
In Advances in Neural Information Processing Systems 8eds. D. S. Touretzky, M. C. Mozer, M. E. Hasselmo, MIT Press, 1996.Gaussian Processes for RegressionChristopher K. I. WilliamsNeural Computing Research GroupAston UniversityBirmingham B4 7ET, UKc.k.i.williams@aston.ac.uk Carl Edward RasmussenDepartment of Computer ScienceUniversity of TorontoToronto, ONT, M5S 1A4, Canadacarl@cs.toronto.eduAbstractThe Bayesian analysis of neural networks is di�cult because a sim-ple prior over weights implies a complex prior distribution overfunctions. In this paper we investigate the use of Gaussian processpriors over functions, which permit the predictive Bayesian anal-ysis for �xed values of hyperparameters to be carried out exactlyusing matrix operations. Two methods, using optimization and av-eraging (via Hybrid Monte Carlo) over hyperparameters have beentested on a number of challenging problems and have producedexcellent results.1 INTRODUCTIONIn the Bayesian approach to neural networks a prior distribution over the weightsinduces a prior distribution over functions. This prior is combined with a noisemodel, which speci�es the probability of observing the targets t given functionvalues y, to yield a posterior over functions which can then be used for predictions.For neural networks the prior over functions has a complex form which meansthat implementations must either make approximations (e.g. MacKay, 1992) or useMonte Carlo approaches to evaluating integrals (Neal, 1993).As Neal (1995) has argued, there is no reason to believe that, for real-world prob-lems, neural network models should be limited to nets containing only a \small"number of hidden units. He has shown that it is sensible to consider a limit wherethe number of hidden units in a net tends to in�nity, and that good predictions canbe obtained from such models using the Bayesian machinery. He has also shownthat a large class of neural network models will converge to a Gaussian process priorover functions in the limit of an in�nite number of hidden units.In this paper we use Gaussian processes speci�ed parametrically for regression prob-lems. The advantage of the Gaussian process formulation is that the combination of1



the prior and noise models can be carried out exactly using matrix operations. Wealso show how the hyperparameters which control the form of the Gaussian processcan be estimated from the data, using either a maximum likelihood or Bayesianapproach, and that this leads to a form of \Automatic Relevance Determination"(Mackay 1993; Neal 1995).2 PREDICTION WITH GAUSSIAN PROCESSESA stochastic process is a collection of random variables fY (x)jx 2 Xg indexed by aset X. In our case X will be the input space with dimension d, the number of inputs.The stochastic process is speci�ed by giving the probability distribution for every�nite subset of variables Y (x(1)); : : : ; Y (x(k)) in a consistent manner. A Gaussianprocess is a stochastic process which can be fully speci�ed by its mean function�(x) = E[Y (x)] and its covariance function C(x;x0) = E[(Y (x) � �(x))(Y (x0) ��(x0))]; any �nite set of points will have a joint multivariate Gaussian distribution.Below we consider Gaussian processes which have �(x) � 0.In section 2.1 we will show how to parameterise covariances using hyperparameters;for now we consider the form of the covariance C as given. The training dataconsists of n pairs of inputs and targets f(x(i); t(i)); i = 1 : : :ng. The input vectorfor a test case is denoted x (with no superscript). The inputs are d-dimensionalx1; : : : ; xd and the targets are scalar.The predictive distribution for a test case x is obtained from the n+ 1 dimensionaljoint Gaussian distribution for the outputs of the n training cases and the testcase, by conditioning on the observed targets in the training set. This procedure isillustrated in Figure 1, for the case where there is one training point and one testpoint. In general, the predictive distribution is Gaussian with mean and varianceŷ(x) = kT (x)K�1t (1)�2̂y(x) = C(x;x)� kT (x)K�1k(x); (2)where k(x) = (C(x;x(1)); : : : ; C(x;x(n)))T , K is the covariance matrix for thetraining cases Kij = C(x(i);x(j)), and t = (t(1); : : : ; t(n))T .The matrix inversion step in equations (1) and (2) implies that the algorithm hasO(n3) time complexity (if standard methods of matrix inversion are employed);for a few hundred data points this is certainly feasible on workstation computers,although for larger problems some iterative methods or approximations may beneeded.2.1 PARAMETERIZING THE COVARIANCE FUNCTIONThere are many choices of covariance functions which may be reasonable. Formally,we are required to specify functions which will generate a non-negative de�nitecovariance matrix for any set of points (x(1); : : : ;x(k)). From a modelling point ofview we wish to specify covariances so that points with nearby inputs will give riseto similar predictions. We �nd that the following covariance function works well:C(x(i);x(j)) = v0 expf�12 dXl=1 wl(x(i)l � x(j)l )2g (3)+a0 + a1 dXl=1 x(i)l x(j)l + v1�(i; j);2



y1

y y

p(y)Figure 1: An illustration of prediction using a Gaussian process. There is one trainingcase (x(1); t(1)) and one test case for which we wish to predict y. The ellipse in the left-hand plot is the one standard deviation contour plot of the joint distribution of y1 andy. The dotted line represents an observation y1 = t(1). In the right-hand plot we seethe distribution of the output for the test case, obtained by conditioning on the observedtarget. The y axes have the same scale in both plots.where � = log(v0; v1; w1; : : : ; wd; a0; a1) plays the role of hyperparameters1. Wede�ne the hyperparameters to be the log of the variables in equation (4) since theseare positive scale-parameters.The covariance function is made up of three parts; the �rst term, a linear regressionterm (involving a0 and a1) and a noise term v1�(i; j). The �rst term expresses theidea that cases with nearby inputs will have highly correlated outputs; the wl pa-rameters allow a di�erent distance measure for each input dimension. For irrelevantinputs, the corresponding wl will become small, and the model will ignore that in-put. This is closely related to the Automatic Relevance Determination (ARD) ideaof MacKay and Neal (MacKay, 1993; Neal 1995). The v0 variable gives the overallscale of the local correlations. This covariance function is valid for all input dimen-sionalities as compared to splines, where the integrated squared mth derivative isonly a valid regularizer for 2m > d (see Wahba, 1990). a0 and a1 are variablescontrolling the scale the of bias and linear contributions to the covariance. The lastterm accounts for the noise on the data; v1 is the variance of the noise.Given a covariance function, the log likelihood of the training data is given byl = �12 logdetK � 12tTK�1t� n2 log2�: (4)In section 3 we will discuss how the hyperparameters in C can be adapted, inresponse to the training data.2.2 RELATIONSHIP TO PREVIOUS WORKThe Gaussian process view provides a unifying framework for many regression meth-ods. ARMA models used in time series analysis and spline smoothing (e.g. Wahba,1990 and earlier references therein) correspond to Gaussian process prediction with1We call � the hyperparameters as they correspond closely to hyperparameters in neuralnetworks; in e�ect the weights have been integrated out exactly.3



a particular choice of covariance function2. Gaussian processes have also been usedin the geostatistics �eld (e.g. Cressie, 1993), and are known there as \kriging", butthis literature has concentrated on the case where the input space is two or threedimensional, rather than considering more general input spaces.This work is similar to Regularization Networks (Poggio and Girosi, 1990; Girosi,Jones and Poggio, 1995), except that their derivation uses a smoothness functionalrather than the equivalent covariance function. Poggio et al suggested that thehyperparameters be set by cross-validation. The main contributions of this paperare to emphasize that a maximum likelihood solution for � is possible, to recognizethe connections to ARD and to use the Hybrid Monte Carlo method in the Bayesiantreatment (see section 3).3 TRAINING A GAUSSIAN PROCESSThe partial derivative of the log likelihood of the training data l with respect toall the hyperparameters can be computed using matrix operations, and takes timeO(n3). In this section we present two methods which can be used to adapt thehyperparameters using these derivatives.3.1 MAXIMUM LIKELIHOODIn a maximum likelihood framework, we adjust the hyperparameters so as to max-imize that likelihood of the training data. We initialize the hyperparameters torandom values (in a reasonable range) and then use an iterative method, for exam-ple conjugate gradient, to search for optimal values of the hyperparameters. Sincethere are only a small number of hyperparameters (d+4) a relatively small numberof iterations are usually su�cient for convergence. However, we have found thatthis approach is sometimes susceptible to local minima, so it is advisable to try anumber of random starting positions in hyperparameter space.3.2 INTEGRATION VIA HYBRID MONTE CARLOAccording to the Bayesian formalism, we should start with a prior distribution P (�)over the hyperparameters which is modi�ed using the training data D to producea posterior distribution P (�jD). To make predictions we then integrate over theposterior; for example, the predicted mean y(x) for test input x is given byy(x) = Z ŷ�(x)P (�jD)d� (5)where ŷ�(x) is the predicted mean (as given by equation 1) for a particular value of�. It is not feasible to do this integration analytically, but the Markov chain MonteCarlo method of Hybrid Monte Carlo (HMC) (Duane et al, 1987) seems promisingfor this application. We assign broad Gaussians priors to the hyperparameters, anduse Hybrid Monte Carlo to give us samples from the posterior.HMC works by creating a �ctitious dynamical system in which the hyperparametersare regarded as position variables, and augmenting these with momentum variablesp. The purpose of the dynamical system is to give the hyperparameters \inertia"so that random-walk behaviour in �-space can be avoided. The total energy, H, ofthe system is the sum of the kinetic energy, K, (a function of the momenta) and thepotential energy, E. The potential energy is de�ned such that p(�jD) / exp(�E).We sample from the joint distribution for � and p given by p(�;p) / exp(�E �2Technically splines require generalized covariance functions.4



K); the marginal of this distribution for � is the required posterior. A sample ofhyperparameters from the posterior can therefore be obtained by simply ignoringthe momenta.Sampling from the joint distribution is achieved by two steps: (i) �nding new pointsin phase space with near-identical energies H by simulating the dynamical systemusing a discretised approximation to Hamiltonian dynamics, and (ii) changing theenergy H by doing Gibbs sampling for the momentum variables.Hamiltonian DynamicsHamilton's �rst order di�erential equations for H are approximated by a discretestep (speci�cally using the leapfrog method). The derivatives of the likelihood(equation 4) enter through the derivative of the potential energy. This proposedstate is then accepted or rejected using the Metropolis rule depending on the �nalenergy H� (which is not necessarily equal to the initial energy H because of thediscretization). The same step size " is used for all hyperparameters, and should beas large as possible while keeping the rejection rate low.Gibbs Sampling for Momentum VariablesThe momentum variables are updated using a modi�ed version of Gibbs sampling,thereby allowing the energy H to change. A \persistence" of 0:95 is used; the newvalue of the momentum is a weighted sum of the previous value (with weight 0:95)and the value obtained by Gibbs sampling (weight (1� 0:952)1=2). With this formof persistence, the momenta change approximately twenty times more slowly, thusincreasing the \inertia" of the hyperparameters, so as to further help in avoidingrandom walks. Larger values of the persistence will further increase the inertia, butreduce the rate of exploration of H.Practical DetailsThe priors over hyperparameters are set to be Gaussian with a mean of �3 and astandard deviation of 3. In all our simulations a step size " = 0:05 produced a verylow rejection rate (< 1%). The hyperparameters corresponding to v1 and to thewl's were initialised to �2 and the rest to 0.To apply the method we �rst rescale the inputs and outputs so that they have meanof zero and a variance of one on the training set. The sampling procedure is runfor the desired amount of time, saving the values of the hyperparameters 200 timesduring the last two-thirds of the run. The �rst third of the run is discarded; this\burn-in" is intended to give the hyperparameters time to come close to their equi-librium distribution. The predictive distribution is then a mixture of 200 Gaussians.For a squared error loss, we use the mean of this distribution as a point estimate.The width of the predictive distribution tells us the uncertainty of the prediction.4 EXPERIMENTAL RESULTSWe report the results of prediction with Gaussian process on (i) a modi�ed versionof MacKay's robot arm problem and (ii) �ve real-world data sets.4.1 THE ROBOT ARM PROBLEMWe consider a version of MacKay's robot arm problem introduced by Neal (1995).The standard robot arm problem is concerned with the mappingsy1 = r1 cos x1 + r2 cos(x1 + x2) y2 = r1 sinx1 + r2 sin(x1 + x2) (6)5



Method No. of inputs sum squared test errorGaussian process 2 1.126Gaussian process 6 1.138MacKay 2 1.146Neal 2 1.094Neal 6 1.098Table 1: Results on the robot arm task. The bottom three lines of data were obtainedfrom Neal (1995). The MacKay result is the test error for the net with highest \evidence".The data was generated by picking x1 uniformly from [-1.932, -0.453] and [0.453,1.932] and picking x2 uniformly from [0.534, 3.142]. Neal added four further inputs,two of which were copies of x1 and x2 corrupted by additive Gaussian noise ofstandard deviation 0.02, and two further irrelevant Gaussian-noise inputs with zeromean and unit variance. Independent zero-mean Gaussian noise of variance 0.0025was then added to the outputs y1 and y2. We used the same datasets as Neal andMacKay, with 200 examples in the training set and 200 in the test set.The theory described in section 2 deals only with the prediction of a scalar quantityY , so predictors were constructed for the two outputs separately, although a jointprediction is possible within the Gaussian process framework (see co-kriging, x3.2.3in Cressie, 1993).Two experiments were conducted, the �rst using only the two \true" inputs, andthe second one using all six inputs. In this section we report results using max-imum likelihood training; similar results were obtained with HMC. The log(v)'sand log(w)'s were all initialized to values chosen uniformly from [-3.0, 0.0], andwere adapted separately for the prediction of y1 and y2 (in these early experimentsthe linear regression terms in the covariance function involving a0 and a1 were notpresent). The conjugate gradient search algorithm was allowed to run for 100 iter-ations, by which time the likelihood was changing very slowly. Results are reportedfor the run which gave the highest likelihood of the training data, although in factall runs performed very similarly. The results are shown in Table 1 and are encour-aging, as they indicate that the Gaussian process approach is giving very similarperformance to two well-respected techniques. All of the methods obtain a level ofperformance which is quite close to the theoretical minimum error level of 1.0. It isinteresting to look at the values of the w's obtained after the optimization; for they2 task the values were 0:243; 0:237; 0:0639; 7:0� 10�4; 2:32� 10�6; 1:70� 10�6,and v0 and v1 were 7:5278 and 0:0022 respectively. The w values show nicely thatthe �rst two inputs are the most important, followed by the corrupted inputs andthen the irrelevant inputs. During training the irrelevant inputs are detected quitequickly, but the w's for the corrupted inputs shrink more slowly, implying that theinput noise has relatively little e�ect on the likelihood.4.2 FIVE REAL-WORLD PROBLEMSGaussian Processes as described above were compared to several other regressionalgorithms on �ve real-world data sets in (Rasmussen, 1996; in this volume). Thedata sets had between 80 and 256 training examples, and the input dimensionranged from 6 to 16. The length of the HMC sampling for the Gaussian processeswas from 7:5 minutes for the smallest training set size up to 1 hour for the largestones on a R4400 machine. The results rank the methods in the order (lowest error�rst) a full-blown Bayesian treatment of neural networks using HMC, Gaussian6



processes, ensembles of neural networks trained using cross validation and weightdecay, the Evidence framework for neural networks (MacKay, 1992), and MARS.We are currently working on assessing the statistical signi�cance of this ordering.5 DISCUSSIONWe have presented the method of regression with Gaussian processes, and shownthat it performs well on a suite of real-world problems.We have also conducted some experiments on the approximation of neural nets (witha �nite number of hidden units) by Gaussian processes, although space limitationsdo not allow these to be described here. Some other directions currently underinvestigation include (i) the use of Gaussian processes for classi�cation problems bysoftmaxing the outputs of k regression surfaces (for a k-class classi�cation problem),(ii) using non-stationary covariance functions, so that C(x;x0) 6= C(jx � x0j) and(iii) using a covariance function containing a sum of two or more terms of the formgiven in line 1 of equation 3.We hope to make our code for Gaussian process prediction publically available in thenear future. Check http://www.cs.utoronto.ca/neuron/delve/delve.html for details.AcknowledgementsWe thank Radford Neal for many useful discussions, David MacKay for generously provid-ing the robot arm data used in this paper, and Chris Bishop, Peter Dayan, Radford Nealand Huaiyu Zhu for comments on earlier drafts. CW was partially supported by EPSRCgrant GR/J75425.ReferencesCressie, N. A. C. (1993). Statistics for Spatial Data. Wiley.Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo.Physics Letters B, 195:216{222.Girosi, F., Jones, M., and Poggio, T. (1995). Regularization Theory and Neural NetworksArchitectures. Neural Computation, 7(2):219{269.MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks.Neural Computation, 4(3):448{472.MacKay, D. J. C. (1993). Bayesian Methods for Backpropagation Networks. In vanHemmen, J. L., Domany, E., and Schulten, K., editors, Models of Neural NetworksII. Springer.Neal, R. M. (1993). Bayesian Learning via Stochastic Dynamics. In Hanson, S. J., Cowan,J. D., and Giles, C. L., editors, Neural Information Processing Systems, Vol. 5, pages475{482. Morgan Kaufmann, San Mateo, CA.Neal, R. M. (1995). Bayesian Learning for Neural Networks. PhD thesis, Dept. of Com-puter Science, University of Toronto.Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. Proceedingsof IEEE, 78:1481{1497.Rasmussen, C. E. (1996). A Practical Monte Carlo Implementation of Bayesian Learning.In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in NeuralInformation Processing Systems 8. MIT Press.Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Ap-plied Mathematics. CBMS-NSF Regional Conference series in applied mathematics.7


