure 1: An example of initialization in a two-dimensional gaussian case. (a) A
gaussian just before split (left) and initialized gaussians just after split (right).
(b) Two gaussians just before merge (left) and an initialized gaussian just after
merge (right).

instead of equation 3.8. Here, det(6) denotes the determinant of matrix
6, and Id is the d-dimensional identity matrix. Figure 1 shows a simple
example of the initialization steps for a two-dimensional gaussian case using
equations 3.7 through 3.9.

3.1.2 Partial EM Steps. The parameter reestimation for m′ = i′, j′, and
k′ can be done by using EM steps, but instead of equation 3.3, we use the
following modified posterior probability:

P(m′|x;2(t)) = α
(t)
m′ pm′(x; θ(t)m′ )∑

l=i′,j′,k′α
(t)
l pl(x; θ(t)l )
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×
∑

m=i,j,k

P(m|x;2∗), for m′ = i′, j′, k′. (3.10)

Using equation 3.10, the sum of posterior probabilities for models i′, j′, and
k′ becomes equal to the sum of posterior probabilities for models i, j, and k
just before split-and-merge. That is,∑

m′=i′,j′,k′
P(m′|x;2(t)) =

∑
m=i,j,k

P(m|x;2∗) (3.11)

always holds during the reestimation process. By this, we can reestimate the
parameters for models i′, j′, and k′ consistently without affecting the other
models. We call these EM steps partial EM steps. These partial EM steps make
the total algorithm efficient.

3.2 SMEM Algorithm. After the partial EM steps, the usual EM steps,
called the full EM steps, are performed as a postprocessing operation. After
these steps, if Q is improved, then we accept the new estimate and repeat
the above after setting the new parameters to2∗. Otherwise we reject it, go
back to2∗, and try another candidate. We summarize these as the following
SMEM algorithm:

1. Perform the usual EM updates from some initial parameter value 2
until convergence. Let 2∗ and Q∗ denote the estimated parameters
and corresponding Q function value after the EM algorithm has con-
verged, respectively.

2. Sort the split-and-merge candidates by computing split-and-merge
criteria (described in the next section) based on2∗. Let {i, j, k}c denote
the cth candidate.

3. For c = 1, . . . ,Cmax, perform the following: After making the initial
parameter settings based on 2∗, perform the partial EM steps for
{i, j, k}c and then perform the full EM steps until convergence. Let2∗∗
be the obtained parameters and Q∗∗ be the corresponding Q function
value after the full EM has converged. If Q∗∗ > Q∗, then set Q∗ ← Q∗∗,
2∗ ← 2∗∗ and go to step 2.

4. Halt with 2∗ as the final parameters.

Note that when a certain split-and-merge candidate that improves the
Q function value is found in step 3, the other successive candidates are
ignored. There is no guarantee therefore that the split-and-merge candidates
that are chosen will give the largest possible improvement in Q. This is
not a major problem, however, because the split-and-merge operations are
performed repeatedly. If there were no heuristics for ordering potential split-
and-merge operations, we would have to consider them all Cmax = M(M−1)
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(M − 2)/2, but experimentally we have confirmed that Cmax ' 5 may be
enough because the split-and-merge criteria do work well.

The SMEM algorithm monotonically increases the Q function value, and
if the Q function value does not increase for all c = 1, . . . ,Cmax, then the
algorithm stops. Since the full EM steps equivalent to the original EM steps
are performed after the convergence of the partial EM steps, it is clear that
the SMEM algorithm maintains the global convergence properties of the
EM algorithm.

In the SMEM algorithm, the split-and-merge operations are simultane-
ously performed so that the total number of mixture components is un-
changed. In general, the Q function value increases as the number of pa-
rameters (or the number of mixture components) increases. Thus, in order
to check whether Q is improved by the rearrangement of model compo-
nents at step 3, it is necessary to keep the number of model components
unchanged.

Intuitively, a simultaneous split-and-merge can be viewed as a way of
tunneling through low-likelihood barriers, thereby eliminating many poor
local optima. In this respect, it has some similarities with simulated anneal-
ing, but the moves that are considered are long range and very specific to
the particular problems that arise when fitting mixture models.

3.3 Split-and-Merge Criteria. Each of the split-and-merge candidates
can be evaluated by its Q function value after step 3 of the SMEM algorithm
mentioned in section 3.2. However, since there are so many candidates, some
reasonable criteria for ordering the split-and-merge candidates should be
used to accelerate the SMEM algorithm.

3.3.1 Merge Criterion. In general, when there are many data points, each
of which has almost equal posterior probability given by equation 3.3 for
any two components, it can be thought that these two components might
be merged. To evaluate this numerically, we define the following merge
criterion:2

Jmerge(i, j;2∗) = Pi(2
∗)TPj(2

∗), (3.12)

where Pi(2
∗) = (P(i|x1;2∗), . . . ,P(i|xN;2∗))T ∈ RN is an N-dimensional

vector consisting of the posterior probabilities for the ith model. T denotes

2 This merging criterion favors merges with larger classes. To avoid this bias, a modified
criterion,

Jmerge(i, j;2∗) = Pi(2
∗)TPj(2

∗)
‖Pi(2∗)‖‖Pj(2

∗)‖ ,

can be used. In our experiments, however, we used equation 3.12 for simplicity, and the
merge criterion did work well, as shown later.
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the transpose operation. ‖ · ‖ denotes the Euclidean vector norm. Clearly,
two components ωi and ωj with large Jmerge(i, j;2∗) are good candidates for
a merge.

3.3.2 Split Criterion. As a split criterion (Jsplit), we define the local Kull-
back divergence as

Jsplit(k;2∗) =
∫

fk(x;2∗) log
fk(x;2∗)
pk(x; θ∗k )

dx, (3.13)

which is the distance between two distributions: the local data density fk(x)
around the kth model and the density of the kth model specified by the
current parameter estimate 2∗. The local data density is defined as

fk(x;2∗) =
∑N

n=1 δ(x− xn)P(k|xn;2∗)∑N
n=1 P(k|xn;2∗)

. (3.14)

This is a modified empirical distribution weighted by the posterior proba-
bility so that the data around the kth model are focused on. Note that when
the weights are equal, that is, P(k|x;2∗) = 1/M, equation 3.14 is the usual
empirical distribution:

pk(x;2∗) = 1
N

N∑
n=1

δ(x− xn). (3.15)

Since it can be thought that the model with the largest Jsplit(k;2∗) has the
worst estimate of the local density, we should try to split it.

The split criterion defined by equation 3.13 can be viewed as a likelihood
ratio test. That is, fk(x;2∗)/pk(x; θ∗k ) can be interpreted as the likelihood
ratio test statistic. In this sense, our split criterion is similar to a cluster
validity test formula proposed by Wolfe (1970).

3.3.3 Sorting Candidates. Using Jmerge and Jsplit, we sort the split-and-
merge candidates as follows. First, the merge candidates are sorted based
on Jmerge. Then, for each sorted merge candidate {i, j}c, the split candidates,
excluding {i, j}c, are sorted as {k}c. By combining these results and renum-
bering them, we obtain {i, j, k}c, c = 1, . . . ,M(M− 1)(M− 2)/2.

4 Application to Density Estimation by Mixture of Gaussians

4.1 Synthetic Data. We apply the proposed algorithm to a density esti-
mation problem using a mixture of gaussians. In this case, pm(x; θm) on the
right-hand side of equation 3.1 becomes

pm(x; θm) = (2π)−d/2det(6m)
−1/2
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× exp
{
−1

2
(x−µm)

T6−1
m (x−µm)

}
. (4.1)

Clearly, θm corresponds to mean vector µm and covariance matrix 6m.
In the case of density estimation by a mixture of gaussians, as is well

known, the global maxima of the likelihood correspond to singular solu-
tions with zero covariances. Therefore, the SMEM algorithm may converge
to the singular solutions. To prevent this, we used a Bayesian regulariza-
tion method (Ormoneit & Tresp, 1996). That is, the update equation for the
covariance matrix is given by

6(t+1)
m =

∑
x∈X (x−µ(t+1)

m )(x−µ(t+1)
m )TP(m|x;2(t))+ λId∑

x∈XP(m|x;2(t))+ 1
,

m = 1, . . . ,M. (4.2)

Here Id is the d-dimensional unit matrix, and λ is a regularization constant
determined by some validation data. In the experiment we set λ = 0.1.

First, we used the two-dimensional synthetic data in Figure 2 to demon-
strate visually the usefulness of the split-and-merge operations. The initial
mean vectors and covariance matrices were, as shown in Figure 2b, set to
near the means of all of the data and unit matrices, respectively. The usual
EM algorithm converged to the local maximum solution shown in Figure 2c,
whereas the SMEM algorithm converged to the superior solution shown in
Figure 2f, very close to the true one. The split of the first gaussian shown
in Figure 2d appeared to be redundant, but as shown in Figure 2e they are
successfully merged, and the original two gaussians were improved. This
indicates that the split-and-merge operations not only appropriately assign
the number of gaussians in a local data space, but can also improve the
gaussian parameters themselves.

4.2 Real Data. Next, we tested the proposed algorithm using 20-dimen-
sional real data (facial images processed into feature vectors) where the
local maxima made the optimization difficult (see Ueda & Nakano, 1998,
for the details.) The data size was 103 for training and 103 for test. We ran
three algorithms (EM, DAEM, and SMEM) for 10 different initializations
using the k-means clustering algorithm. We set M = 5 and used a diagonal
covariance for each gaussian. Table 1 shows the summary statistics (mean,
standard deviation (std), maximum, and minimum) of log-likelihood values
per sample size obtained by each of the EM, DAEM, and SMEM algorithms
for 10 different initializations. As shown in Table 1, even the worst solution
found by the SMEM algorithm was better than the best solutions found
by the other algorithms on both the training and test data. Moreover, the
log-likelihoods achieved by the SMEM algorithm have lower variance than
those achieved by the EM algorithm.
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Figure 2: Results by the EM and SMEM algorithms for a two-dimensional gaus-
sian mixture density estimation problem. (a) Contours of true gaussians, (b) ini-
tial density, (c) result by the EM algorithm, (d)–(e) examples of split and merge
operations by the SMEM algorithm, and (f) the final result.

Table 1: Log-Likelihood/Sample Size.

Initial value EM DAEM SMEM

Training mean −159.1 −148.2 −147.9 −145.1
std 1.77 0.24 0.04 0.08
max −157.3 −147.7 −147.8 −145.0
min −163.2 −148.6 −147.9 −145.2

Test mean −168.2 −159.7 −159.8 −155.9
std 2.80 1.00 0.37 0.09
max −165.5 −158.0 −159.6 −155.9
min −174.2 −160.8 −159.8 −156.0

Figure 3 shows log-likelihood value trajectories accepted in step 3 of
the SMEM algorithm during the estimation process. The dotted lines in
Figure 3 denote the starting points of step 2. Note that it is due to the
initialization in step 3 that the log-likelihood decreases just after the split-
and-merge. Comparing the convergence points at step 3 marked by the
“◦” symbol in Figure 3, one can see that the successive split-and-merge
operations improved the log-likelihood for both the training and test data,
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Figure 3: Trajectories of log-likelihood. The upper (lower) result corresponds to
the training (test) data.

as we expected. Table 2 compares the number of iterations executed by the
three algorithms. Note that in the SMEM algorithm, the number includes
not only partial and full EM steps for accepted operations, but also EM-steps
for rejected ones. From Table 2, the SMEM algorithm was about 8.7 times
slower than the original EM algorithm. The average rank of the accepted
split-and-merge candidates was 1.8 (std = 0.9), which indicates that the
proposed split-and-merge criteria worked very well.

5 Application to Dimensionality Reduction Using Mixture of Factor
Analyzers

5.1 Factor Analyzers. A single factor analyzer (FA) (Anderson, 1984)
assumes that an observed p-dimensional variable x is generated as a linear
transformation of some lower q-dimensional latent variable z ∼ N (0, I)

Table 2: The Number of EM-Steps.

EM DAEM SMEM

mean 47 147 409
std 16 39 84
max 65 189 616
min 37 103 265
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plus additive gaussian noise v ∼ N (0, 9). 9 is a diagonal matrix. That is,
the generative model can be written as

x =Wz + v +µ. (5.1)

Here, W ∈ Rp×q is a transformation matrix and is called a factor loading
matrix. µ is a mean vector. Then, from a simple calculation, the pdf of the
observed data by an FA model can be obtained by

p(x;2) = N (µ,WWT +9). (5.2)

Noting that W can be represented by linearly independent column vec-
tors as W = [w1, . . . ,wq], wherewi ∈ Rp×1, we can rewrite equation 5.1 as

x =
q∑

i=1

ziwi + v +µ, (5.3)

where zi is the ith component of z. Clearly, equation 5.3 shows thatw1, . . . ,

wq form the basis in a latent space. Hence, FA can be interpreted as a di-
mensionality reduction model extracting a linear manifold (affine subspace)
M = L(q)+µ underlying the given observed data space, where L(q) denotes
the linear subspace ofRp spanned by the basisw1, . . . ,wq.

5.2 Mixture of Factor Analyzers. A mixture of factor analyzers (MFA),
proposed by Ghahramani and Hinton (1997), is an extension of single FA.
That is, MFA is defined as the combination of M mixture of FAs and can
be thought of as a reduced dimensional mixture of gaussians. The MFA
model extracts q-dimensional locally linear manifoldsMm = L(q)m + µm for
m = 1, . . . ,M underlying the given high-dimensional data. More intuitively,
the MFA model can perform clustering and dimensionality reduction simul-
taneously. Since the MFA model extracts a globally nonlinear manifold, it
is more flexible than the single FA model.

The pdf of the observed data by M mixtures of FAs is given by

p(x;2) =
M∑

m=1

αmN (µm,WmWT
m +9m). (5.4)

(See Ghahramani & Hinton, 1997, for details.) Note that equation 5.4 is a nat-
ural extension of equation 5.2. The unknown parameters2 = {αm,µm,Wm |
m = 1, . . . ,M} of the MFA model can be estimated by the EM algorithm. In
this case, the complete data log-likelihood becomes

Lc = log
N∏

n=1

M∏
m=1

p(xn,zn,m;2m)
um

=
N∑

n=1

M∑
m=1

um log p(xn,zn,m;2m). (5.5)
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Figure 4: Results by the EM and SMEM algorithms for a one-dimensional man-
ifold extraction problem. (a) True manifold and generated data, (b) initial es-
timate, (c) result by the EM algorithm, (d)–(e) examples of split and merge
operations, and (f) the final result.

Here, um is a mixture indicator variable, where ifxn is generated by the mth
model, um = 1; otherwise, um = 0. SinceLc can be represented in the form of
a direct sum, the Q function is also decomposable, and therefore the SMEM
algorithm is straightforwardly applicable to the parameter estimation of the
MFA model.

5.3 Demonstration. Figure 4 shows results of extracting a one-dimen-
sional manifold from three-dimensional data (noisy shrinking spiral) using
the EM and SMEM algorithms. The data points in Figure 4 were generated
by

(X1,X2,X3) = ((13− 0.5t) cos t,−(13− 0.5t) sin t, t)+ additive noise, (5.6)

where t ∈ [0, 4π ]. In this case, each factor loading matrix Wm becomes a
three-dimensional column vector corresponding to each thick line in Fig-
ure 4. The center position and the direction of each thick line are µm and
Wm, respectively. In addition, the length of each thick line is 2‖Wm‖.

Although the EM algorithm converged to poor local maxima as shown in
Figure 4(c), the SMEM algorithm successfully extracted the data manifold
shown in Figure 4(f).

Table 3 compares average log-likelihoods per data point over 10 different
initializations. The log-likelihood values were drastically improved on both
the training and test data by the SMEM algorithm.
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Table 3: Log-Likelihood/Sample Size.

EM SMEM

Training −7.68 (0.151) −7.26 (0.017)
Test −7.75 (0.171) −7.33 (0.032)

5.4 Practical Applications.

5.4.1 Image Compression. An MFA model is available for block trans-
form image coding. In this method, as in usual block transform coding ap-
proaches such as Karhunen-Lòeve transformation or principal component
analysis (PCA), an image is subdivided into nonoverlapping blocks of b× b
pixels. Typically, b = 8 or b = 16 is employed. Each block is regarded as a
d(= b× b)-dimensional vector x. Let X be a set of obtained x values. Then,
usingX , an image is transformed by the following steps in the compression
algorithm:

1. Set the desired dimensionality q and the number of mixture compo-
nents M.

2. Estimate µm and Wm, for m = 1, . . . ,M by fitting an MFA model to
X .

3. For each x ∈ X , compute

x̂(m) = Wm(WT
mWm)

−1WT
m(x−µm)+µm,

for m = 1, . . . ,M. (5.7)

Then assign x̂(m
∗) as a reconstructed vector that minimizes the squared

error ‖x̂(m) − x‖2 by its reconstruction.

4. Transform each x̂(m
∗) into a block image (reconstructed block image).

The derivation of equation 5.7 is as follows. The least-squares recon-
structed vector x̂ is, as shown in Figure 5, obtained by orthogonally pro-
jecting x−µ onto L(q)m and adding µm. That is,

x̂ = Pm(x−µm)+µm, (5.8)

where Pm is the projection matrix of L(q)m and is computed from

Pm =Wm(WT
mWm)

−1WT
m. (5.9)

Substituting equation 5.9 into equation 5.8, we obtain equation 5.7.
Figure 6 shows an example of compressed image by MFA with q = 4 and

M = 10. Figure 6a shows a sample image used for the training data X . We
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Figure 5: Illustration of image reconstruction.

should use test images independent of the training image, but for simplicity
we used the same image for the training and test. For comparison, we also
tried the usual PCA-based image compression method (see Figure 6b). In the
case of image compression by PCA, W is an orthogonal matrix composed of
q column vectors (eigenvectors) corresponding to the q largest eigenvalues
of the sample autocorrelation matrix:

S = 1
|X |

∑
x∈X

xxT. (5.10)

Here, |X | denotes the number of components of X . Since WWT = Iq (i.e., a
set of column vectors {w1, . . . ,wq} is orthogonal), the reconstructed vector
by PCA is given by

x̂ =WWTx. (5.11)

The major difference between the PCA and MFA approaches is that the
former finds a global subspace from X , while the latter simultaneously
clusters the data and finds an optimum subspace for each cluster. Therefore,
it is natural that the results by the MFA approaches (Figures 6c and 6d
were much richer than that by the PCA approach—Figure 6b). Note that a
mixture of PCA (MPCA) (Tipping & Bishop, 1997) is a much better model
than PCA, but we have not compared it here because our purpose was to
compare the SMEM algorithm with the EM algorithm for the MFA-based
image compression.
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Figure 6: An example of image reconstruction. (a) Original image, (b) Result by
PCA, (c) Result by MFA model trained by the usual EM algorithm, and (d) Result
by MFA model trained by the SMEM algorithm.

Comparing Figure 6c to Figure 6d, one can see that the quality of the
reconstructed image using the SMEM algorithm is better than that using
the EM algorithm. The mean squared errors per block of these constructed
images were 15.8× 103, 10.1× 103, and 7.3× 103 for Figures 6b, 6c, and 6d,
respectively.

5.4.2 Application to Pattern Recognition. The MFA model is also appli-
cable to pattern recognition tasks (Hinton, et al., 1997) since once an MFA
model is fitted to each class, we can compute the posterior probability for
each data point. More specifically, the pdf of class ωi by the MFA model is
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given by

pi(x;2i) =
M∑

m=1

PimN (µim,WimWT
im +9im), (5.12)

where 2i is a set of MFA model parameters for class ωi. That is, 2i =
{Pim,µim,Wim, 9im | m = 1, . . . ,M}. Pim is the mixing proportion of the mth
model for class ωi.

Using equation 5.12, the posterior probability of class ωi given x is com-
puted from

P(ωi|x) = Pi pi(x;2i)∑C
j=1Pj pj(x;2j)

. (5.13)

Here, C is the number of classes and Pi is the prior of classωi and is estimated
from

Pi = Ni

N
, (5.14)

where Ni is the number of training samples of class ωi and N is the total
sample size of all classes. Then, the optimum class i∗ for x based on the
Bayes decision rule is written as follows:

i∗ = arg max
i

P(ωi|x)

= arg max
i

Ni

M∑
m=1

PimN (µim,WimWT
im +9im). (5.15)

We compared the MFA model with another classification method based
on clustering and dimensionality reduction, called the multiple subspace
method (MSS) proposed by (Sugiyama and Ariki (1998). In order to define
the MSS method we will first describe the simpler subspace (SS) method
for classification known as CLAFIC (Oja, 1983). In the CLAFIC method, a
linear subspace is extracted from the training data for each class, and then
the distance between an input vector x to be classified and its projected
vector onto the linear subspace is computed for each class. Next, the input
vector is classified as class ω∗i with the minimum distance (see Oja, 1983, for
details).

In the SS method, a single subspace is extracted for each class. On the
other hand, in the MSS method, the data are first divided into several clusters
by using the k-means algorithm. Then, for each cluster, the CLAFIC method
is performed. This MSS method can be expected to improve the classification
performance of the CLAFIC method, but due to the absence of a probability
density model, it does not perform Bayes classification.
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Figure 7: Recognition rates for hand-written digit data. (a) Results by MSS meth-
ods (M = 1 corresponds to the SS method). (b) Results by an MFA-based method
trained by the EM algorithm. (c) Result by an MFA-based method trained by
the SMEM algorithm.

We tried a digit recognition task (10 digits (classes)) using three methods:
the MSS method, the MFA-based method with the EM algorithm, and the
MFA-based method with the SMEM algorithm. The data were created using
(degenerate) Glucksman’s features (16-dimensional data) by NTT labs (Ishii,
1989). The data size was 200 per class for training and 200 per class for
test.

The recognition accuracy values for the training and test data obtained
by these methods are given in Figure 7. In Figure 7, q denotes the dimen-
sionality of the latent space and M is the number of components in mixture.
Note that the SS (CLAFIC) method corresponds to M = 1 in the MSS method
shown in Figure 7a. Clearly, the MFA-based method with the SMEM algo-
rithm consistently outperformed both the MSS method and the MFA-based
method with the EM algorithm. The recognition accuracy by the 3-nearest
neighbor (3NN) classifier was 88.3%. It is interesting that the MFA approach
by the SMEM algorithm could outperform the nearest-neighbor approach
when q = 3 and M = 5 (91.9%). This suggests that the intrinsic dimension-
ality of the data might be three or so.

6 Conclusion

We have shown how simultaneous split-and-merge operations can be used
to move components of a mixture model from regions in a space in which
there are too many components to regions in which there are too few. Such
moves cannot be accomplished by methods that continuously move com-
ponents through intermediate locations because the likelihoods are lower at
these locations. A simultaneous split-and-merge can be viewed as a way of
tunneling through low-likelihood barriers, thereby eliminating many non-
global optima.
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Note that the SMEM algorithm is applicable to a wide variety of mixture
models, as long as decomposition 7 holds. To make the split-and-merge
method more efficient, we have introduced criteria for deciding which splits
and merges to consider and have shown that these criteria work well for
low-dimensional synthetic data sets and higher-dimensional real data sets.
Our SMEM algorithm consistently outperforms the standard EM algorithm,
and therefore it can be very useful in practice.

In the SMEM algorithm, the split-and-merge operations are used to im-
prove the parameter estimates within the maximum likelihood framework.
However, by introducing probability measures over model, we could also
use the split-and-merge operations to determine the appropriate number
of components within the Bayesian framework. This extension is now in
progress.
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