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Abstract

The infinite factorial hidden Markov model
is a non-parametric extension of the factorial
hidden Markov model. Our model defines a
probability distribution over an infinite num-
ber of independent binary hidden Markov
chains which together produce an observable
sequence of random variables. Central to
our model is a new type of non-parametric
prior distribution inspired by the Indian Buf-
fet Process which we call the Indian Buffet
Markov Process.

1. Introduction

Hidden Markov models (HMM) are among our most
successful models for dealing with time series data
and the machine learning community has extended
this model in many orthogonal directions. The fac-
torial hidden Markov model (FHMM) (Ghahramani
& Jordan, 1997) is an extension of the classical hidden
Markov model in which the hidden state is factored.
In other words, the information from the past is prop-
agated in a distributed way through a set of parallel
Markov chains. This model has been used in vision,
audio processing and natural language processing.

Orthogonal to this work, the infinite hidden Markov
model (iHMM) (Beal et al., 2002) is a non-parametric
extension of the hidden Markov model where the num-
ber of hidden chains can be potentially unbounded. At
the heart of this model is the hierarchical Dirichlet pro-
cess (Teh et al., 2006) which formalizes the notion of
an infinite number of states.

In our work, we “complete the square” by extend-
ing the factorial hidden Markov model to allow for
an unbounded number of hidden chains. Central to
our model is a new non-parametric prior which is in-
spired by the Indian Buffet Process but adding Markov
dynamics. We call this the Indian Buffet Markov Pro-
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Figure 1. The Infinite Factorial Hidden Markov Model

cess (IBMP). In section 2 we describe the construc-
tion of our new non-parametric prior and how it can
be used in the most natural full model which we re-
fer to as the Infinite Factorial Hidden Markov Model
(iFHMM). Section 3 discusses recent work on how to
do inference for the iFHMM. We end in section 4 with
some preliminary results using the iFHMM model.

2. The Indian Buffet Markov Model

We start by describing a finite generative model, care-
fully choosing the parameters to depend on the model
size so that we can take the infinite limit; this is anal-
ogous to the derivation of the IBP in (Griffiths &
Ghahramani, 2006). Our finite model will consist of
M binary Markov chains with a transition matrix Wm

for each chain parametrized by am and bm as follows

Wm =
(

1− am am
1− bm bm

)
, (1)

where we sample the parameter am ∼ Beta(α/M, 1)
and bm ∼ Beta(γ, δ). We denote with Ztm the state of
the m’th hidden Markov chain at time t. We assume
every chain starts off in a dummy 0 state (Z0m = 0 for
all m ∈ M) and then evolves according to the transi-
tion matrix Wm for T timesteps.

If we denote with c00m , c
01
m , c

10
m , c

11
m the number of tran-

sitions from 0 → 0, 0 → 1, 1 → 0 and 1 → 1 in bi-
nary chainm (we count the transition from the dummy
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state to the first state too), we can then write

p(Z|a, b) =
M∏
m=1

(1− am)c
00
m a

c01m
m (1− bm)c

10
m b

c11m
m . (2)

Combining this with the priors on a and b we can
marginalize out the parameters and find

p(Z|α, γ, β) =
M∏
m=1

α
M Γ( αM + c01m )Γ(c00m + 1)
Γ( αM + c00m + c01m + 1)

Γ(γ + δ)Γ(δ + c10m )Γ(γ + c11m )
Γ(γ)Γ(δ)Γ(γ + δ + c10m + c11m )

.

Next, we want to take the limit M → ∞. Similar to
the IBP, p(Z|α, γ, β) = 0 when M becomes infinitely
large, however we are only interested in the probability
of the left-ordered form equivalence class of Z (denoted
by [Z]). After careful algebraic manipulation, we find
that for M →∞

p([Z]) =
αM+∏2T−1
h=0 Mh!

exp{−αHT }

M+∏
m=1

(c01m − 1)!c00m !Γ(γ + δ)Γ(δ + c10m )Γ(γ + c11m )
(c00m + c01m )!Γ(γ)Γ(δ)Γ(γ + δ + c10m + c11m )

.

This defines the IBMP prior distribution p([Z]).

2.1. The iFHMM

The most natural application of the IBMP prior is to
add a parameter φm for each chain which is sampled
from a base measure H. We then add a likelihood
model F which produces an observation yt at every
timestep t by combining the parameters φ conditional
on which chains are switched on at time t. This model,
whose graphical model is shown in figure 1, we refer
to as the iFHMM.

3. Inference

Because the iFHMM models time series data, we want
to use some form of dynamic programming to do in-
ference rather than a Gibbs sampler. Luckily, we can
extend the stick breaking construction of the IBP (Teh
et al., 2007) to the IBMP. This allows us to imple-
ment a slice sampling algorithm which will adaptively
truncate our model into a finite FHMM. Sampling
the hidden variables in a finite model can then be
done by a blocked Gibbs sampler which samples a
single whole Markov chain using a forward-filtering
backward-sampling algorithm, conditional on keeping
all other Markov chains fixed. Although this allows us
to learn efficiently in the models we have considered
so far, we are currently experimenting with adding
Metropolis Hasting’s steps to improve performance.

4. Experiments

A first model which we consider is a linear Gaussian
model through time. We set the base measure H of
our iFHMM to be a D dimensional normal distribution
with variance σ2

A. In other words, with each chain we
associate aD dimensional vector. The likelihood func-
tion F just sums up all the vectors for the chains that
are on and adds zero mean Gaussian noise with vari-
ance σ2

X to generate the D dimensional observations
Y .

We created a bars-in-time dataset by choosing the five
25 dimensional vectors shown in figure 2 and gener-
ated 5 random Markov chains of length 400. We ran
our inference algorithm for 1000 iterations and recov-
ered the bars as shown in figure 3. Our current work
focusses on using the iFHMM for real world problem.
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Figure 2. Generating Bars

Figure 3. Bars sample after 1000 iterations.


