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Abstract

A number of methods for speeding up Gaussian Process (GP) prediction have been pro-
posed, including the Nystrom method of Williams and Seeger (2001). In this paper we
focus on two issues (1) the relationship of the Nystrom method to the Subset of Regressors
method (Poggio and Girosi, 1990; Luo and Wahba, 1997) and (2) understanding in what cir-
cumstances the Nystrom approximation would be expected to provide a good approximation
to exact GP regression.

Over recent years kernel-based predictors such as Support Vector Machines (SVMs) (Vapnik,
1995), Gaussian process predictors (see, e.g. Williams and Rasmussen, 1996; Williams and
Barber, 1998) and splines (Wahba, 1990) have become very popular. One of the main problems
with such methods is that the computational complexity required to find the solution generally
scales as O(n?), where n is the number of training examples'. This scaling has led to the proposal
of a number of methods for the approximation of the exact solution with lower complexity. In
this paper we focus on approximations to Gaussian Process (GP) regression. Examples of
approximation methods are the Subset of Regressors (SR) (Poggio and Girosi, 1990; Luo and
Wahba, 1997), the Bayesian Committee Machine (BCM) (Tresp, 2000), the Nystrém method
Williams and Seeger (2001), and work by Gibbs and MacKay (1997), Smola and Bartlett (2001)
and Rasmussen (2002).

In section 1 we present an overview of Gaussian Process regression and the Nystrom ap-
proximation. Section 2 focuses on the relationship of the Nystrom method to the Subset of
Regressors method and section 3 analyzes in what circumstances the Nystrom approximation
would be expected to yield a good approximation to exact GP regression.

'In certain cases the complexity can be better. For example for splines in 1-d, the computation required is
O(n) as the matrix concerned is banded. For SVMs the quadratic programming problem can be solved faster if
the number of support vectors is small relative to n. Also, if the dimension of the feature space Nr corresponding
to the kernel is less than n, then the complexity of the solution will scale at least as well as O(N$).



1 Gaussian process regression and the Nystrom approximation

We follow the presentation of GP regression as in Williams and Rasmussen (1996) and Williams
(1998). GP regression has a long history in various literatures, going back at least as far as
Whittle (1963).

A Gaussian process prior is placed over random functions y(x). This is achieved by specifying
a mean function p(x) (which we take to be identically zero) and a covariance function k(x,x")
which specifies (y(x)y(x’)). For n x locations x1,Xa, ... ,X, the corresponding function values

y = (y(x1),y(x2),... ,y(xn))Tdéf(yl,yg,...,yn)T are distributed as N (0, K), where K is the
n x n covariance (or Gram) matrix with entries K;; = k(x;,x;) with 4, j =1,... ,n.

We are given observations t = (¢,... ,t,)” which are assumed to be noisy versions of the
corresponding y’s, so that t; ~ N(y;,0?). Below we assume that 0? = o2 for all i. The prediction
for some new input point X, is y(X.|t) ~ N(§(xx), 0%(x.)), where

(%) = K (x) (K + o3 ) 't (1)
0% (x:) = k%, %) — kT (%) (K + 07 Ln) k() (2)

and k(x,) = (k(x1,X4),... ,k(Xn,x4))T. It is also easy to show that P(y|t) ~ N(y,02K (K +
021,)" ") where y = K(K +021,)"'t, and that §(x,) = k” (x,) K ~'y. In addition, by integrating
out y we can show that the log marginal likelihood (or evidence) is given by

1 1
log P(t]x}) = 3 log |K + 0} Lu| — St7 (K +03L,) 't - g log(27), (3)

where x7 denotes {x;}? ;. This quantity is useful in Bayesian approaches to model selec-
tion/averaging.

The major computational problem in GP regression is the need to invert K +o021, which takes
O(n?). The idea of the Nystrom approximation (Williams and Seeger, 2001) is to approximate
K with a reduced-rank matrix K. This is constructed as K = Kan;l}nKmn, where K, is
the n x m block of the original matrix K, and with similar definitions for the other blocks?.
(This approximation, presented in Williams and Seeger (2001), turned out to be an independent
derivation of a special case of the results in Frieze et al. (1998); the same approximation was
derived by yet another different route in Smola and Schélkopf (2000). Fowlkes et al. (2001)
have applied the Nystrom method to approximate the top few eigenvectors in a computer vision
problem where the matrices in question are larger than 10% x 10° in size.). The m points are
a subset of the total n points; for now we leave unspecified exactly how this subset is selected.
The Nystrom approximation then consists of replacing the matrix K by K in equations 1-3. The
complexity of the resulting computations is now O(m?n); this is achieved by use of the Woodbury
formula (see, e.g. Press et al. (1992)) and an analogous relationship for determinants. Thus the
Nystrom approximation for g(x,) is given by

Iy (x:) = Bk (x4) (t = K (K Ko + 0o Kmm)  Knnt) - (4)

Numerical stability may be improved by computing the SVD of K,,,, and using equation (11)
from Williams and Seeger (2001) to obtain gy ().

2Here and below we assume without loss of generality and for simplicity of notation that the m chosen points
occur first.



2 Relationship to SR method?

Silverman (1985, section 6.1) showed that the mean GP predictor can be obtained from a
finite-dimensional generalized linear regression model y(x) = Y., ¢;k(x,%;) with a prior ¢ ~
N (0, K~!). In the subset of regressors method (Poggio and Girosi, 1990; Luo and Wahba, 1997)
the sum over all n points is replaced by a sum over a subset m < n of the points, setting
the remaining coefficients to zero. This gives a finite-dimensional Gaussian process model with
covariance function ksp(x,x’) = kI (x) K} kn(x'), where k,,(x) = (k(x,%1),...,k(x,xn))T.
The subset of regressors method gives the following predictions:

QSR(X*) = k%(x*)(KmnKnm + UgKmm)ilenta (5)
U%R(x*) = ngﬁ(x*)(KmnKnm + UgKmm)ilkM(X*)- (6)

Equation 5 is, in our notation, equation 25 of Poggio and Girosi (1990). As Poggio and Girosi
were working in a regularization framework, they did not give an expression for the predictive
variance a% g- Clearly the Nystrom approximation is different to the SR approximation, not least
in that the Nystrom method predictor §n,(x.) is a linear combination of all n kernel functions,
not just m. However, we note that both the Nystrom method and the SR method give the same
value for the marginal likelihood, namely

1 ~ 1 ~ _ n
log Psp(t|x]) = ~5 log |K + 021,| — §tT(K +02,) 1t 3 log(27). (7)

One aspect of Silverman’s construction which carries through to the SR model is that if we
choose decaying kernel functions (such as Gaussian kernels), then far from any datapoints the
prior variance of the linear combination y(x) = Y ;" ¢;k(x,x;) will be very small; this seems to
be a peculiar prior assumption. In contrast the true GP prior can have large variance far from
the datapoints (e.g. for a stationary kernel), and typically this variance will also remain large in
the posterior, reflecting that we haven’t learned much about the function here. However, if we
apply the Nystrom approximation as stated above (by replacing K by K in equation 2) it can
happen that the predicted variance turns out embarrassingly to be negative.

In the Nystrom method the kernel matrix K was approximated so that K;; ~ f(ij =
kI ()KL kL (x;). (In fact the only approximation occurs in the block Ko-m)n—m)-) If
we also apply this approximation k(x,x') = k% (x) K-} k., (x') generally to all appearances of
the kernel function in equations 1 and 2 we obtain the SR predictors.

3 When does the Nystrom method work well?

Consider the matrix eigenvalue equation Ke; = \;e;, where the eigenvalues are ordered so that
Al > Xg... >N, and K = 2?21 )\ieie;fr. The Nystrom method replaces K with .f(, a rank-m
approximation to K. Let L =", )\ieielT, a rank-m approximation to K based on the first m
eigenvectors. In an optimistic setting we might expect that K would be close to L.

Consider the prediction y = K(K + 02I,) 't. Expanding t in the eigenbasis, so that
t=> " 7e;, weobtainy = > " %/\i/\Tia?,ei' Notice that an eigenvector e; with eigenvalue
\; such that \; < o2 is effectively zeroed out, i.e. it does not matter if it is not represented in
L. A similar conclusion can be obtained by analyzing the effect of approximating K by L on

3Much of the content of this section was initially set out in an email from Chris Williams to a number of
kernel-methods researchers on January 22 2001, in response to an email query from Grace Wahba. Prof Wahba
suggested the term subset of regressors.



m Nystrom SR just-m m-eigenvectors
100 | 34.4430 £ 43.2918 | 0.1436 £ 0.0360 | 0.2267 £ 0.0656 0.6733
200 | 1.0266 = 0.9009 | 0.1059 % 0.0141 | 0.1446 £ 0.0329 0.0844
300 | 0.1335 £ 0.0536 | 0.0885 + 0.0073 | 0.1171 £ 0.0222 0.0846
400 | 0.0871 £ 0.0071 | 0.0843 £ 0.0026 | 0.0922 %+ 0.0193 0.0845

Table 1: Comparison of the Nystrom, SR, just-m and m-eigenvectors methods on the Boston
housing data set for values of m of 100, 200, 300, 400. For the first three methods ten replica-
tions were used, with random choice of the x points; each entry shows the mean and standard
deviation of the 10 MSE results.

the calculation of the coefficient vector ¢, as described in Appendix A. Thus we would expect
that the Nystrém method might work well if A, 1 < o2. This will occur if the eigenvalues
of K decay fast enough, or if o2 is relatively large. Note that for a covariance function like
the Gaussian or squared exponential kernel (see equation 8), for fixed inputs xi,...,x, the
eigenspectrum will decay faster if the kernel is wider. The effect of the approximation on the
estimation of y is analyzed in Appendix B.

We provide an illustration of this using the Boston housing data set originally published by
Harrison and Rubinfeld (1978). This data set is publicly available at the UCI database (Blake
and Merz, 1998) and in DELVE http://www.cs.utoronto.ca/“delve. There are D = 13
predictor attributes. A split of 455 training points and 51 test points was used. The kernel
function used is the “Gaussian” or “squared-exponential” kernel plus a linear regression model,
of the form*

D D

1
k(x,x') = Z aqTqrly + vo exp(—§ de(acd —z)?). (8)
d=1 d=1

For this data set and parameter settings there are 191 eigenvalues of K which are larger than o2.

The predictive mean squared error (MSE) using a GP predictor with all 455 examples is 0.0845.
Table 1 shows the average MSE for the Nystrom, SR and the just-m methods using 10 random
choices of the m = 100, 200, 300, 400 points. (In the just-m method, a Gaussian process
predictor using only the targets corresponding to the m chosen x points was used.) Also shown
for comparison with the Nystrom method is the m-eigenvectors method where we have carried
out an eigendecomposition of K and used only the top m eigenvalues/vectors to approximate K
(as discussed in Williams and Seeger (2000)). The results show that for smaller m, the Nystrom
method performs worse than the other methods. It is uniformly worse on average than the SR
method, but does beat the just-m method for m = 400. It is close in performance to the SR
method for m = 400, in fact it outperforms the SR method on 4 out of the 10 replications.
We see that for m = 100 the m-eigenvectors method is inferior to the SR and just-m methods
but by m = 200 it is very close to the optimal performance. However, the Nystrém method
performs much worse than the m-eigenvectors method for m = 200, 300 which suggests that
important eigenvalues/vectors are not well approximated. Figure 1 shows the log eigenvalues
of K + 02I, and K+ 02I, for m = 100. (The log scale emphasizes the differences between

4The parameters wi, ... ,wi3 had values
(0.0124, 0.0008, 0.0022, 0.0509, 21.4585, 0.1914, 0.0418, 0.4933, 0.3645, 0.7684, 0.0180, 0.0059, 0.1321),  a1,... ,a13
had values (0.0083,0.0006, 0.0028,0.0015,0.0268, 0.1394, 0.0347, 0.0920, 0.0720, 0.0396, 0.0277, 0.0061, 0.0520), vo
was 0.8686 and o2 was 0.0291. These values were obtained by maximizing the marginal likelihood with respect
to the kernel parameters.



the small eigenvalues; in a plot with linear scaling the curves are superimposed.) If K were
exactly equal to L then the first 100 eigenvalues would be identical, and then there would be a
sharp drop-off. In either case, eigenvalues significantly larger than o2 are inaccurately estimated,
leading to poor predictions. We also note that the spectrum of K drops faster than that for K
this phenomenon is currently under study.

= Exact
= = Nystroem

I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Figure 1: A plot of log, eigenvalue against the index of the eigenvalue for both K + 021, (exact)
and K + 021, (Nystréom) for m = 100. Notice the drop at index 100 for the Nystrom case, due
to the rank-100 approximation. The horizontial line in the dashed plot is at log, o2.

The Nystrom method was originally tested on the UCI abalone data set using o2 = 0.05.
Analysis shows that for the kernel parameters used, 112 eigenvalues in K were larger than o2.
This is in good agreement with the experimental results that values of m of 250 or larger gave
good results, but for m = 125 performance declined quite markedly.

Our conclusions are that the quality of the Nystrom approximation for a given m will depend
on the relative rate of decay of the eigenspectrum of K in relation to o2. Note that Nystrom
theory provides an estimate of the first m eigenvalues of K by rescaling the eigenvalues of
Kmm by a factor of n/m, and that these m eigenvalues can be computed in O(m?). Hence it
should be possible to assess with reasonable efficiency when the Nystrom approximation would
be expected to hold, although the systematic under-estimation of small eigenvalues observed in
Figure 1 means that this should be treated with some caution.

The results given above apply to regression problems. However, for GP classification prob-
lems it is common to add some “jitter” to the kernel matrix (i.e. to add on €I, to K, Neal
(1998)). In this case the analysis presented above also applies.

On the Boston Housing problem the SR method does better than the Nystrom method.
However, note that on a MNIST digit binary classification task (classifying 0-4 against 5-9)
Tresp and Schwaighofer (2001) reported significantly better results for the Nystrom than the
SR method.



4 Summary

Section 2 above describes the relationship between the SR and Nystrom methods; if we use the
approximate kernel ksg(x,x') = kL (x) K} k,,(x') only when both points x and x' are in the
training set we obtain the Nystrom method, while if we use kgg(+, ) everywhere in equations 1-3
we obtain the SR method. From the experimental evidence the SR method seems to superior to
the Nystrom method. For large m there is not much difference, but the Nystrom approximation
can be quite poor for small m. There is also a difference between the Nystrom and SR methods
in terms of the predictive variance 0%(x,), especially when x, is far from any training point.

The intuition behind the Nystrom method is that it will work well when K can be well-
approximated by a rank-m matrix K. Section 3 makes this more precise, and shows that
this largely explains the observed behaviour on the Boston housing and abalone data sets.
Ongoing work focuses on variations of the Nystrém approach which would produce more accurate
approximations of the eigenvalues/vectors.

A The influence of approximating K by L on the coefficient
vector ¢

The Gaussian process predictor has the form §(x,) = kT (x,)(K + 021,) "'t = kT (x,)c, where
(K + 02I,)c = t. We consider the effect of replacing K by L, the rank-m matrix which has the
leading m eigenvalues and eigenvectors identical to those in K. We denote the eigenvalues of L
as {\I'}, where \l' = \; fori=1,... ;mand A\l =0 fori =m+1,... ,n. Let the corresponding
linear system be (L + 021,)c’ = t.

We make use of the following theorem (Theorem IT1.2.11 in Stewart and Sun (1990))

Theorem 1 Consider the linear system Ax = b for a non-singular matriz A. Let A= A+ E
be a perturbation of A. If there is a vector X that solves the perturbed system Ax = b then

[Ix — x|

< ||AT'E]. (9)
1%l
Here || - || denotes both a matriz and a vector norm, where the two norms must be consistent.
For example || - || may be the Euclidean norm for vectors and the spectral norm for matrices.

Let K +02I, = A and L + 021, = A, so that E = L — K. Using the Euclidean norm for
vectors and the spectral norm for matrices, we obtain

)\~—)\~L| |>\-—)\~L|
A*lE — | 2 1 ? ) 10
I I m?X7)\i+02 _mlaX7>\lL+02, (10)
and can therefore write
e —ell _ =M )
[l — i )\ZL o?

Using the properties of K and L, we see that this reduces to

le® —ell _ Amis
2

(12)

k] = o

As for the analysis for y given in section 3, we see that we expect this approximation to be good
when A\, 1 < 02.



B The influence of the approximations on computing y

As we have seen, using GP regression the prediction at the training points y is given by
y = K(K + 02I,) 't. If we use reduced rank matrix L in place of K we would obtain an
approximation yr7 = L(L + 021,)"'t to y. However, in the Nystrom approximation we only
use the reduced rank approximation within the factor (K + 02I,) ! and thus by analogy to
predictions at new x’s we would obtain ¥z = K(L + 021,)"'t.> Below we compare the errors
introduced by these two approximations.

As in section 3 we write t =) " | v;e;. Then we have

Y Y
A 17\ 27\
YKL=D it D e (13)
i=1 Ait oy i=mt1 7V
and
m
. Yidi
yLr = e 14
P A +Ug ! ( )
Thus
n 2 n 4
P i Ai 2 A;
=l -sill = Y (53 a) = Xt O
iz;—l ity oy i:%;-l Lou(Xi +0p)?
and
Err= v —v 2 _ 2 N 16
LL “y YLLH Z Yi (>\1, +0_2)2 ( )
1=m—+1
The ratio of the ith terms in these error expansions (i =m+1,... ,n) is
E: A
Bier, _ (_2> . (17)
Ef os

Thus we see that if A\, 1 < 02 then the Nystrom-type approximation will give a more accurate
estimate of y than the simple reduced rank approximation.
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