
Observations on the Nystr�om Methodfor Gaussian Proess PreditionChristopher K. I. Williams Carl Edward RasmussenDivision of Informatis Gatsby Computational Neurosiene UnitUniversity of Edinburgh University College London.k.i.williams�ed.a.uk edward�gatsby.ul.a.ukAnton Shwaighofer Volker TrespInstitute for Theoretial Computer Siene Siemens Corporate TehnologyTehnishe Universit�at Graz Department of Information and Communiationsanton.shwaighofer�gmx.net Volker.Tresp�mhp.siemens.deJuly 17, 2002AbstratA number of methods for speeding up Gaussian Proess (GP) predition have been pro-posed, inluding the Nystr�om method of Williams and Seeger (2001). In this paper wefous on two issues (1) the relationship of the Nystr�om method to the Subset of Regressorsmethod (Poggio and Girosi, 1990; Luo and Wahba, 1997) and (2) understanding in what ir-umstanes the Nystr�om approximation would be expeted to provide a good approximationto exat GP regression.Over reent years kernel-based preditors suh as Support Vetor Mahines (SVMs) (Vapnik,1995), Gaussian proess preditors (see, e.g. Williams and Rasmussen, 1996; Williams andBarber, 1998) and splines (Wahba, 1990) have beome very popular. One of the main problemswith suh methods is that the omputational omplexity required to �nd the solution generallysales as O(n3), where n is the number of training examples1. This saling has led to the proposalof a number of methods for the approximation of the exat solution with lower omplexity. Inthis paper we fous on approximations to Gaussian Proess (GP) regression. Examples ofapproximation methods are the Subset of Regressors (SR) (Poggio and Girosi, 1990; Luo andWahba, 1997), the Bayesian Committee Mahine (BCM) (Tresp, 2000), the Nystr�om methodWilliams and Seeger (2001), and work by Gibbs and MaKay (1997), Smola and Bartlett (2001)and Rasmussen (2002).In setion 1 we present an overview of Gaussian Proess regression and the Nystr�om ap-proximation. Setion 2 fouses on the relationship of the Nystr�om method to the Subset ofRegressors method and setion 3 analyzes in what irumstanes the Nystr�om approximationwould be expeted to yield a good approximation to exat GP regression.1In ertain ases the omplexity an be better. For example for splines in 1-d, the omputation required isO(n) as the matrix onerned is banded. For SVMs the quadrati programming problem an be solved faster ifthe number of support vetors is small relative to n. Also, if the dimension of the feature spae NF orrespondingto the kernel is less than n, then the omplexity of the solution will sale at least as well as O(N3F ).1



1 Gaussian proess regression and the Nystr�om approximationWe follow the presentation of GP regression as in Williams and Rasmussen (1996) and Williams(1998). GP regression has a long history in various literatures, going bak at least as far asWhittle (1963).A Gaussian proess prior is plaed over random funtions y(x). This is ahieved by speifyinga mean funtion �(x) (whih we take to be identially zero) and a ovariane funtion k(x;x0)whih spei�es hy(x)y(x0)i. For n x loations x1;x2; : : : ;xn the orresponding funtion valuesy = (y(x1); y(x2); : : : ; y(xn))T def= (y1; y2; : : : ; yn)T are distributed as N(0;K), where K is then� n ovariane (or Gram) matrix with entries Kij = k(xi;xj) with i; j = 1; : : : ; n.We are given observations t = (t1; : : : ; tn)T whih are assumed to be noisy versions of theorresponding y's, so that ti � N(yi; �2i ). Below we assume that �2i = �2� for all i. The preditionfor some new input point x� is y(x�jt) � N(ŷ(x�); �2(x�)), whereŷ(x�) = kT (x�)(K + �2�In)�1t; (1)�2(x�) = k(x�;x�)� kT (x�)(K + �2�In)�1k(x�) (2)and k(x�) = (k(x1;x�); : : : ; k(xn;x�))T . It is also easy to show that P (yjt) � N(ŷ; �2�K(K +�2�In)�1) where ŷ = K(K+�2�In)�1t, and that ŷ(x�) = kT (x�)K�1ŷ. In addition, by integratingout y we an show that the log marginal likelihood (or evidene) is given bylogP (tjxn1 ) = �12 log jK + �2�Inj � 12tT (K + �2�In)�1t� n2 log(2�); (3)where xn1 denotes fxigni=1. This quantity is useful in Bayesian approahes to model sele-tion/averaging.The major omputational problem in GP regression is the need to invertK+�2�In whih takesO(n3). The idea of the Nystr�om approximation (Williams and Seeger, 2001) is to approximateK with a redued-rank matrix ~K. This is onstruted as ~K = KnmK�1mmKmn, where Knm isthe n � m blok of the original matrix K, and with similar de�nitions for the other bloks2.(This approximation, presented in Williams and Seeger (2001), turned out to be an independentderivation of a speial ase of the results in Frieze et al. (1998); the same approximation wasderived by yet another di�erent route in Smola and Sh�olkopf (2000). Fowlkes et al. (2001)have applied the Nystr�om method to approximate the top few eigenvetors in a omputer visionproblem where the matries in question are larger than 106 � 106 in size.). The m points area subset of the total n points; for now we leave unspei�ed exatly how this subset is seleted.The Nystr�om approximation then onsists of replaing the matrix K by ~K in equations 1-3. Theomplexity of the resulting omputations is now O(m2n); this is ahieved by use of the Woodburyformula (see, e.g. Press et al. (1992)) and an analogous relationship for determinants. Thus theNystr�om approximation for ŷ(x�) is given byŷNy(x�) = �kT (x�) �t�Knm(KmnKnm + �2�Kmm)�1Kmnt� : (4)Numerial stability may be improved by omputing the SVD of Kmm and using equation (11)from Williams and Seeger (2001) to obtain ŷNy(x�).2Here and below we assume without loss of generality and for simpliity of notation that the m hosen pointsour �rst.
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2 Relationship to SR method3Silverman (1985, setion 6.1) showed that the mean GP preditor an be obtained from a�nite-dimensional generalized linear regression model y(x) = Pni=1 ik(x;xi) with a prior  �N(0;K�1). In the subset of regressors method (Poggio and Girosi, 1990; Luo and Wahba, 1997)the sum over all n points is replaed by a sum over a subset m < n of the points, settingthe remaining oeÆients to zero. This gives a �nite-dimensional Gaussian proess model withovariane funtion kSR(x;x0) = kTm(x)K�1mmkm(x0), where km(x) = (k(x;x1); : : : ; k(x;xm))T .The subset of regressors method gives the following preditions:ŷSR(x�) = kTm(x�)(KmnKnm + �2�Kmm)�1Kmnt; (5)�2SR(x�) = �2�kTm(x�)(KmnKnm + �2�Kmm)�1km(x�): (6)Equation 5 is, in our notation, equation 25 of Poggio and Girosi (1990). As Poggio and Girosiwere working in a regularization framework, they did not give an expression for the preditivevariane �2SR. Clearly the Nystr�om approximation is di�erent to the SR approximation, not leastin that the Nystr�om method preditor ŷNy(x�) is a linear ombination of all n kernel funtions,not just m. However, we note that both the Nystr�om method and the SR method give the samevalue for the marginal likelihood, namelylogPSR(tjxn1 ) = �12 log j ~K + �2�Inj � 12tT ( ~K + �2�In)�1t� n2 log(2�): (7)One aspet of Silverman's onstrution whih arries through to the SR model is that if wehoose deaying kernel funtions (suh as Gaussian kernels), then far from any datapoints theprior variane of the linear ombination y(x) =Pmi=1 ik(x;xi) will be very small; this seems tobe a peuliar prior assumption. In ontrast the true GP prior an have large variane far fromthe datapoints (e.g. for a stationary kernel), and typially this variane will also remain large inthe posterior, reeting that we haven't learned muh about the funtion here. However, if weapply the Nystr�om approximation as stated above (by replaing K by ~K in equation 2) it anhappen that the predited variane turns out embarrassingly to be negative.In the Nystr�om method the kernel matrix K was approximated so that Kij ' ~Kij =kTm(xi)K�1mmkTm(xj). (In fat the only approximation ours in the blok K(n�m)(n�m).) Ifwe also apply this approximation ~k(x;x0) = kTm(x)K�1mmkm(x0) generally to all appearanes ofthe kernel funtion in equations 1 and 2 we obtain the SR preditors.3 When does the Nystr�om method work well?Consider the matrix eigenvalue equation Kei = �iei, where the eigenvalues are ordered so that�1 � �2 : : : � �n, and K = Pni=1 �ieieTi . The Nystr�om method replaes K with ~K, a rank-mapproximation to K. Let L =Pmi=1 �ieieTi , a rank-m approximation to K based on the �rst meigenvetors. In an optimisti setting we might expet that ~K would be lose to L.Consider the predition ŷ = K(K + �2�In)�1t. Expanding t in the eigenbasis, so thatt = Pni=1 iei, we obtain ŷ = Pni=1 i �i�i+�2� ei. Notie that an eigenvetor ei with eigenvalue�i suh that �i � �2� is e�etively zeroed out, i.e. it does not matter if it is not represented inL. A similar onlusion an be obtained by analyzing the e�et of approximating K by L on3Muh of the ontent of this setion was initially set out in an email from Chris Williams to a number ofkernel-methods researhers on January 22 2001, in response to an email query from Grae Wahba. Prof Wahbasuggested the term subset of regressors. 3



m Nystr�om SR just-m m-eigenvetors100 34.4430 � 43.2918 0.1436 � 0.0360 0.2267 � 0.0656 0.6733200 1.0266 � 0.9009 0.1059 � 0.0141 0.1446 � 0.0329 0.0844300 0.1335 � 0.0536 0.0885 � 0.0073 0.1171 � 0.0222 0.0846400 0.0871 � 0.0071 0.0843 � 0.0026 0.0922 � 0.0193 0.0845Table 1: Comparison of the Nystr�om, SR, just-m and m-eigenvetors methods on the Bostonhousing data set for values of m of 100; 200; 300; 400. For the �rst three methods ten replia-tions were used, with random hoie of the x points; eah entry shows the mean and standarddeviation of the 10 MSE results.the alulation of the oeÆient vetor , as desribed in Appendix A. Thus we would expetthat the Nystr�om method might work well if �m+1 � �2� . This will our if the eigenvaluesof K deay fast enough, or if �2� is relatively large. Note that for a ovariane funtion likethe Gaussian or squared exponential kernel (see equation 8), for �xed inputs x1; : : : ;xn theeigenspetrum will deay faster if the kernel is wider. The e�et of the approximation on theestimation of ŷ is analyzed in Appendix B.We provide an illustration of this using the Boston housing data set originally published byHarrison and Rubinfeld (1978). This data set is publily available at the UCI database (Blakeand Merz, 1998) and in DELVE http://www.s.utoronto.a/~delve. There are D = 13preditor attributes. A split of 455 training points and 51 test points was used. The kernelfuntion used is the \Gaussian" or \squared-exponential" kernel plus a linear regression model,of the form4 k(x;x0) = DXd=1 adxdx0d + v0 exp(�12 DXd=1wd(xd � x0d)2): (8)For this data set and parameter settings there are 191 eigenvalues of K whih are larger than �2� .The preditive mean squared error (MSE) using a GP preditor with all 455 examples is 0:0845.Table 1 shows the average MSE for the Nystr�om, SR and the just-m methods using 10 randomhoies of the m = 100; 200; 300; 400 points. (In the just-m method, a Gaussian proesspreditor using only the targets orresponding to the m hosen x points was used.) Also shownfor omparison with the Nystr�om method is the m-eigenvetors method where we have arriedout an eigendeomposition of K and used only the top m eigenvalues/vetors to approximate K(as disussed in Williams and Seeger (2000)). The results show that for smaller m, the Nystr�ommethod performs worse than the other methods. It is uniformly worse on average than the SRmethod, but does beat the just-m method for m = 400. It is lose in performane to the SRmethod for m = 400, in fat it outperforms the SR method on 4 out of the 10 repliations.We see that for m = 100 the m-eigenvetors method is inferior to the SR and just-m methodsbut by m = 200 it is very lose to the optimal performane. However, the Nystr�om methodperforms muh worse than the m-eigenvetors method for m = 200; 300 whih suggests thatimportant eigenvalues/vetors are not well approximated. Figure 1 shows the log eigenvaluesof K + �2�In and ~K + �2�In for m = 100. (The log sale emphasizes the di�erenes between4The parameters w1; : : : ; w13 had values(0:0124; 0:0008; 0:0022; 0:0509; 21:4585; 0:1914; 0:0418; 0:4933; 0:3645; 0:7684; 0:0180; 0:0059; 0:1321), a1; : : : ; a13had values (0:0083; 0:0006; 0:0028; 0:0015; 0:0268; 0:1394; 0:0347; 0:0920; 0:0720; 0:0396; 0:0277; 0:0061; 0:0520), v0was 0:8686 and �2� was 0:0291. These values were obtained by maximizing the marginal likelihood with respetto the kernel parameters. 4



the small eigenvalues; in a plot with linear saling the urves are superimposed.) If ~K wereexatly equal to L then the �rst 100 eigenvalues would be idential, and then there would be asharp drop-o�. In either ase, eigenvalues signi�antly larger than �2� are inaurately estimated,leading to poor preditions. We also note that the spetrum of ~K drops faster than that for K;this phenomenon is urrently under study.
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Figure 1: A plot of loge eigenvalue against the index of the eigenvalue for both K+�2�In (exat)and ~K + �2�In (Nystr�om) for m = 100. Notie the drop at index 100 for the Nystr�om ase, dueto the rank-100 approximation. The horizontial line in the dashed plot is at loge �2� .The Nystr�om method was originally tested on the UCI abalone data set using �2� = 0:05.Analysis shows that for the kernel parameters used, 112 eigenvalues in K were larger than �2� .This is in good agreement with the experimental results that values of m of 250 or larger gavegood results, but for m = 125 performane delined quite markedly.Our onlusions are that the quality of the Nystr�om approximation for a givenm will dependon the relative rate of deay of the eigenspetrum of K in relation to �2� . Note that Nystr�omtheory provides an estimate of the �rst m eigenvalues of K by resaling the eigenvalues ofKmm by a fator of n=m, and that these m eigenvalues an be omputed in O(m3). Hene itshould be possible to assess with reasonable eÆieny when the Nystr�om approximation wouldbe expeted to hold, although the systemati under-estimation of small eigenvalues observed inFigure 1 means that this should be treated with some aution.The results given above apply to regression problems. However, for GP lassi�ation prob-lems it is ommon to add some \jitter" to the kernel matrix (i.e. to add on �In to K, Neal(1998)). In this ase the analysis presented above also applies.On the Boston Housing problem the SR method does better than the Nystr�om method.However, note that on a MNIST digit binary lassi�ation task (lassifying 0-4 against 5-9)Tresp and Shwaighofer (2001) reported signi�antly better results for the Nystr�om than theSR method.
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4 SummarySetion 2 above desribes the relationship between the SR and Nystr�om methods; if we use theapproximate kernel kSR(x;x0) = kTm(x)K�1mmkm(x0) only when both points x and x0 are in thetraining set we obtain the Nystr�om method, while if we use kSR(�; �) everywhere in equations 1-3we obtain the SR method. From the experimental evidene the SR method seems to superior tothe Nystr�om method. For large m there is not muh di�erene, but the Nystr�om approximationan be quite poor for small m. There is also a di�erene between the Nystr�om and SR methodsin terms of the preditive variane �2(x�), espeially when x� is far from any training point.The intuition behind the Nystr�om method is that it will work well when K an be well-approximated by a rank-m matrix ~K. Setion 3 makes this more preise, and shows thatthis largely explains the observed behaviour on the Boston housing and abalone data sets.Ongoing work fouses on variations of the Nystr�om approah whih would produe more aurateapproximations of the eigenvalues/vetors.A The inuene of approximating K by L on the oeÆientvetor The Gaussian proess preditor has the form ŷ(x�) = kT (x�)(K + �2�In)�1t = kT (x�), where(K + �2�In) = t. We onsider the e�et of replaing K by L, the rank-m matrix whih has theleading m eigenvalues and eigenvetors idential to those in K. We denote the eigenvalues of Las f�Li g, where �Li = �i for i = 1; : : : ;m and �Li = 0 for i = m+1; : : : ; n. Let the orrespondinglinear system be (L+ �2�In)L = t.We make use of the following theorem (Theorem III.2.11 in Stewart and Sun (1990))Theorem 1 Consider the linear system Ax = b for a non-singular matrix A. Let ~A = A+ Ebe a perturbation of A. If there is a vetor ~x that solves the perturbed system ~A~x = b thenjjx� ~xjjjj~xjj � jjA�1Ejj: (9)Here jj � jj denotes both a matrix and a vetor norm, where the two norms must be onsistent.For example jj � jj may be the Eulidean norm for vetors and the spetral norm for matries.Let K + �2�In = A and L + �2�In = ~A, so that E = L �K. Using the Eulidean norm forvetors and the spetral norm for matries, we obtainjjA�1Ejj = maxi j�i � �Li j�i + �2 � maxi j�i � �Li j�Li + �2 ; (10)and an therefore write jjL � jjjjLjj � maxi j�i � �Li j�Li + �2 : (11)Using the properties of K and L, we see that this redues tojjL � jjjjLjj � �m+1�2 : (12)As for the analysis for ŷ given in setion 3, we see that we expet this approximation to be goodwhen �m+1 � �2� . 6



B The inuene of the approximations on omputing ŷAs we have seen, using GP regression the predition at the training points ŷ is given byŷ = K(K + �2�In)�1t. If we use redued rank matrix L in plae of K we would obtain anapproximation ŷLL = L(L + �2�In)�1t to ŷ. However, in the Nystr�om approximation we onlyuse the redued rank approximation within the fator (K + �2�In)�1 and thus by analogy topreditions at new x's we would obtain ŷKL = K(L+ �2�In)�1t.5 Below we ompare the errorsintrodued by these two approximations.As in setion 3 we write t =Pni=1 iei. Then we haveŷKL = mXi=1 i�i�i + �2� ei + nXi=m+1 i�i�2� ei (13)and ŷLL = mXi=1 i�i�i + �2� ei: (14)Thus EKL = kŷ � ŷKLk2 = nXi=m+1 2i � �i�i + �2� � �i�2��2 = nXi=m+1 2i �4i�4�(�i + �2�)2 (15)and ELL = kŷ � ŷLLk2 = nXi=m+1 2i �2i(�i + �2)2 : (16)The ratio of the ith terms in these error expansions (i = m+ 1; : : : ; n) isEiKLEiLL = � �i�2��2 : (17)Thus we see that if �m+1 < �2� then the Nystr�om-type approximation will give a more aurateestimate of ŷ than the simple redued rank approximation.ReferenesBlake, C. L. and Merz, C. J. (1998). UCI repository of mahine learning databases.http://www.is.ui.edu/�mlearn/MLRepository.html.Fowlkes, C., Belongie, S., and Malik, J. (2001). EÆient Spatiotemporal Grouping Using theNystr�om Method. In Proeedings of the IEEE Conferene on Computer Vision and PatternReognition, CVPR 2001.5Williams and Seeger (2001) did not de�ne exatly how preditions would be made at the training x's. Theequivalene of the SR marginal likelihood (7) with Nystr�om marginal likelihood would imply that the Nystr�ompreditions at the training points would be equivalent to ŷSR. However, the form K( ~K + �2�In)�1t is analagousto preditions at new test x's. 7
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