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Abstract. The EM algorithm for Gaussian mixture models often gets caught in local maxima of the likelihood
which involve having too many Gaussians in one part of the space and too few in another, widely separated part of the
space. We present a new EM algorithm which performs split and merge operations on the Gaussians to escape from
these configurations. This algorithm uses two novel criteria for efficiently selecting the split and merge candidates.
Experimental results on synthetic and real data show the effectiveness of using the split and merge operations to
improve the likelihood of both the training data and of held-out test data.

1. Introduction

Gaussian mixtures have been extensively used in the
field of statistical pattern recognition including neu-
ral networks [1–4]. The EM algorithm [5] has been
well known as a convenient and efficient tool to it-
eratively compute the maximum likelihood estimates
of Gaussian mixtures. There are, however, two seri-
ous problems in practice: singularities and local max-
ima. Although these problems have been pointed out
by many researchers, the best way to solve them in
practice is still an open question.

Ormoneit and Tresp [3] have recently proposed some
sophisticated regularization methods to solve the sin-
gularity problem. Regarding the local maximum prob-
lem, two of the authors have proposed the determinis-
tic annealing EM (DAEM) algorithm [6, 7], where a
modified posterior probability parameterized bytem-
peratureis derived to avoid local maxima. However,
in the case of Gaussian mixture density estimation, lo-
cal maxima arise when there are too many Gaussians
in one part of the space and too few in another. It is
not possible to move a Gaussian from the overpopu-
lated region to the underpopulated region without pass-
ing through positions that give lower likelihood. We

therefore introduce a discrete move that simultaneously
merges two Gaussians in an overpopulated region and
splits a Gaussian in an underpopulated region without
changing the number of Gaussians.

The idea of split and merge operations has been
successfully applied to clustering or vector quantiza-
tion (e.g., [8]). In this paper, we try to incorporate the
split and merge operations into the EM algorithm for
Gaussian mixture density estimates to overcome the lo-
cal maxima problem. New criteria presented in this pa-
per can efficiently select the split and merge candidates.
Although the proposed method, unlike the DAEM al-
gorithm, is limited to mixture models, we show experi-
mentally that our split and merge EM algorithm obtains
better solutions than the DAEM algorithm.

2. Gaussian Mixture Density Estimation via the
EM Algorithm

The probability density function (pdf) of a finite
Gaussian mixture is

p(x;2) =
M∑

m=1

αmg(x;µm, 6m), (1)
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whereαm, m= 1, . . . ,M are mixing proportions and
satisfy

αm ≥ 0 and
M∑

m=1

αm = 1. (2)

The g(x;µm, 6m) is a d-dimensional normal density
corresponding to themth component given by:

g(x;µm, 6m)= (2π)− d
2 det(6m)

− 1
2

× exp

{
−1

2
(x− µm)

T6−1
m (x− µm)

}
.

Here det(A) is the determinant of matrixA andT de-
notes the transpose operation. A set of unknown pa-
rameters, in this case, is2 = {(αm,µm, 6m), m =
1, . . . ,M}.

Given a set of iid dataX = {x1, . . . , xN}, the max-
imum likelihood estimate of the unknown parameters
2 is efficiently obtained by the EM algorithm [5]. In
the EM algorithm, the parameters2 are iteratively es-
timated by using two steps, E (for Expectation) and M
(for Maximization). The E-step computes the expecta-
tion of the complete data log-likelihood using the pos-
terior probability thatx belongs to themth component
based on the current parameters2(t):

Q
(
2 |2(t)

)
=
∑
x∈X

M∑
m=1

P
(
m | x;2(t)

)
logαmg(x;µm, 6m), (3)

where

P
(
m | x;2(t)

) = α(t)m g
(
x;µ(t)m , 6

(t)
m

)∑M
l=1 α

(t)
l g

(
x;µ(t)l , 6

(t)
l

) . (4)

Next, the M-step maximizes thisQ function with re-
spect to2 to estimate the new parameter values2(t+1).
More specifically, we rewrite (3) as

Q
(
2 |2(t)

)
=

M∑
m=1

∑
x∈X

P
(
m | x;2(t)

)
logαm

+
M∑

m=1

∑
x∈X

P
(
m | x;2(t)

)
logg(x;µm, 6m). (5)

Then, by maximizing the first term of the right hand
side of (5) with respect toαm subject to (2), we have

α(t+1)
m = 1

N

∑
x∈X

P
(
m | x;2(t)

)
. (6)

Next, by maximizing the second term of the right hand
side of (5) with respect toµm and6m, respectively, we
have

µ(t+1)
m =

∑
x∈X xP

(
m | x;2(t)

)∑
x∈X P

(
m | x;2(t)

) , (7)

6(t+1)
m

=
∑

x∈X
(
x− µ(t+1)

m

)(
x− µ(t+1)

m

)T
P
(
m | x;2(t)

)∑
x∈X P

(
m | x;2(t)

) .

(8)

To prevent the covariance from being singular, the fol-
lowing update rule based on the Bayesian regularizar-
ion is available [3]:

6(t+1)
m

=
∑

x∈X
(
x−µ(t+1)

m

) (
x−µ(t+1)

m

)T
P
(
m | x;2(t)

)+λId∑
x∈X P

(
m | x;2(t)

)+ 1
,

(9)

where Id is thed-dimensional unit matrix andλ is a
regularization constant determined by some validation
data.

3. Split and Merge EM Algorithm

3.1. The Algorithm

Let 2∗ denote the parameter values estimated by the
usual EM algorithm. Then after the EM algorithm
converged, (3) can be rewritten in the form of a direct
sum:

Q∗ = Q∗i + Q∗j + Q∗k +
∑

m,m6=i, j,k

Q∗m, (10)

where

Q∗m =
∑
x∈X

P(m | x;2∗) logα∗mg(x;µ∗m, 6∗m). (11)

We then try to increase the first term of the right-hand
side of (10) by merging thei th andj th Gaussians to pro-
duce thei ′th Gaussian, and splitting thekth Gaussian
into the j ′th andk′th Gaussians. The split and merge
operations are simultaneously performed so that the
number of componets is unchanged. That is, we note
that our goal here is not to solve the model selection
problem, but to solve the local maxima problem.
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To reestimate the parameters of these new Gaussians,
we have to initialize the parameters corresponding to
them using2∗.

The initial parameter values for the mergedi ′th
Gaussian can be set as:

αi ′ = α∗i + α∗j (12)

θi ′ =
θiα
∗
i + θ∗j α∗j
α∗i + α∗j

, (13)

whereθi corresponds toµi and6i . Noting that from
(6) it follows

α∗l =
1

N

∑
x∈X

P(l | x;2∗),

one can see that the initial values of mean vector and co-
variance matrix are generated by a linear combination
of the original ones before merge weighted by the pos-
teriors, and this might be intuitively reasonable. More-
over, Guassian with parameters given by Eqs. (12) and
(13) is, among all possible Gaussians, the one mini-
mizing the Kullback-Leibler divergence to the density
given by thei th and j th Guassians.

On the other hand, as for thej ′th andk′th Gaussians,
we initialize

α j ′ = αk′ = 1

2
α∗k (14)

6 j ′ = 6k′ = det(6∗k )
1
d Id. (15)

That is, each covariance matrix is initialized as a unit
matrix with the same volume as6∗k . The mean vectors
µ j ′ andµk′ are determined by performing theK -means
algorithm on the data that has the highest posterior
probability P(k | x;2∗) under Gaussiank (e.g. the 10
data points most likely to have been generated from
Gaussiank). Alternatively, we simply use some random
perturbation vectorεm,m= 1, 2 (‖εm‖ ¿ ‖µ∗k‖), and
setµ j ′ = µ∗k + ε1 andµk′ = µ∗k + ε2.

The parameter reestimation form= i ′, j ′ andk′ can
be done by using EM steps shown in Sec. 2. Note that
(4) should be replaced with (16) so that this reestima-
tion does not affect the other Gaussians.

P
(
m′ | x;2(t)

) = α
(t)
m′ g

(
x;µ(t)m′ , 6

(t)
m′
)∑

l=i ′, j ′,k′ α
(t)
l g

(
x;µ(t)l , 6

(t)
l

)
×

∑
m=i, j,k

P(m | x;2∗), (16)

wherem′ = i ′, j ′, k′.

Clearly∑
m′=i ′, j ′,k′

P
(
m′ | x;2(t)

) = ∑
m=i, j,k

P(m | x;2∗)

always holds during the reestimation process. That is,
the sum of posterior probabilities for thei ′th, j ′th, and
k′th Gaussians becomes equal to the sum of posterior
probabilities for thei th, j th, andkth Gaussians just
before split and merge. By this, we can reestimate the
parameters for thei ′th, j ′th, andk′th Gaussians con-
sistently without affecting the other Gaussians. Since
the initial parameter values given by Eqs. (12)–(15) are
often poor, these newly generated Guassians should be
first trained with fixing the other Gaussians.

For convenience, we call this EM procedure thepar-
tial EM procedure. After this partial EM procedure, the
usual EM steps described in Sec. 2, called thefull EM
procedure, are performed as a post processing. After
these procedures, ifQ is improved, then we accept the
new estimate and repeat the above after setting the new
paramters to2∗. Otherwise reject and go back to2∗

and try another candidate. We summarize these proce-
dures as follows:

[Split and Merge EM Algorithm]

1. Perform the usual EM updates by using (4), (6), (7)
and (9). Let2∗ andQ∗ denote the estimated param-
eters and correspondingQ function value, respec-
tively.

2. Sort the split and merge candidates by computing
split and merge criteria (described in the next sec-
tion) based on2∗. Let {i, j, k}c denote thecth can-
didate.

3. For c = 1, . . . ,Cmax, perform the following: Af-
ter initial parameter settings based on2∗, perform
thepartial EM procedurefor {i, j, k}c and then per-
form the full EM procedure. Let 2∗∗ be the ob-
tained parameters andQ∗∗ be the correspondingQ
function value. IfQ∗∗ > Q∗, then setQ∗ ← Q∗∗,
2∗ ← 2∗∗ and go to Step 2.

4. Halt with2∗ as the final parameters.

Note that when a certain split and merge candidate
which improves theQ function value is found at Step 3,
the other successive candidates are ignored. There is
therefore no guarantee that the split and the merge
candidates that are chosen will give the largest pos-
sible improvement inQ. This is not a major problem,
however, because the split and merge operations are
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performed repeatedly. If there were no heuristics for
ordering potential split and merge operations, we would
have to consider them allCmax= M(M−1)(M−2)/2,
but experimentally we have confirmed thatCmax ' 5
may be enough because the split and merge criteria do
work well.

The SMEM algorithm monotonically increases the
Q function value and if theQ function value does not
increase for allc = 1, . . . ,Cmax, then the algorithm
stops. Since the full EM steps equivalent to the original
EM steps are performed after the convergence for the
partial EM steps, it is clear that the SMEM algorithm
still maintain the global convergence properties of the
EM algorithm.

3.2. Split and Merge Criteria

Each of the split and merge candidates can be evalu-
ated by itsQ function value after Step 3 of the split
and merge EM algorithm mentioned in Sec. 3.1. How-
ever, since there are so many candidates, some reason-
able criteria for ordering the split and merge candidates
should be utilized to accelerate the split and merge EM
algorithm.

In general, when there are many data points each
of which has almost equal posterior probabilities for
any two Gaussians, it can be thought that these two
Gaussians might be merged. To numerically evaluate
this, we define the following merge criterion:

Jmerge(i, j ;2∗) = Pi (2
∗)TP j (2

∗), (17)

wherePi (2
∗)= (P(i | x1;2∗), . . . , P(i | xN;2∗))T ∈

RN is theN-dimensional vector consisting of posterior
probabilities for thei th Gaussian. Clearly, thei th and
j th Gaussians with largerJmerge(i, j ;2∗) should be
merged.1

As a split criterion (Jsplit), we define thelocal Kull-
back divergenceas:

Jsplit(k;2∗) =
∫

pk(x;2∗) log
pk(x;2∗)

g(x;µ∗k, 6∗k )
dx,

(18)
which is the distance between two distributions: the lo-
cal data densitypk(x) around thekth Gaussian and the
kth Gaussian density specified by the current parameter
estimateµ∗k and6∗k . The local data density is defined
as:

pk(x;2∗) =
∑N

n=1 δ(x− xn)P(k | xn;2∗)∑N
n=1 P(k | xn;2∗)

. (19)

This is a modified empirical distribution weighted
by the posterior probability so that the data around
the kth Gaussian are focused. Note that when the
weights are equal, i.e.,P(k | x;2∗) = 1/M , (19) is
the usual empirical distribution, i.e.,pk(x;2∗) =
(1/N)

∑N
n=1 δ(x−xn). Since it can be thought that the

Gaussian with the largestJsplit(k;2∗) has the worst
estimate of the local density, we should try to split it.

Using Jmerge and Jsplit, we sort the split and
merge candidates as follows. First, merge candidates
are sorted based onJmerge. Then, for each sorted
merge candidate{i, j }c, split candidates excluding
{i, j }c are sorted as{k}c. By combining these re-
sults and renumbering them, we obtain{i, j, k}c, c =
1, . . . ,M(M − 1)(M − 2)/2.

4. Experiments

First, we show the results of two-dimensional syn-
thetic data to visually demonstrate the usefulness of
the split and merge operations. Figure 1(a) shows the
true Gaussian mixture distribution with a common co-
variance (6 = 0.1 I) and a synthetically generated
data set (N = 300) from the distribution. The usual
EM algorithm converged to the local maximum solu-
tion shown in Fig. 1(c). However, our split and merge
EM algorithm converges to the superior solution shown
in Fig. 1(f) very close to the true one. Figure 1(d) and
(e) show two of accepted split and merge results. Note
thatt does not include the rejected estimation steps.

The 1st Gaussian shown in Fig. 1(c) was further split
as shown in Fig. 1(d). This seems to be a redundant split,
but as shown in Fig. 1(e) they are successfully merged
and the original two Gaussians (1st and 6th Gaussians
in Fig. 1(c)) were improved as shown in Fig. 1(e). This
result indicates that the split and merge operations not
only play an important role to appropriately assign the
number of Gaussians in a local data space, but can
also contribute to better estimate the Gaussian param-
eters themselves. The log-likelihood values normal-
ized by sample size were−2.210 (EM) and−2.162
(SMEM) for training data, while−2.198 (EM) and
−2.223 (SMEM) for test data. The log-likelihood val-
ues were actually improved for both training and test
data.

Next, we tested the proposed algorithm using high-
dimensional real data where the local maxima make
the optimization difficult. We used 20-dimensional fea-
ture vectors which were extracted from the facial im-
ages (photographs). Data size was 103 for training
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Figure 1. Results by the EM and SMEM algorithms for a two-dimensional Gaussian mixture density estimation problem. (a) Contours of true
Gaussians, (b) initial density, (c) result by the EM algorithm, (d) and (e) examples of split and merge operations by the SMEM algorithm, and
(f) the final result.

(X ) and 103 for test (X ′). We performed three algo-
rithms (EM, DAEM, and split and merge EM). Note
that the result of the EM algorithm can be obtained
at Step 1 in the split and merge EM algorithm as
mentioned in Sec. 3.1. In this experiment, we desig-
natedM = 5 and a diagonal covariance model (i.e.,
6m = diag(σ 2

m1, . . . , σ
2
m20), m = 1, . . . ,5) for each

Gaussian. We initialized mean vectors by using the
K -means algorithm and initialized covariance matrices
as 20-dimensional unit matrices. Since theK -means
algorithm depends on the initial mean vectors, we ini-
tialized 10 times. For each initialization, we tested the
three algorithms.

Table 1 summarizes the log-likelihood values for
each of training and test sets obtained by running each
of three algorithms ten times. These values are nor-
malized by the data size. The proposed algorithm is
referred to as ‘SMEM’ in Table 1. Since the test data
were not used to obtain2∗ and the training data size
was not large compared to the dimensionality, the log-
likelihood values for the test data were much smaller

Table 1. Log-likelihood/sample size.

Initial value EM DAEM SMEM

Training

Mean −159.1 −148.2 −147.9 −145.1

Std 1.77 0.24 0.04 0.08

Max −157.3 −147.7 −147.8 −145.0

Min −163.2 −148.6 −147.9 −145.2

Test

Mean −168.2 −159.8 −159.7 −155.9

Std 2.80 1.00 0.37 0.09

Max −165.5 −158.0 −159.6 −155.9

Min −174.2 −160.8 −159.8 −156.0

than those for the training data. However, the proposed
algorithm certainly improved the log-likelihood not
only for the training data, but also for the test data.
Moreover, the worst solution found by the split and
merge EM algorithm was better than the best solutions



138 Ueda et al.

Figure 2. Trajectories of log-likelihood. The upper (lower) result corresponds to the training (test) data.

found by the other algorithms on both training and test
data.

From Table 1, one can see that the SMEM algorithm
obtained the best result among three algorithms (EM,
DAEM, and SMEM). In other words, the DAEM al-
gorithm may less effective than the SMEM algorithm,
at avoiding local maxima associated with the mixture
models. Although the DAEM algorithm, unlike the
SMEM algorithm, can be used for any models, the
SMEM algorithm is better suitable for the Gaussian
mixture density estimation problem than the DAEM
algorithm.

Figure 2 shows log-likelihood value trajectories dur-
ing the estimation process. Actually, there are some
branching trajectories each of which corresponds to the
split and merge candidate executed at Step 3. However,
for clarity, only trajectories corresponding to the ac-
cepted estimation process at Step 3 are shown in Fig. 2.
In Fig. 2, the upper (lower) trajectory corresponds to
the training (test) data.

The lower one was obtained by successively com-
puting the log-likelihood using the current parameter
estimate and the test data during the estimation pro-
cess. Dotted lines in Fig. 2 denote the starting points
of Step 2; therefore, Step 2 was executed five times
in the run. The average number of accepted split and
merge operations (i.e., the average counts that Step 2
was executed) was 4.7 (STD= 0.8).

Note that it is due to the initialization at Step 3 that the
log-likelihood decreases just after the split and merge in
Fig. 2. Since newly merged and split Gaussians were, as

described in Sec. 3.1, initialized in some ad hoc man-
ner, the log-likelihood values corresponding to these
initial parameter values were usually smaller than those
just before the split and merge. In the lower trajectory,
unlike the upper one, the log-likelihood did not nec-
essarily increase monotonically in each reestimation
process at Step 3, which may be natural because the
trajectory was for the test data. However, comparing
the convergence points at Step 3 marked by the ‘◦’
symbol in Fig. 2, one can see that the successive split
and merge operations improved the log-likelihood for
the test data, as we expected.

Table 2 compares the number of iterations (no. of EM
steps) executed by the three algorithms. Note that in
the SMEM algorithm, the EM-steps corresponding to
rejected split and merge operations are not counted. The
average rank of the accepted split and merge candidates
was 1.8 (STD= 0.9), which indicates that the proposed
split and merge criteria work very well. Therefore, the
SMEM algorithm was about 155× 1.8/47' 6 times
slower than the original EM algorithm.

Table 2. The number of EM-steps.

EM DAEM SMEM

Mean 47 147 155

Std 16 39 44

Max 65 189 219

Min 37 103 109
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We further fairly compared the SMEM and EM algo-
rithms under the same computational complexity. That
is, we performed the EM algorithm six times for every
SMEM run using the same 20-dimensional data. We
repeated this comparison ten times. Table 3 shows the
log-likelihood values for each of training and test sets
over the ten trials. We confirmed that the SMEM algo-
rithm obtained still better results than the EM algorithm
for both training and test sets.

5. Conclusion

We have shown how simultaneous split and merge op-
erations can be used to move Gaussians from regions
of the space in which there are too many Gaussians to
regions in which there are too few. Such moves cannot
be accomplished by methods that continuously move
Gaussians through intermediate locations because the
likelihood is lower at these locations. A simultaneous
split and merge can be viewed as a way of tunnel-
ing through low-likelihood barriers, thereby eliminat-
ing many non-global optima. In this respect, it has some
similarities with simulated annealing but the moves that
are considered are long-range and are very specific to
the particular problems that arise when fitting a mixture
of Gaussians.

To make the split and merge method efficient we have
introduced criteria for deciding which splits and merges
to consider and have shown that these criteria work
well for a low-dimensional synthetic dataset and for a
high-dimensional real dataset. Our split and merge EM
algorithm consistently outperforms standard EM, and it
also consistently outperforms a deterministic annealing
version of EM that initially keeps the variances of the
Gaussians large so that it is easier to move them across
regions of the space that separate data clusters.

Recently, we have extended the SMEM algorithm
so as to make it applicable to general mixture mod-
els including more sophisticated mixture models such
as mixtures of latent variable models (e.g., mixtures
of probabilistic principal component analyzers [9] or
mixtures of factor analyzers [10]). These extensions
are described in Refs. [11, 12].

Note

1. This merge criterion favors merges with larger classes. To avoid
this bias, a modified ciriterion:

Jmerge(i, j ;2∗) = Pi (2
∗)T P j (2

∗)
‖Pi (2∗)‖‖P j (2∗)‖ ,

can be used. In our experiments, however, we used Eq. (17) for
simplicity and the merge criterion did work well as shown later.
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