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Abstract 

We present a split and merge EM (SMEM) algorithm to overcome the local 
maximum problem in parameter estimation of finite mixture models. In the 
case of mixture models, non-global maxima often involve having too many 
components of a mixture model in one part of the space and too few in an­
other, widely separated part of the space. To escape from such configurations 
we repeatedly perform simultaneous split and merge operations using a new 
criterion for efficiently selecting the split and merge candidates. We apply 
the proposed algorithm to the training of Gaussian mixtures and mixtures of 
factor analyzers using synthetic and real data and show the effectiveness of 
using the split and merge operations to improve the likelihood of both the 
training data and of held-out test data. 

1 INTRODUCTION 

Mixture density models, in particular normal mixtures, have been extensively used 
in the field of statistical pattern recognition [1]. Recently, more sophisticated mix­
ture density models such as mixtures of latent variable models (e.g., probabilistic 
PCA or factor analysis) have been proposed to approximate the underlying data 
manifold [2]-[4]. The parameter of these mixture models can be estimated using the 
EM algorithm [5] based on the maximum likelihood framework [3] [4]. A common 
and serious problem associated with these EM algorithm is the local maxima prob­
lem. Although this problem has been pointed out by many researchers, the best 
way to solve it in practice is still an open question. 

Two of the authors have proposed the deterministic annealing EM (DAEM) algo­
rithm [6], where a modified posterior probability parameterized by temperature is 
derived to avoid local maxima. However, in the case of mixture density models, 
local maxima arise when there are too many components of a mixture models in 
one part of the space and too few in another. It is not possible to move a compo­
nent from the overpopulated region to the underpopulated region without passing 
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through positions that give lower likelihood. We therefore introduce a discrete move 
that simultaneously merges two components in an overpopulated region and splits 
a component in an underpopulated region. 

The idea of split and merge operations has been successfully applied to clustering 
or vector quantization (e.g., [7]). To our knowledge, this is the first time that 
simultaneous split and merge operations have been applied to improve mixture 
density estimation. New criteria presented in this paper can efficiently select the 
split and merge candidates. Although the proposed method, unlike the DAEM 
algorithm, is limited to mixture models, we have experimentally comfirmed that our 
split and merge EM algorithm obtains better solutions than the DAEM algorithm. 

2 Split and Merge EM (SMEM) Algorithm 

The probability density function (pdf) of a mixture of M density models is given by 

M 

p(x; 8) = L amP(xlwm; Om), where am 2: 0 and (1) 
m=l 

The p(xlwm; Om) is a d-dimensional density model corresponding to the component 
W m . The EM algorithm, as is well known, iteratively estimates the parameters 8 = 
{(am, Om), m = 1, ... , M} using two steps. The E-step computes the expectation 
of the complete data log-likelihood. 

Q(818(t») = L L P(wmlx; 8(t») logamP(xlwm; Om), (2) 
X m 

where P(wmlx; 8(t») is the posterior probability which can be computed by 

P( I' 8(t») = a~p(xlwm; o~;h 
Wm X, M (t) (t) . 

Lm'=l am,p(xlwm,;Om') 
(3) 

Next, the M-step maximizes this Q function with respect to 8 to estimate the new 
parameter values 8(t+1). 

Looking at (2) carefully, one can see that the Q function can be represented in 
the form of a direct sum; i.e., Q(818(t») = L~=l qm(818(t»), where qm(818(t») = 
LXEx P(wmlx ; 8(t») logamP(xlwm; Om) and depends only on am and Om . Let 8* 
denote the parameter values estimated by the usual EM algorithm. Then after the 
EM algorithm has converged, the Q function can be rewritten as 

Q* = q7 + q; + qk + L q:n. (4) 
m,m,/i,j,k 

We then try to increase the first three terms of the right-hand side of (4) by merging 
two components Wi and Wj to produce a component Wi', and splitting the component 
Wk into two components Wj' and Wk" To reestimate the parameters of these new 
components, we have to initialize the parameters corresponding to them using 8*. 

The initial parameter values for the merged component Wi' can be set as a linear 
combination of the original ones before merge: 

and 
O*~ P(w · lx·8*)+O*~ P(w ·l x · 8*) Oi' = t wX t, J wX J, 

Lx P(wil x ; 8*) + Lx P(wjlx; 8*) 
(5) 
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On the other hand, as for two components Wj' and Wk', we set 

(6) 

where t is some small random perturbation vector or matrix (i.e., Iltll«IIOk 11)1. 
The parameter reestimation for m = i', j' and k' can be done by using EM steps, 
but note that the posterior probability (3) should be replaced with (7) so that this 
reestimation does not affect the other components. 

a~p(xlwm; o~;h L (t) (I .O(t)) x L P(wm'lx; 8*), m = i',j', k'. 
am,p x Wm, m' m'=i,j,k 

m'=i',j',k' 

(7) 
Clearly Lm'=i',j',k' P(wm, Ix; 8(t)) = Lm=i,j,k P{wmlx; 8*) always holds during 
the reestimation process. For convenience, we call this EM procedure the partial 
EM procedure. After this partial EM procedure, the usual EM steps, called the full 
EM procedure, are performed as a post processing. After these procedures, if Q 
is improved, then we accept the new estimate and repeat the above after setting 
the new paramters to 8*. Otherwise reject and go back to 8* and try another 
candidate. We summarize these procedures as follows: 

[SMEM Algorithm] 
1. Perform the usual EM updates. Let 8* and Q* denote the estimated parameters 

and corresponding Q function value, respectively. 
2. Sort the split and merge candidates by computing split and merge criteria (de­

scribed in the next section) based on 8*. Let {i, j, k}c denote the cth candidate. 
3. For c = 1, ... , Cmax , perform the following: After initial parameter settings 

based on 8 *, perform the partial EM procedure for {i, j, k } c and then perform 
the full EM procedure. Let 8** be the obtained parameters and Q** be the 
corresponding Q function value. If Q** > Q*, then set Q* f- Q**, 8* f- 8** 
and go to Step 2. 

4. Halt with 8* as the final parameters. 

Note that when a certain split and merge candidate which improves the Q function 
value is found at Step 3, the other successive candidates are ignored. There is 
therefore no guarantee that the split and the merge candidates that are chosen will 
give the largest possible improvement in Q. This is not a major problem, however, 
because the split and merge operations are performed repeatedly. Strictly speaking, 
Cmax = M(M -1)(M - 2)/2, but experimentally we have confirmed that Cmax '" 5 
may be enough. 

3 Split and Merge Criteria 

Each of the split and merge candidates can be evaluated by its Q function value 
after Step 3 of the SMEM algorithm mentioned in Sec.2. However, since there 
are so many candidates, some reasonable criteria for ordering the split and merge 
candidates should be utilized to accelerate the SMEM algorithm. 

In general, when there are many data points each of which has almost equal posterior 
probabilities for any two components, it can be thought that these two components 

1 In the case of mixture Gaussians, covariance matrices E i , and Ek , should be positive 
definite. In this case, we can initialize them as Ei , = Ek , = det(Ek)l/d Id indtead of (6). 
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might be merged. To numerically evaluate this, we define the following merge 
criterion: 

Jmerge(i,j; 8*) = P i (8*fpj (8*), (8) 

where Pi(8*) = (P(wilxl; 8*), ... , P(wilxN; 8*))T E nN is the N-dimensional 
vector consisting of posterior probabilities for the component Wi. Clearly, two com­
ponents Wi and Wj with larger Jmerge(i,j; 8*) should be merged. 

As a split criterion (Jsplit), we define the local Kullback divergence as: 

J (k 8 *) J ( 8*) I Pk(X; 8*) d split ; - = Pk x; - og (I e) x, 
P x Wk; k 

(9) 

which is the distance between two distributions: the local data density Pk(X) around 
the component Wk and the density of the component Wk specified by the current 
parameter estimate ILk and ~k' The local data density is defined as: 

(10) 

This is a modified empirical distribution weighted by the posterior probability so 
that the data around the component Wk are focused. Note that when the weights 
are equal, i.e., P(wklx; 8*) = 11M, (10) is the usual empirical distribution, i.e., 
Pk(X; 8*) = (liN) E~=l 6(x - xn). Since it can be thought that the component 
with the largest Jspl it (k; 8*) has the worst estimate of the local density, we should 
try to split it. Using Jmerge and Jsp/it, we sort the split and merge candidates as 
follows. First, merge candidates are sorted based on Jmerge. Then, for each sorted 
merge ' candidate {i,j}e, split candidates excluding {i,j}e are sorted as {k}e. By 
combining these results and renumbering them, we obtain {i, j , k }e. 

4 Experiments 

4.1 Gaussian mixtures 

First, we show the results of two-dimensional synthetic data in Fig. 1 to visually 
demonstrate the usefulness of the split and merge operations. Initial mean vectors 
and covariance matrices were set to near mean of all data and unit matrix, respec­
tively. The usual EM algorithm converged to the local maximum solution shown in 
Fig. l(b), whereas the SMEM algorithm converged to the superior solution shown 
in Fig. led) very close to the true one. The split of the 1st Gaussian shown in 
Fig. l(c) seems to be redundant, but as shown in Fig. led) they are successfully 
merged and the original two Gaussians were improved. This indicates that the split 
and merge operations not only appropriately assign the number of Gaussians in a 
local data space, but can also improve the Gaussian parameters themselves. 

Next, we tested the proposed algorithm using 20-dimensional real data (facial im­
ages) where the local maxima make the optimization difficult. The data size was 103 
for training and 103 for test. We ran three algorithms (EM, DAEM, and SMEM) 
for ten different initializations using the K-means algorithm. We set M = 5 and 
used a diagonal covariance for each Gaussian. As shown in Table 1, the worst so­
lution found by the SMEM algorithm was better than the best solutions found by 
the other algorithms on both training and test data. 
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(a) True Gaussians and (b) Result by EM (t=72) 
generated data 
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Figure 1: Gaussian mixture estimation results. 

Table 1: Log-likelihood I data point 

initiall value EM DAEM 

mean -159.1 -148.2 -147.9 
Training std 1.n 0.24 0.04 
data 

max -157.3 -147.7 -147.8 

min -163.2 -148.6 -147.9 

mean -168.2 -159.8 -159.7 

Test std 2.80 1.00 0.37 
data max -165.5 -158.0 -159.6 

min -174.2 -160.8 -159.8 

Table 2: No. of iterations 

EM DAEM SMEM 

mean 47 147 155 
sId 16 39 44 
max 65 189 219 
min 37 103 109 

SMEM 
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Figure 2: Trajectories of loglikelihood. Upper (lower) 
corresponds to training (test) data. 

Figure 2 shows log-likelihood value trajectories accepted at Step 3 of the SMEM 
algorithm during the estimation process 2. Comparing the convergence points at 
Step 3 marked by the '0' symbol in Fig. 2, one can see that the successive split 
and merge operations improved the log-likelihood for both the training and test 
data, as we expected. Table 2 compares the number of iterations executed by the 
three algorithms. Note that in the SMEM algorithm, the EM-steps corresponding 
to rejected split and merge operations are not counted. The average rank of the 
accepted split and merge candidates was 1.8 (STD=O.9) , which indicates that the 
proposed split and merge criteria work very well . Therefore, the SMEM algorithm 
was about 155 x 1.8/47 c::: 6 times slower than the original EM algorithm. 

4.2 Mixtures of factor analyzers 

A mixture of factor analyzers (MFA) can be thought of as a reduced dimension 
mixture of Gaussians [4]. That is, it can extract locally linear low-dimensional 
manifold underlying given high-dimensional data. A single FA model assumes that 
an observed D-dimensional variable x are generated as a linear transformation of 
some lower K-dimensionallatent variable z rv N(O, I) plus additive Gaussian noise 
v rv N(O, w). w is diagonal. That is, the generative model can be written as 

2Dotted lines in Fig. 2 denote the starting points of Step 2. Note that it is due to the 
initialization at Step 3 that the log-likelihood decreases just after the split and merge. 
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(a) Initial values (b) Result by EM (c) Result by SMEM 

Rgure 3: Extraction of 1 D manifold by using a mixture of factor analyzers. 

x = Az + v + J-L. Here J-L is a mean vector. Then from simple calculation, we 
can see that x t'V N(J-L, AAT + '11). Therefore, in the case of a M mixture of FAs, 
x t'V L~=l omN(J-Lm, AmA~ + 'lim). See [4] for the details. Then, in this case, 
the Q function is also decomposable into M components and therefore the SMEM 
algorithm is straightforwardly applicable to the parameter estimation of the MFA 
models. 

Figure 3 shows the results of extracting a one-dimensional manifold from three­
dimensional data (nOisy shrinking spiral) using the EM and the SMEM algorithms3. 

Although the EM algorithm converged to a poor local maxima, the SMEM algo­
rithm successfully extracted data manifold. Table 3 compares average log-likelihood 
per data point over ten different initializations. The log-likelihood values were dras­
tically improved on both training and test data by the SMEM algorithm. 

The MFA model is applicable to pattern recognition tasks [2][3] since once an MFA 
model is fitted to each class, we can compute the posterior probabilities for each data 
point. We tried a digit recognition task (10 digits (classes))4 using the MFA model. 
The computed log-likelihood averaged over ten classes and recognition accuracy for 
test data are given in Table 4. Clearly, the SMEM algorithm consistently improved 
the EM algorithm on both log-likelihood and recognition accuracy. Note that the 
recognition accuracy by the 3-nearest neighbor (3NN) classifier was 88.3%. It is 
interesting that the MFA approach by both the EM and SMEM algorithms could 
outperform the nearest neighbor approach when K = 3 and M = 5. This suggests 
that the intrinsic dimensionality of the data would be three or so. ' 

3In this case, each factor loading matrix Am becomes a three dimensional column 
vector corresponding to each thick line in Fig. 3. More correctly, the center position and 
the direction of each thick line are f..Lm and Am, respectively. And the length of each thick 
line is 2 IIAmll. 

4The data were created using the degenerate Glucksman's feature (16 dimensional data) 
by NTT labs.[8]. The data size was 200/class for training and 200/class for test . 
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Table 4: Digit recognition results 
Table 3: Log-likelihood I data point 

Log-likelihood / data point Recognition rate ("!o) 
EM SMEM EM SMEM EM SMEM 

K=3 
M=5 -3.18 -3.15 89.0 91.3 
M=10 -3.09 -3.05 87.5 88.7 

Training -7.68 (0.151) -7.26 (0.017) 

Test -7.75 (0.171) -7.33 (0.032) 

K=8 
M=5 -3.14 -3.11 85.3 87.3 
M=10 -3.04 -3.01 82.5 85.1 O:STD 

5 Conclusion 

We have shown how simultaneous split and merge operations can be used to move 
components of a mixture model from regions of the space in which there are too 
many components to regions in which there are too few. Such moves cannot be 
accomplished by methods that continuously move components through intermediate 
locations because the likelihood is lower at these locations. A simultaneous split and 
merge can be viewed as a way of tunneling through low-likelihood barriers, thereby 
eliminating many non-global optima. In this respect, it has some similarities with 
simulated annealing but the moves that are considered are long-range and are very 
specific to the particular problems that arise when fitting a mixture model. Note 
that the SMEM algorithm is applicable to a wide variety of mixture models, as long 
as the decomposition (4) holds. To make the split and merge method efficient we 
have introduced criteria for deciding which splits and merges to consider and have 
shown that these criteria work well for low-dimensional synthetic datasets and for 
higher-dimensional real datasets. Our SMEM algorithm conSistently outperforms 
standard EM and therefore it would be very useful in practice. 
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