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tA number of methods for speeding up Gaussian Pro
ess (GP) predi
tion have been pro-posed, in
luding the Nystr�om method of Williams and Seeger (2001). In this paper wefo
us on two issues (1) the relationship of the Nystr�om method to the Subset of Regressorsmethod (Poggio and Girosi, 1990; Luo and Wahba, 1997) and (2) understanding in what 
ir-
umstan
es the Nystr�om approximation would be expe
ted to provide a good approximationto exa
t GP regression.Over re
ent years kernel-based predi
tors su
h as Support Ve
tor Ma
hines (SVMs) (Vapnik,1995), Gaussian pro
ess predi
tors (see, e.g. Williams and Rasmussen, 1996; Williams andBarber, 1998) and splines (Wahba, 1990) have be
ome very popular. One of the main problemswith su
h methods is that the 
omputational 
omplexity required to �nd the solution generallys
ales as O(n3), where n is the number of training examples1. This s
aling has led to the proposalof a number of methods for the approximation of the exa
t solution with lower 
omplexity. Inthis paper we fo
us on approximations to Gaussian Pro
ess (GP) regression. Examples ofapproximation methods are the Subset of Regressors (SR) (Poggio and Girosi, 1990; Luo andWahba, 1997), the Bayesian Committee Ma
hine (BCM) (Tresp, 2000), the Nystr�om methodWilliams and Seeger (2001), and work by Gibbs and Ma
Kay (1997), Smola and Bartlett (2001)and Rasmussen (2002).In se
tion 1 we present an overview of Gaussian Pro
ess regression and the Nystr�om ap-proximation. Se
tion 2 fo
uses on the relationship of the Nystr�om method to the Subset ofRegressors method and se
tion 3 analyzes in what 
ir
umstan
es the Nystr�om approximationwould be expe
ted to yield a good approximation to exa
t GP regression.1In 
ertain 
ases the 
omplexity 
an be better. For example for splines in 1-d, the 
omputation required isO(n) as the matrix 
on
erned is banded. For SVMs the quadrati
 programming problem 
an be solved faster ifthe number of support ve
tors is small relative to n. Also, if the dimension of the feature spa
e NF 
orrespondingto the kernel is less than n, then the 
omplexity of the solution will s
ale at least as well as O(N3F ).1



1 Gaussian pro
ess regression and the Nystr�om approximationWe follow the presentation of GP regression as in Williams and Rasmussen (1996) and Williams(1998). GP regression has a long history in various literatures, going ba
k at least as far asWhittle (1963).A Gaussian pro
ess prior is pla
ed over random fun
tions y(x). This is a
hieved by spe
ifyinga mean fun
tion �(x) (whi
h we take to be identi
ally zero) and a 
ovarian
e fun
tion k(x;x0)whi
h spe
i�es hy(x)y(x0)i. For n x lo
ations x1;x2; : : : ;xn the 
orresponding fun
tion valuesy = (y(x1); y(x2); : : : ; y(xn))T def= (y1; y2; : : : ; yn)T are distributed as N(0;K), where K is then� n 
ovarian
e (or Gram) matrix with entries Kij = k(xi;xj) with i; j = 1; : : : ; n.We are given observations t = (t1; : : : ; tn)T whi
h are assumed to be noisy versions of the
orresponding y's, so that ti � N(yi; �2i ). Below we assume that �2i = �2� for all i. The predi
tionfor some new input point x� is y(x�jt) � N(ŷ(x�); �2(x�)), whereŷ(x�) = kT (x�)(K + �2�In)�1t; (1)�2(x�) = k(x�;x�)� kT (x�)(K + �2�In)�1k(x�) (2)and k(x�) = (k(x1;x�); : : : ; k(xn;x�))T . It is also easy to show that P (yjt) � N(ŷ; �2�K(K +�2�In)�1) where ŷ = K(K+�2�In)�1t, and that ŷ(x�) = kT (x�)K�1ŷ. In addition, by integratingout y we 
an show that the log marginal likelihood (or eviden
e) is given bylogP (tjxn1 ) = �12 log jK + �2�Inj � 12tT (K + �2�In)�1t� n2 log(2�); (3)where xn1 denotes fxigni=1. This quantity is useful in Bayesian approa
hes to model sele
-tion/averaging.The major 
omputational problem in GP regression is the need to invertK+�2�In whi
h takesO(n3). The idea of the Nystr�om approximation (Williams and Seeger, 2001) is to approximateK with a redu
ed-rank matrix ~K. This is 
onstru
ted as ~K = KnmK�1mmKmn, where Knm isthe n � m blo
k of the original matrix K, and with similar de�nitions for the other blo
ks2.(This approximation, presented in Williams and Seeger (2001), turned out to be an independentderivation of a spe
ial 
ase of the results in Frieze et al. (1998); the same approximation wasderived by yet another di�erent route in Smola and S
h�olkopf (2000). Fowlkes et al. (2001)have applied the Nystr�om method to approximate the top few eigenve
tors in a 
omputer visionproblem where the matri
es in question are larger than 106 � 106 in size.). The m points area subset of the total n points; for now we leave unspe
i�ed exa
tly how this subset is sele
ted.The Nystr�om approximation then 
onsists of repla
ing the matrix K by ~K in equations 1-3. The
omplexity of the resulting 
omputations is now O(m2n); this is a
hieved by use of the Woodburyformula (see, e.g. Press et al. (1992)) and an analogous relationship for determinants. Thus theNystr�om approximation for ŷ(x�) is given byŷNy(x�) = �kT (x�) �t�Knm(KmnKnm + �2�Kmm)�1Kmnt� : (4)Numeri
al stability may be improved by 
omputing the SVD of Kmm and using equation (11)from Williams and Seeger (2001) to obtain ŷNy(x�).2Here and below we assume without loss of generality and for simpli
ity of notation that the m 
hosen pointso

ur �rst.
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2 Relationship to SR method3Silverman (1985, se
tion 6.1) showed that the mean GP predi
tor 
an be obtained from a�nite-dimensional generalized linear regression model y(x) = Pni=1 
ik(x;xi) with a prior 
 �N(0;K�1). In the subset of regressors method (Poggio and Girosi, 1990; Luo and Wahba, 1997)the sum over all n points is repla
ed by a sum over a subset m < n of the points, settingthe remaining 
oeÆ
ients to zero. This gives a �nite-dimensional Gaussian pro
ess model with
ovarian
e fun
tion kSR(x;x0) = kTm(x)K�1mmkm(x0), where km(x) = (k(x;x1); : : : ; k(x;xm))T .The subset of regressors method gives the following predi
tions:ŷSR(x�) = kTm(x�)(KmnKnm + �2�Kmm)�1Kmnt; (5)�2SR(x�) = �2�kTm(x�)(KmnKnm + �2�Kmm)�1km(x�): (6)Equation 5 is, in our notation, equation 25 of Poggio and Girosi (1990). As Poggio and Girosiwere working in a regularization framework, they did not give an expression for the predi
tivevarian
e �2SR. Clearly the Nystr�om approximation is di�erent to the SR approximation, not leastin that the Nystr�om method predi
tor ŷNy(x�) is a linear 
ombination of all n kernel fun
tions,not just m. However, we note that both the Nystr�om method and the SR method give the samevalue for the marginal likelihood, namelylogPSR(tjxn1 ) = �12 log j ~K + �2�Inj � 12tT ( ~K + �2�In)�1t� n2 log(2�): (7)One aspe
t of Silverman's 
onstru
tion whi
h 
arries through to the SR model is that if we
hoose de
aying kernel fun
tions (su
h as Gaussian kernels), then far from any datapoints theprior varian
e of the linear 
ombination y(x) =Pmi=1 
ik(x;xi) will be very small; this seems tobe a pe
uliar prior assumption. In 
ontrast the true GP prior 
an have large varian
e far fromthe datapoints (e.g. for a stationary kernel), and typi
ally this varian
e will also remain large inthe posterior, re
e
ting that we haven't learned mu
h about the fun
tion here. However, if weapply the Nystr�om approximation as stated above (by repla
ing K by ~K in equation 2) it 
anhappen that the predi
ted varian
e turns out embarrassingly to be negative.In the Nystr�om method the kernel matrix K was approximated so that Kij ' ~Kij =kTm(xi)K�1mmkTm(xj). (In fa
t the only approximation o

urs in the blo
k K(n�m)(n�m).) Ifwe also apply this approximation ~k(x;x0) = kTm(x)K�1mmkm(x0) generally to all appearan
es ofthe kernel fun
tion in equations 1 and 2 we obtain the SR predi
tors.3 When does the Nystr�om method work well?Consider the matrix eigenvalue equation Kei = �iei, where the eigenvalues are ordered so that�1 � �2 : : : � �n, and K = Pni=1 �ieieTi . The Nystr�om method repla
es K with ~K, a rank-mapproximation to K. Let L =Pmi=1 �ieieTi , a rank-m approximation to K based on the �rst meigenve
tors. In an optimisti
 setting we might expe
t that ~K would be 
lose to L.Consider the predi
tion ŷ = K(K + �2�In)�1t. Expanding t in the eigenbasis, so thatt = Pni=1 
iei, we obtain ŷ = Pni=1 
i �i�i+�2� ei. Noti
e that an eigenve
tor ei with eigenvalue�i su
h that �i � �2� is e�e
tively zeroed out, i.e. it does not matter if it is not represented inL. A similar 
on
lusion 
an be obtained by analyzing the e�e
t of approximating K by L on3Mu
h of the 
ontent of this se
tion was initially set out in an email from Chris Williams to a number ofkernel-methods resear
hers on January 22 2001, in response to an email query from Gra
e Wahba. Prof Wahbasuggested the term subset of regressors. 3



m Nystr�om SR just-m m-eigenve
tors100 34.4430 � 43.2918 0.1436 � 0.0360 0.2267 � 0.0656 0.6733200 1.0266 � 0.9009 0.1059 � 0.0141 0.1446 � 0.0329 0.0844300 0.1335 � 0.0536 0.0885 � 0.0073 0.1171 � 0.0222 0.0846400 0.0871 � 0.0071 0.0843 � 0.0026 0.0922 � 0.0193 0.0845Table 1: Comparison of the Nystr�om, SR, just-m and m-eigenve
tors methods on the Bostonhousing data set for values of m of 100; 200; 300; 400. For the �rst three methods ten repli
a-tions were used, with random 
hoi
e of the x points; ea
h entry shows the mean and standarddeviation of the 10 MSE results.the 
al
ulation of the 
oeÆ
ient ve
tor 
, as des
ribed in Appendix A. Thus we would expe
tthat the Nystr�om method might work well if �m+1 � �2� . This will o

ur if the eigenvaluesof K de
ay fast enough, or if �2� is relatively large. Note that for a 
ovarian
e fun
tion likethe Gaussian or squared exponential kernel (see equation 8), for �xed inputs x1; : : : ;xn theeigenspe
trum will de
ay faster if the kernel is wider. The e�e
t of the approximation on theestimation of ŷ is analyzed in Appendix B.We provide an illustration of this using the Boston housing data set originally published byHarrison and Rubinfeld (1978). This data set is publi
ly available at the UCI database (Blakeand Merz, 1998) and in DELVE http://www.
s.utoronto.
a/~delve. There are D = 13predi
tor attributes. A split of 455 training points and 51 test points was used. The kernelfun
tion used is the \Gaussian" or \squared-exponential" kernel plus a linear regression model,of the form4 k(x;x0) = DXd=1 adxdx0d + v0 exp(�12 DXd=1wd(xd � x0d)2): (8)For this data set and parameter settings there are 191 eigenvalues of K whi
h are larger than �2� .The predi
tive mean squared error (MSE) using a GP predi
tor with all 455 examples is 0:0845.Table 1 shows the average MSE for the Nystr�om, SR and the just-m methods using 10 random
hoi
es of the m = 100; 200; 300; 400 points. (In the just-m method, a Gaussian pro
esspredi
tor using only the targets 
orresponding to the m 
hosen x points was used.) Also shownfor 
omparison with the Nystr�om method is the m-eigenve
tors method where we have 
arriedout an eigende
omposition of K and used only the top m eigenvalues/ve
tors to approximate K(as dis
ussed in Williams and Seeger (2000)). The results show that for smaller m, the Nystr�ommethod performs worse than the other methods. It is uniformly worse on average than the SRmethod, but does beat the just-m method for m = 400. It is 
lose in performan
e to the SRmethod for m = 400, in fa
t it outperforms the SR method on 4 out of the 10 repli
ations.We see that for m = 100 the m-eigenve
tors method is inferior to the SR and just-m methodsbut by m = 200 it is very 
lose to the optimal performan
e. However, the Nystr�om methodperforms mu
h worse than the m-eigenve
tors method for m = 200; 300 whi
h suggests thatimportant eigenvalues/ve
tors are not well approximated. Figure 1 shows the log eigenvaluesof K + �2�In and ~K + �2�In for m = 100. (The log s
ale emphasizes the di�eren
es between4The parameters w1; : : : ; w13 had values(0:0124; 0:0008; 0:0022; 0:0509; 21:4585; 0:1914; 0:0418; 0:4933; 0:3645; 0:7684; 0:0180; 0:0059; 0:1321), a1; : : : ; a13had values (0:0083; 0:0006; 0:0028; 0:0015; 0:0268; 0:1394; 0:0347; 0:0920; 0:0720; 0:0396; 0:0277; 0:0061; 0:0520), v0was 0:8686 and �2� was 0:0291. These values were obtained by maximizing the marginal likelihood with respe
tto the kernel parameters. 4



the small eigenvalues; in a plot with linear s
aling the 
urves are superimposed.) If ~K wereexa
tly equal to L then the �rst 100 eigenvalues would be identi
al, and then there would be asharp drop-o�. In either 
ase, eigenvalues signi�
antly larger than �2� are ina

urately estimated,leading to poor predi
tions. We also note that the spe
trum of ~K drops faster than that for K;this phenomenon is 
urrently under study.
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Figure 1: A plot of loge eigenvalue against the index of the eigenvalue for both K+�2�In (exa
t)and ~K + �2�In (Nystr�om) for m = 100. Noti
e the drop at index 100 for the Nystr�om 
ase, dueto the rank-100 approximation. The horizontial line in the dashed plot is at loge �2� .The Nystr�om method was originally tested on the UCI abalone data set using �2� = 0:05.Analysis shows that for the kernel parameters used, 112 eigenvalues in K were larger than �2� .This is in good agreement with the experimental results that values of m of 250 or larger gavegood results, but for m = 125 performan
e de
lined quite markedly.Our 
on
lusions are that the quality of the Nystr�om approximation for a givenm will dependon the relative rate of de
ay of the eigenspe
trum of K in relation to �2� . Note that Nystr�omtheory provides an estimate of the �rst m eigenvalues of K by res
aling the eigenvalues ofKmm by a fa
tor of n=m, and that these m eigenvalues 
an be 
omputed in O(m3). Hen
e itshould be possible to assess with reasonable eÆ
ien
y when the Nystr�om approximation wouldbe expe
ted to hold, although the systemati
 under-estimation of small eigenvalues observed inFigure 1 means that this should be treated with some 
aution.The results given above apply to regression problems. However, for GP 
lassi�
ation prob-lems it is 
ommon to add some \jitter" to the kernel matrix (i.e. to add on �In to K, Neal(1998)). In this 
ase the analysis presented above also applies.On the Boston Housing problem the SR method does better than the Nystr�om method.However, note that on a MNIST digit binary 
lassi�
ation task (
lassifying 0-4 against 5-9)Tresp and S
hwaighofer (2001) reported signi�
antly better results for the Nystr�om than theSR method.
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4 SummarySe
tion 2 above des
ribes the relationship between the SR and Nystr�om methods; if we use theapproximate kernel kSR(x;x0) = kTm(x)K�1mmkm(x0) only when both points x and x0 are in thetraining set we obtain the Nystr�om method, while if we use kSR(�; �) everywhere in equations 1-3we obtain the SR method. From the experimental eviden
e the SR method seems to superior tothe Nystr�om method. For large m there is not mu
h di�eren
e, but the Nystr�om approximation
an be quite poor for small m. There is also a di�eren
e between the Nystr�om and SR methodsin terms of the predi
tive varian
e �2(x�), espe
ially when x� is far from any training point.The intuition behind the Nystr�om method is that it will work well when K 
an be well-approximated by a rank-m matrix ~K. Se
tion 3 makes this more pre
ise, and shows thatthis largely explains the observed behaviour on the Boston housing and abalone data sets.Ongoing work fo
uses on variations of the Nystr�om approa
h whi
h would produ
e more a

urateapproximations of the eigenvalues/ve
tors.A The in
uen
e of approximating K by L on the 
oeÆ
ientve
tor 
The Gaussian pro
ess predi
tor has the form ŷ(x�) = kT (x�)(K + �2�In)�1t = kT (x�)
, where(K + �2�In)
 = t. We 
onsider the e�e
t of repla
ing K by L, the rank-m matrix whi
h has theleading m eigenvalues and eigenve
tors identi
al to those in K. We denote the eigenvalues of Las f�Li g, where �Li = �i for i = 1; : : : ;m and �Li = 0 for i = m+1; : : : ; n. Let the 
orrespondinglinear system be (L+ �2�In)
L = t.We make use of the following theorem (Theorem III.2.11 in Stewart and Sun (1990))Theorem 1 Consider the linear system Ax = b for a non-singular matrix A. Let ~A = A+ Ebe a perturbation of A. If there is a ve
tor ~x that solves the perturbed system ~A~x = b thenjjx� ~xjjjj~xjj � jjA�1Ejj: (9)Here jj � jj denotes both a matrix and a ve
tor norm, where the two norms must be 
onsistent.For example jj � jj may be the Eu
lidean norm for ve
tors and the spe
tral norm for matri
es.Let K + �2�In = A and L + �2�In = ~A, so that E = L �K. Using the Eu
lidean norm forve
tors and the spe
tral norm for matri
es, we obtainjjA�1Ejj = maxi j�i � �Li j�i + �2 � maxi j�i � �Li j�Li + �2 ; (10)and 
an therefore write jj
L � 
jjjj
Ljj � maxi j�i � �Li j�Li + �2 : (11)Using the properties of K and L, we see that this redu
es tojj
L � 
jjjj
Ljj � �m+1�2 : (12)As for the analysis for ŷ given in se
tion 3, we see that we expe
t this approximation to be goodwhen �m+1 � �2� . 6



B The in
uen
e of the approximations on 
omputing ŷAs we have seen, using GP regression the predi
tion at the training points ŷ is given byŷ = K(K + �2�In)�1t. If we use redu
ed rank matrix L in pla
e of K we would obtain anapproximation ŷLL = L(L + �2�In)�1t to ŷ. However, in the Nystr�om approximation we onlyuse the redu
ed rank approximation within the fa
tor (K + �2�In)�1 and thus by analogy topredi
tions at new x's we would obtain ŷKL = K(L+ �2�In)�1t.5 Below we 
ompare the errorsintrodu
ed by these two approximations.As in se
tion 3 we write t =Pni=1 
iei. Then we haveŷKL = mXi=1 
i�i�i + �2� ei + nXi=m+1 
i�i�2� ei (13)and ŷLL = mXi=1 
i�i�i + �2� ei: (14)Thus EKL = kŷ � ŷKLk2 = nXi=m+1 
2i � �i�i + �2� � �i�2��2 = nXi=m+1 
2i �4i�4�(�i + �2�)2 (15)and ELL = kŷ � ŷLLk2 = nXi=m+1 
2i �2i(�i + �2)2 : (16)The ratio of the ith terms in these error expansions (i = m+ 1; : : : ; n) isEiKLEiLL = � �i�2��2 : (17)Thus we see that if �m+1 < �2� then the Nystr�om-type approximation will give a more a

urateestimate of ŷ than the simple redu
ed rank approximation.Referen
esBlake, C. L. and Merz, C. J. (1998). UCI repository of ma
hine learning databases.http://www.i
s.u
i.edu/�mlearn/MLRepository.html.Fowlkes, C., Belongie, S., and Malik, J. (2001). EÆ
ient Spatiotemporal Grouping Using theNystr�om Method. In Pro
eedings of the IEEE Conferen
e on Computer Vision and PatternRe
ognition, CVPR 2001.5Williams and Seeger (2001) did not de�ne exa
tly how predi
tions would be made at the training x's. Theequivalen
e of the SR marginal likelihood (7) with Nystr�om marginal likelihood would imply that the Nystr�ompredi
tions at the training points would be equivalent to ŷSR. However, the form K( ~K + �2�In)�1t is analagousto predi
tions at new test x's. 7
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