Bayesian Reinforcement Learning

Rowan McAllister and Karolina Dziugaite

MLG RCC

21 March 2013
Outline

1 Introduction
 - Bayesian Reinforcement Learning
 - Motivating Problem

2 Planning in MDP Environments
 - Markov Decision Process
 - Action-Values

3 Reinforcement Learning
 - Q-learning

4 Bayesian Reinforcement Learning (Model-Based)
 - Bayesian RL as a POMDP
 - Bayesian Inference on Beliefs
 - Value Optimisation
Bayesian Reinforcement Learning - what is it?

Bayesian RL is about capturing and dealing with uncertainty, where ‘classic RL’ does not. Research in Bayesian RL includes modelling the transition-function, or value-function, policy, reward function probabilistically.

Differences over ‘classic RL’:

- Resolves exploitation & exploration dilemma by planning in belief space.
- Computationally intractable in general, but approximations exist.
- Uses and chooses samples to learn from efficiently, suitable when sample cost is high, e.g. robot motion.

many slides use ideas from Goel’s MS&E235 lecture, Poupart’s ICML 2007 tutorial, Littman’s MLSS ‘09 slides
Bayesian Reinforcement Learning - what is it?

Bayesian RL is about capturing and dealing with uncertainty, where ‘classic RL’ does not. Research in Bayesian RL includes modelling the transition-function, or value-function, policy, reward function probabilistically.

Differences over ‘classic RL’:

- Resolves exploitation & exploration dilemma by planning in belief space.
- Computationally intractable in general, but approximations exist.
- Uses and chooses samples to learn from efficiently, suitable when sample cost is high, e.g. robot motion.

many slides use ideas from Goel’s MS&E235 lecture, Poupart’s ICML 2007 tutorial, Littman’s MLSS ‘09 slides
Motivating Problem: Two armed bandit (1)

- You have n tokens, which may be used in one of two slot machines.
Motivating Problem: Two armed bandit (1)

- You have n tokens, which may be used in one of two slot machines.
- The i'th machine returns 0 or 1 based on a fixed yet unknown probability $p_i \in [0, 1]$
Motivating Problem: Two armed bandit (1)

- You have \(n \) tokens, which may be used in one of two slot machines.
- The \(i \)'th machine returns $0 or $1 based on a fixed yet unknown probability \(p_i \in [0, 1] \)
- Objective: maximise your winnings.
Motivating Problem: Two armed bandit (2)

As you play, you record what you see, formatted as (\#wins, \#losses). Your current records shows:
Arm 1: (1,2)
Arm 2: (21,19)
Motivating Problem: Two armed bandit (2)

- As you play, you record what you see, formatted as (#wins, #losses). Your current records shows:
 Arm 1: (1,2)
 Arm 2: (21,19)

- Which machine would you play next if you have 1 token remaining?
Motivating Problem: Two armed bandit (2)

- As you play, you record what you see, formatted as (#wins, #losses).
 Your current records shows:
 Arm 1: (1,2)
 Arm 2: (21,19)

- Which machine would you play next if you have 1 token remaining?

- How about if you have 100 tokens remaining?
Motivating Problem: Two armed bandit (3)

‘Classic’ Reinforcement Learning mentality: Two action classes (not mutually exclusive):

Exploit
Select action of greatest expected return given current belief on reward probabilities. i.e. select best action according to best guess of underlying MDP: MLE or MAP → select Arm #2!

Explore
Select random action to increase our certainty of underlying MDP. This may lead to higher returns when exploiting in the future.
Motivating Problem: Two armed bandit (3)

‘Classic’ Reinforcement Learning mentality:
Two action classes (not mutually exclusive):

Exploit
Select action of greatest expected return given current belief on reward probabilities. i.e. select best action according to best guess of underlying MDP: MLE or MAP → select Arm #2!

Explore
Select random action to increase our certainty of underlying MDP. This may lead to higher returns when exploiting in the future.

→ Dilemma (?): how to choose between exploitation and exploration? Seems like comparing apples and oranges...
Many heuristics exist, but is there a principled approach?
Motivating Problem: Two armed bandit (4)

Steps towards resolving ‘exploitation’ vs ‘exploration’:
model future beliefs in Arm 1 (#wins, #losses):

(3,2)
\[\frac{1}{2} \]

(2,2)
\[\frac{1}{2} \]
\[\frac{1}{3} \]

(1,2)
\[\frac{2}{3} \]

(2,3)

(1,3)
Note: value of exploration depends on how much we can exploit that information gain later, i.e. # tokens remaining. Alternatively, with infinite tokens and discount rate \(\gamma \), effective horizon \(\propto -1 \log(\gamma) \).
Motivating Problem: Two armed bandit (4)

Steps towards resolving ‘exploitation’ vs ‘exploration’:
model future beliefs in Arm 1 (#wins, #losses):

\[(3,2) \leftarrow \text{higher expectation of rewards in this potential future!}\]

\[(1,2) \quad (2,2) \quad (2,3) \]

\[\frac{1}{3} \quad \frac{1}{2} \quad \frac{1}{2}\]

\[\frac{2}{3}\]

\[(1,3)\]
Motivating Problem: Two armed bandit (4)

Steps towards resolving ‘exploitation’ vs ‘exploration’:
model future beliefs in Arm 1 (#wins, #losses):

1. Higher expectation of rewards in this potential future!

2. We can plan in this space, and compute expected additional rewards gained from exploratory actions.
Motivating Problem: Two armed bandit (4)

Steps towards resolving ‘exploitation’ vs ‘exploration’:
model future beliefs in Arm 1 (#wins, #losses):

\[
\begin{align*}
(1,2) & \xrightarrow{\frac{2}{3}} (1,3) \\
(2,2) & \xrightarrow{\frac{1}{2}} (3,2) \\
(2,3) & \xrightarrow{\frac{1}{3}} (2,2)
\end{align*}
\]

← higher expectation of rewards in this potential future!

we can plan in this space, and compute expected additional rewards gained from exploratory actions.

Note: value of exploration depends on how much we can exploit that information gain later, i.e. # tokens remaining. Alternatively, with infinite tokens and discount rate \(\gamma \) on future rewards, effective horizon \(\propto \frac{-1}{\log(\gamma)} \).
Planning in MDP Environments
Planning overview

- Environment: a *familiar* MDP (we can simulate interaction with the world accurately).
- Goal: compute a policy that maximises expected long-term discounted rewards over a horizon (episodic or continual).
Markov Decision Process

\(S \), set of states \(s \)

\(A \), set of action \(a \)

\(\pi : S \rightarrow A \), the policy, a mapping from state \(s \) to action \(a \)

\(T(s, a, s') = P(s'|s, a) \in [0, 1] \), transition probability, that state \(s' \) is reached by executing action \(a \) from state \(s \)

\(R(s, a, s') \in \mathbb{R} \), a reward distribution. An agent receives a reward drawn from this when taking action \(a \) from state \(s \) reaching state \(s' \)
Markov Decision Process

\(\mathcal{S} \), set of states \(s \)

\(\mathcal{A} \), set of action \(a \)

\(\pi : \mathcal{S} \rightarrow \mathcal{A} \), the policy, a mapping from state \(s \) to action \(a \)

System dynamics

\(T(s, a, s') = P(s' | s, a) \in [0, 1] \), transition probability, that state \(s' \) is reached by executing action \(a \) from state \(s \)

\(R(s, a, s') \in \mathbb{R} \), a reward distribution. An agent receives a reward drawn from this when taking action \(a \) from state \(s \) reaching state \(s' \)
Robot planning example

Goal: traverse to human-specified goal location ‘safely’

States: physical space \((x, y, yaw)\)

Action: move forward, left, spin anticlockwise, etc.

Rewards: ‘dangerousness’ of each \((s, a)\) motion primitives

(a) Path Planning Scenario
(b) Rewards
(c) Policy
Rewards

A measure of *desirability* of the agent being in a particular state. Use to encode *what* we want the agent to achieve, not *how*.

example: Agent learns to play chess:
Don’t reward agent for capturing opponent’s queen, only for winning.
(don’t want agent discovering novel ways to capture queens at expense of losing games!)
Rewards

A measure of *desirability* of the agent being in a particular state. Use to encode *what* we want the agent to achieve, not *how*.

example: Agent learns to play chess:
Don’t reward agent for capturing opponent’s queen, only for winning.
(don’t want agent discovering novel ways to capture queens at expense of losing games!)

Caveat: Reward *shaping*, the modification of reward function to give partial credit without affecting the optimal policy (much), can be important in practice.
Optimal Action-Value Function

Optimal action value: expectation of all future discounted rewards from taking action a from state s, assuming subsequent actions chosen by the optimal policy π^*. It can be re-expressed as a recursive relationship.

$$Q^*(s, a) = E_{\pi^*}\left\{ \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) | s_0 = s, a_0 = a \right\}$$

$$= E_{\pi^*}\left\{ R(s_0, a_0) + \gamma \sum_{t=0}^{\infty} \gamma^t R(s_{t+1}, a_{t+1}) | s_0 = s, a_0 = a \right\}$$

$$= \bar{R}(s, a) + \gamma E_{\pi^*}\left\{ \max_{a'} Q^*(s_{t+1}, a') | s_0 = s, a_0 = a \right\}$$

$$= \bar{R}(s, a) + \gamma \sum_{s'} T(s, a, s')[\max_{a'} Q^*(s', a')]$$
Planning in MDP Environments

Action-Value Optimisation

Need to satisfy the Bellman Optimality Equation:

$$Q^*(s, a) = \bar{R}(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q^*(s', a')$$

$$\pi^* = \arg\max_a Q^*(s, a)$$

An algorithm to compute $Q^*(s, a)$ is value iteration: for all $s \in S$ repeat until convergence:

$$Q_{t+1}(s, a) \leftarrow \bar{R}(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q_t(s', a')$$
Reinforcement Learning
Reinforcement learning overview

- **Environment**: an *unfamiliar* MDP \(T(s, a, s') \) and/or \(\tilde{R}(s, a) \) unknown) and possibly dynamic / changing.

- **Consequence**: agent cannot simulate interaction with world in advance, to predict future outcomes. Instead, the optimal policy is learned through sequential interaction and evaluative feedback.

- **Goal**: same as planning (compute a policy that maximises expected long-term discounted rewards over a horizon).
Q-learning

With **known** environmental models $\bar{R}(s, a)$ and $T(s, a, s')$, Q's computed iteratively using value iteration (e.g. planning): :

$$Q_{t+1}(s, a) \leftarrow \bar{R}(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q_t(s', a')$$

Q-learning

With **unknown** environmental models, Q’s computed as *point estimates*: on experience $\{s_t, a_t, r_t, s_{t+1}\}$:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t (R_{t+1} + \gamma \max_{a'} (Q(s_{t+1}, a')) - Q(s_t, a_t))$$

if $\{s, a\}$ visited infinitely often, $\sum_t \alpha_t = \infty$, $\sum_t \alpha_t^2 < \infty$, then Q will converge to Q^* (independent of policy being followed!).
When to explore?: Heuristic approach to action selection

A couple heuristic examples agents use for action selection, to mostly exploit and sometimes and explore:

- **ϵ-greedy:**
 \[
 \pi(a|s) = \begin{cases}
 (1 - \epsilon), & \text{if } a = \text{argmax}_a Q_t(s, a) \\
 \epsilon/|A|, & \text{if } a \neq \text{argmax}_a Q_t(s, a)
 \end{cases}
 \]
 e.g. $\epsilon = 5\%$

- **Softmax:**
 \[
 \pi(a|s) = \frac{e^{Q_t(s,a)/\tau}}{\sum_i e^{Q_t(s,i)/\tau}}
 \]
 i.e. biased towards more fruitful actions. τ is a crank for more frequent exploration.
When to explore?: Heuristic approach to action selection

A couple heuristic examples agents use for action selection, to mostly exploit and sometimes and explore:

- ϵ-greedy:

 $$\pi(a|s) = \begin{cases}
 (1 - \epsilon), & \text{if } a = \arg\max_a Q_t(s, a) \\
 \epsilon/|A|, & \text{if } a \neq \arg\max_a Q_t(s, a)
 \end{cases}$$

 e.g. $\epsilon = 5\%$

- Softmax: $\pi(a|s) = \frac{e^{Q_t(s,a)/\tau}}{\sum_i e^{Q_t(s,i)/\tau}}$

 i.e. biased towards more fruitful actions. τ is a crank for more frequent exploration.

Note: often, heuristics are too inefficient for online learning! We wish to minimise wasteful exploration.
Bayesian Reinforcement Learning (Model-Based)
Brief Description

- Start with a prior over transition probabilities $T(s, a, s')$, maintain the posterior (update them) as evidence comes in.
- Now we can reason about more/less likely MDPs, instead of just possible MDPs or a single ‘best guess’ MDP.
- Can plan in the space of posteriors to:
 - evaluate the likelihood of any possible outcome of an action.
 - model how that outcome will change the posterior.
Motivation (1)

Resolves ‘classic’ RL dilemma:

- maximise immediate rewards (exploit), or
- maximise info gain (explore)?

Wrong question!

→ Single objective: maximise expected rewards up to the horizon (as a weighted average over the possible futures).
(implicitly trades-off exploration with exploitation optimally)
Motivation (2)

More Pros:

- Prior information is easily used, can start planning straight away by running a full backup.
- Easy to explicit encoding of prior knowledge / domain assumptions.
- Easy to update belief if using conjugate priors, as we collect evidence.

Cons:

- Computationally intractable except in special cases (bandits, short horizons)
Bayesian RL as a POMDP (1)

- Let $\theta_{sas'}$ denotes unknown MDP parameter
 $T(s, a, s') = P(s'|s, a) \in [0, 1]$
 Let $b(\theta)$ be the agent’s prior belief over all unknown parameters $\theta_{sas'}$

- [Duff 2002]: Define hybrid state: $S_p = S$ (certain) $\times \theta_{sas'}$ (uncertain).
 Cast Bayesian RL as a Partially Observable Markov Decision Process (POMDP) $\mathcal{P} = \langle S_p, A_p, O_p, T_p, Z_p, R_p, \gamma, b_p^0 \rangle$

- Use favourite POMDP solution technique. This provides a Bayes Optimal policy in our original state space.
Bayesian RL as a POMDP (2)

\[
S_p = S \times \theta, \text{ hybrid states of known } S \text{ and all unknown } \theta_{sas}', \\
A_p = A, \text{ original action set (unchanged)} \\
O_p = S : \text{ observation space}
\]
Bayesian RL as a POMDP (2)

\[S_p = S \times \theta, \text{ hybrid states of known } S \text{ and all unknown } \theta_{sas}' \]
\[A_p = A, \text{ original action set (unchanged) } \]
\[O_p = S : \text{ observation space } \]

\[
T_p(s, \theta_{sas'}, a, s', \theta'_{sas'}) = P(s', \theta'_{sas'}|s, \theta_{sas'}, a)
\]
\[
= P(\theta'_{sas'}|\theta_{sas'})P(s'|s, \theta_{sas'}, a)
\]
\[
= \delta(\theta'_{sas'} - \theta_{sas'})\theta_{sas'}, \text{ assuming } \theta_{sas'} \text{ is stationary }
\]

\[
R_p(s, \theta_{sas'}, a, s', \theta'_{sas'}) = R(s, a, s')
\]

\[
Z_p(s', \theta'_{sas'}, a, o) = P(o|s', \theta'_{sas'}, a) = \delta(o - s'), \text{ as observation is } s'
\]

\(T(.) \): transition probability (known), \(R(.) \): reward distribution, \(Z(.) \): observation function
Bayesian Inference

let $b(\theta)$ be the agent’s current (prior) belief over all unknown parameters $\theta_{sas'}$. For each $\{s, a, s'\}$ transition observed, the belief is updated accordingly:

$$
\begin{align*}
bsas'(\theta) & \propto b(\theta)P(s'|\theta_{sas'}, s, a) \\
& = b(\theta)\theta_{sas'} \\
\text{(posterior)} & \propto \text{(prior) \times (likelihood)}
\end{align*}
$$
Common Prior: Dirichlet Distribution

$$Dir(\theta_{sa}; n_{sa}) = \frac{1}{B(n_{sa})} \prod_{s'} (\theta_{sas'})^{n_{sas'}} - 1$$

suitable for discrete state spaces

The Dirichlet distribution is a conjugate prior to a multinomial likelihood distribution (counts $\# a$ from s reached s'). Thus easy closed for Bayes updates.
Bayesian Inference: Discrete MDPs

For discrete MDPs, we can define $\theta_{sa} = P(.|s, a)$, as a multinomial.

Choosing prior $b(\theta)$ form as a product of Dirichlets

$$\prod_{s,a} \text{Dir}(\theta_{sa}; n_{sa}) \propto \prod_{s,a} \prod_{s'} (\theta_{sas'})^{n_{sas'}-1},$$

the posterior / updated-belief retains the same form:

$$b_{sas'}(\theta) \propto (\prod_{\hat{s},\hat{a}} \text{Dir}(\theta_{\hat{s}\hat{a}}; n_{\hat{s}\hat{a}})) \theta_{sas'}$$

$$\propto \prod_{\hat{s},\hat{a}} \text{Dir}(\theta_{\hat{s}\hat{a}}; n_{\hat{s}\hat{a}} + \delta_{\hat{s},\hat{a},s'}(s, a, s'))$$ \(1\)

(where n_{sa} is a vector of hyperparameters $n_{sas'}$, the \# \{s, a, s’\} transitions observed)
Bayesian Inference: Discrete MDPs

For discrete MDPs, we can define $\theta_{sa} = P(.|s, a)$, as a multinomial.

Choosing prior $b(\theta)$ form as a product of Dirichlets

$$
\prod_{s,a} \text{Dir}(\theta_{sa}; n_{sa}) \propto \prod_{s,a} \prod_{s'} (\theta_{sas'}^{-1}),
$$

the posterior / updated-belief retains the same form:

$$
b_{sas'}(\theta) \propto b(\theta)\theta_{sas'}
$$

$$(\prod_{\hat{s}, \hat{a}} \text{Dir}(\theta_{\hat{s}\hat{a}}; n_{\hat{s}\hat{a}}))\theta_{sas'}
$$

$$
\propto \prod_{\hat{s}, \hat{a}} \text{Dir}(\theta_{\hat{s}\hat{a}}; n_{\hat{s}\hat{a}} + \delta_{\hat{s}, \hat{a}, \hat{s}'}(s, a, s'))
$$

(1)

(1) (where n_{sa} is a vector of hyperparameters $n_{sas'}$, the # $\{s, a, s'\}$ transitions observed)

\rightarrow So belief updated by incrementing corresponding $n_{sas'}$
Factoring structural priors

Can transition dynamics can be jointly expressed as a function of a smaller number of parameters?

Parameter *tying* is a special case of knowing $\theta_{sas'} = \theta_{\hat{s}\hat{a}\hat{s}'}$.

- realistic, real-life action outcomes from one state often generalise
- useful, speeds up convergence / less trials required \rightarrow mitigates expensive hardware collisions etc.
Factoring structural priors: Example (1)

Taxi example: [Dietterich 1998]

- **Goal**: pick up passenger and drop at destination.
- **States**: 25 taxi location \times 4 pickup locations \times 4 dropoff destinations
- **Actions**: N, S, E, W, pickup, dropoff
- **Rewards**: +20 for successful delivery of passenger, -10 for illegal pickup or dropoff, -1 otherwise.

$\# \theta_{sa} = |S| \times |A| = 400 \times 6 = 2400$.

\[\begin{array}{c|c|c|c|c|c|c}
| & | & | & | & | \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 0 | 1 | 2 | 3 | 4 | \\
\end{array}\]

Figure: possible pickup, dropoff locations: R, Y, G, B
Factoring structural priors: Example (2)

We can factor θ_{sa}: We know \textit{a priori} that navigation to pickup location is independent of dropoff-destination! Furthermore, navigation task is independent of purpose (pickup or dropoff).

\rightarrow $\#$ states required to learn navigation: $25 \times 4 = 100 < 400$.

Using a factored DBN model to generalises transitions for multiple states, we quarter the $\#$ of θ_{sa} to learn.
Value Optimisation

Classic RL Bellman equation:
\[Q^*(s, a) = \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q^*(s', a')] \]

POMDP Bellman equation, in BRL context:
\[Q^*(s, b, a) = \sum_{s'} P(s'|s, b, a)[R(s, a, s') + \gamma \max_{a'} Q^*(s', b_{sas'}, a')] \]

The Bayes-optimal policy is \[\pi^*(s, b) = \arg\max_a Q^*(s, b, a) \], which maximises the predicted reward up to the horizon, over a weighted average of all the possible futures.
Big Picture

Task: solve:

\[Q^*(s, b, a) = \sum_{s'} P(s'|s, b, a)[R(s, a, s') + \gamma \max_{a'} Q^*(s', b_{sas'}, a')] \]

Challenge: Size of \(s \times b_{sas'} \) space grows exponentially with number of \(\theta_{sas'} \) parameters \(\rightarrow \) Bayes-Optimal solution intractable.

Solutions: approximate \(Q^*(s, b, a) \) via:

- discretisation
- exploration bonuses [BEB, Kolter 2009]
- myopic value of info [Bayesian Q-learning, Dearden 1999]
- sample beliefs [Bayesian Forward Search Sparse Sampling, Littman 2012]
- sample MDPs, update occasionally [Thompson Sampling, Strens 2000]
Algorithm: BEETLE (1)

[Poupart et al. 2006]
Exploits piecewise linear and convex property of POMDP value function [Sondik 1971].

- Sample a set of reachable \((s, b)\) pairs by simulating a random policy.
- Uses Point Based Value Iteration (PBVI) [Pineau 2003] to approximate value iteration, by tracking value + derivative of sampled belief points. Proves \(\alpha\)-functions (one per sampled belief) in Bayesian RL are a set of multivariate polynomials of \(\theta_{sas}'\), and \(V_s^*(\theta) = \max_i poly_i(\theta)\).
- Scalable, has a closed form value representation under Bellman backups.

![Figure 1: POMDP value function representation using PBVI (on the left) and a grid (on the right).](image-url)
Algorithm: BEETLE (2)

Figure 1. The “Chain” problem

Table 1. Expected total reward for chain and handwashing problems. na-m indicates insufficient memory.

| problem | |S| |A| free params | optimal (utopic) | discrete POMDP | exploit | Beetle | Beetle time (minutes) | precomputation | optimization |
|-------------|------------------------|-----------------|------------------|------------------|----------------|-------------------|---------|--------|----------------------|----------------|--------------|
| chain_tied | 5 | 2 | 1 | 3677 | 3661 ± 27 | 3642 ± 43 | 3650 ± 41 | 0.4 | 1.5 | | |
| chain_semi | 5 | 2 | 2 | 3677 | 3651 ± 32 | 3257 ± 124 | 3648 ± 41 | 1.3 | 1.3 | | |
| chain_full | 5 | 2 | 40 | 3677 | na-m | 3078 ± 49 | 1754 ± 42 | 14.8 | 18.0 | | |
| handw_tied | 9 | 2 | 4 | 1153 | 1149 ± 12 | 1133 ± 12 | 1146 ± 12 | 2.6 | 11.8 | | |
| handw_semi | 9 | 2 | 8 | 1153 | 990 ± 8 | 991 ± 31 | 1082 ± 17 | 3.4 | 52.3 | | |
| handw_full | 9 | 6 | 270 | 1083 | na-m | 297 ± 10 | 385 ± 10 | 125.3 | 8.3 | | |

Figure: [Strens 2002]

Figure: [Poupart 2006]
Model Based Interval Estimation with Exploration Bonus MBIE-EB (PAC-MDP) and Bayesian Exploration Bonus BEB (Bayesian RL) will be compared. Both:

- count how many times each transition \((s, a, s')\) has happened:
 \(\alpha(s, a, s')\);
- use counts to produce an estimate of the underlying MDP;
- add exploration bonus to the reward for \((s, a)\) pair if not visited enough;
- act greedily with respect to this modified MDP.
Bellman’s optimality equations with exploration bonus

Let $\alpha_0(s, a) = \sum_{s'} \alpha(s, a, s')$ and $b = \{\alpha(s, a, s')\}$. Then

$$P(s' \mid b, s, a) = \frac{\alpha(s, a, s')}{\alpha_0(s, a)}$$

Attempts to maximize:

- **BEB**

$$\tilde{V}_H^*(b, s) = \max_a \left\{ R(s, a) + \frac{\beta}{1 + \alpha_0(s, a)} \right. \right.$$

$$\left. + \sum_{s'} P(s' \mid b, s, a) \tilde{V}_{H-1}^*(s') \right\}$$

- **MBIE-EB**

$$\tilde{V}_H^*(s) = \max_a \left\{ R(s, a) + \frac{\beta}{\sqrt{\alpha_0(s, a)}} \right. \right.$$

$$\left. + \sum_{s'} P(s' \mid b, s, a) \tilde{V}_{H-1}^*(b, s') \right\}$$
Approximate Bayes-Optimal:

If \(\mathcal{A}_t \) denotes the policy followed by the algorithm at time \(t \), then with probability greater than \(1 - \delta \)

\[
V_t^A(b_t, s_t) \geq V^*(b_t, s_t) - \epsilon
\]

where \(V^*(b, s) \) is the value function for a Bayes-optimal strategy.

Near Bayes Optimal:

With probability \(\geq 1 - \delta \), an agent follows an approximate Bayes-optimal policy for all but a “small” number of steps, which is polynomial in quantities representing the system.
Theorem (Kolter and Ng, 2009)

Let A_t denote the policy followed by the BEB algorithm (with $\beta = 2H^2$) at time t, and let s_t and b_t be the corresponding state and belief. Also suppose we stop updating the belief for a state-action pair when $\alpha_0(a,s) > 4H^3/\epsilon$. Then with probability at least $1 - \delta$,

$$V_{H}^{A_t}(b_t, s_t) \geq V_{H}^{\ast}(b_t, s_t) - \epsilon$$

i.e, the algorithm is ϵ-close to the optimal Bayesian policy for all but

$$m = O\left(\frac{|S||A|H^6}{\epsilon^2} \log \frac{|S||A|}{\delta}\right)$$

time steps.
Theorem (Strehl, Li and Littman 2006)

Let A_t denote the policy followed by some algorithm. Also, let the algorithm satisfy the following properties, for some input ϵ:

- acts greedily for every time step t;
- is optimistic ($V_t(s) \geq V^*_t(s) - \epsilon$)
- has bounded learning complexity (bounded number of action-value estimate updates and number of escape events)
- is accurate ($V_t(s) - V^\pi_{MKt}(s) \leq \epsilon$)

Then, with probability greater than $1 - \delta$, for all but

$$\tilde{O}\left(\frac{|S|^2|A|H^6}{\epsilon^2}\right)$$

time steps, the algorithm follows an 4ϵ optimal policy.
Theorem (Kolter and Ng, 2009)

Let A_t denote the policy followed an algorithm using any (arbitrary complex) exploration bonus that is upper bounded by

$$\frac{\beta}{\alpha_0(s, a)^p}$$

for some constant β and $p > 1/2$. Then \exists some MDP M and $\epsilon_0(\beta, p)$, s.t. with probability greater than $\delta_0 = 0.15$,

$$V^{A_t}_H(s_t) < V^*_H(s_t) - \epsilon_0$$

will hold for an unbounded number of steps.
The proof uses the following inequality.

Lemma (Slud’s inequality)

Let X_1, \ldots, X_n be i.i.d. Bernoulli random variables, with mean $\mu > 3/4$. Then

$$P \left(\mu - \frac{1}{n} \sum_{i=1}^{n} X_i > \epsilon \right) \geq 1 - \Phi \left(\frac{\epsilon \sqrt{n}}{\sqrt{\mu(1-\mu)}} \right)$$
Proof

The lower bound on the probability that the algorithm’s estimate of the reward for playing a_1 plus the exploration bonus is pessimistic by at least β/n^p:

$$
P \left(3/4 - \frac{1}{n} \sum_{i=1}^{n} r_i - f(n) \geq \frac{\beta}{n^p}\right) \\
\geq P \left(3/4 - \frac{1}{n} \sum_{i=1}^{n} r_i \geq \frac{2\beta}{n^p}\right) \\
\geq 1 - \Phi \left(\frac{8\beta}{\sqrt{3}n^p-1/2}\right)
$$
Proof

Set

\[n \geq \left(\frac{8\beta}{\sqrt{3}} \right)^{\frac{2}{2p-1}} \]

and

\[\epsilon_0(\beta, p) = \beta / \left(\left(\frac{8\beta}{\sqrt{3}} \right)^{\frac{2p}{2p-1}} \right) \]

So at stage \(n \) with probability at least 0.15, action \(a_2 \) will be preferred over \(a_1 \) and the agent will stop exploring \(\Rightarrow \) the algorithm will be more than \(\epsilon \) suboptimal for an infinite number of steps, for any \(\epsilon \geq \epsilon_0 \).
Conclusions

- Both algorithms use the same intuition: in order to perform well, we want to explore enough that we learn an accurate model of the system;
- For PAC-MDP, exploration bonus cannot shrink at a rate faster than $\frac{1}{2}$ or they fail to be near optimal, and slow rate of decay results in more exploration;
- BEB reduces the amount of exploration needed, which allows us to achieve lower sample complexity and use greedier exploration method;
- A near Bayesian optimal policy is not near-optimal: the optimality is considered with respect to the Bayesian policy, rather than the optimal policy for some fixed MDP.