
4F13 Machine Learning: Course work #2: Variational and Sampling Methods

Zoubin Ghahramani & Carl Edward Rasmussen

Due: 4pm Fri Mar 14, 2008 to Rachel Fogg, room 37 (Baker)

Consider the following binary latent factor model with a vector s of K binary latent variables, s = (s1, . . . , sK), a real-valued
observed vector y and parameters θ = {{µi,πi}

K
i=1,σ

2}. The model is described by:

p(s|π) = p(s1, . . . , sK|π) =

K∏
i=1

p(si) =

K∏
i=1

πsi

i (1 − πi)
(1−si)

p(y|s1, . . . , sK,µ,σ
2) = N

(∑
i

siµi,σ
2I

)
where y us a D-dimensional vector and I is the D×D identity matrix. Assume you have a data set of N i.i.d. observations
of y, i.e. Y = {y(1), . . . , y(N)}. More details are provided in Appendix A.

General Matlab hint: wherever possible, avoid looping over the data points. Many (but not all) of these functions can be
written using matrix operations. In Matlab it's much faster.

Warning: Each question depends on earlier questions. Start as soon as possible.

Hand in: Derivations, code and plots.

5% Gibbs sampling relies on computing conditional probabilities of certain variables given all other variables (read section
29.5 in MacKay's textbook if you haven't done so already). Derive the conditional probability:

p(s
(n)
i |s

(n)
1 , . . . , s

(n)
i−1

, s
(n)
i+1

, . . . , s
(n)
K , y(n),θ)

for the binary latent variable model, which you will need for Gibbs sampling. Describe an algorithm for drawing samples
from this distribution using the rand function in Matlab which gives you uniformly distributed random numbers between
0 and 1.

15% In this exercise you will implement the fully factored (a.k.a. mean-�eld) variational approximation described in the
course notes. That is, for each data point y

(n), the code will approximate the posterior distribution over the hidden
variables by a distribution:

qn(s(n)) =

K∏
i=1

λ
s

(n)
i

in (1 − λin)(1−s
(n)
i)

and �nd the λ(n)'s that maximize Fn holding θ �xed. Speci�cally, you should write a Matlab function:

[lambda,F] = MeanField(Y,mu,sigma,pie,lambda0,maxsteps)

where lambda is N × K, F is the lower bound on the likelihood, Y is the N × D data matrix, mu is the D × K matrix
of means, pie is the 1 × K vector of priors on s, lambda0 are initial values for lambda and maxsteps are maximum
number of steps of the �xed point equations. You might also want to set a convergence criterion so that if F changes
by less than some very small number ε the iterations halt.

15% Using the conditional probability derived in the �rst question you will now implementGibbs sampling to approximate
the posterior distribution over the hidden states given the data. Speci�cally, write a function:

[S] = Gibbs(Y, mu, sigma, pie, S0, nsamples)

where S is a N× K× nsamples array of samples over the hidden variables, S0 is an N× K matrix of initial settings for
the hidden variables.

5% We have derived the M step for this model in terms of the quantities: Y, ES = Eq[s], which is an N × K matrix of
expected values, and ESS, which is an N × K × K array of expected values Eq[ss>] for each n. The full derivation is
provided in Appendix B. Write two or three sentences discussing how the solution relates to linear regression and why.

5% Using the above, we have implemented a function:

[mu, sigma, pie] = MStep(Y,ES,ESS)

This can be implemented either taking in ESS = a K × K matrix summing over N the ESS array as de�ned above, or
taking in the full N × K × K array. This code can be found in Appendix C and can also be found on the web site.
Study this code and �gure out what the computational complexity of the code is in terms of N, K and D for the case
where ESS is K× K. Write out and justify the computational complexity; don't assume that any of N, K, or D is large
compared to the others.

7% Examine the data images.jpg shown on the web site (Do not look at genimages.m yet!). This shows 100 greyscale 4×4
images generated by randomly combining several features and adding a little noise. Try to guess what these features
are by staring at the images. How many are there? Would you expect factor analysis to do a good job modelling this
data? How about mixture of Gaussians? Explain your reasoning.

12% Put the E step and M step code together into a function:

[mu, sigma, pie] = LearnBinFactors(Y,K,iterations,gibbsflag)

where K is the number of binary factors, iterations is the maximum number of iterations of EM, and gibbsflag = 1
means use Gibbs sampling, otherwise, use mean �eld. For the mean �eld algorithm, make sure F always increases (this
is a good debugging tool).

7% Run your algorithm for learning the binary latent factor model on the data set generated by genimages.m. What
features mu does the algorithm learn (rearrange them into 4× 4 images)? How do the Gibbs and variational algorithms
di�er? Which do you prefer? Note that nsamples might have to be large for Gibbs sampling to work well. How could
you improve the algorithm and the features it �nds? Explain any choices you make along the way and the rationale
behind them (e.g. what to set K, how to initialize parameters, hidden states, and lambdas).

7% Make sure you understand the idea of convergence of Markov chains (29.8 and 29.9 in MacKay's book). Given the
parameters you have learned in the previous problem, and given just the �rst data point in the data set y(1), i.e. N = 1,
run your Gibbs sampling code with various initial conditions of the hidden state S0. In particular, you might want to
try starting with S0 as all 1's, as all 0's, or somewhere in between. Plot various statistics of S (such as the sum over all
K states, which should range between 0 and K, or the cumulative average over all K states) as a function of sampling
iteration for Gibbs sampling for a large number of samples. Can you assess (visually) how long it takes for the Gibbs
sampler to converge? How is this a�ected by increases and decreases in sigma? Why? Support your arguments.

7% For the same setting of the parameters as in the previous problem and again given just the �rst data point in the
data set y

(1), i.e. N = 1, run the variational approximation. Convergence of a variational approximation results when
the value of λ's as well as F stops changing. Plot F and log(F(t)-F(t-1)) as a function of iteration number t for
MeanField. How rapidly does it converge? Plot F for three widely varying sigmas. How is this a�ected by increases
and decreases of sigma? Why? Support your arguments.

10% Given known values of σ2 and π, and a sample of s and y, what is the conjugate prior for the µs? Implement a sampling
procedure for µ given σ2, π, s and y. You might want to use Gibbs sampling or Metropolis. Show some samples from
the posterior distribution of mu.

5% Describe a Bayesian method for selecting K, the number of hidden binary variables. Does your method pose any
computational di�culties and if so how would you tackle them?

Appendix: M-step for Course work #2

Iain Murray, Dec 2003

A Background

The generative model under consideration has a vector of K binary latent variables s. Each D-dimensional data point y
(n)

is generated using a new hidden vector, s(n). Each s
(n) is identically and independently distributed according to:

P
(
s
(n)|π

)
=

K∏
i=1

π
s

(n)
i

i (1 − πi)
(1−s

(n)
i). (1)

Once s
(n) has been generated, the data point is created according to the Gaussian distribution:

p
(
y

(n)
∣∣∣ s(n),µ,σ2

)
= (2πσ2)−D/2 exp

−
1

2σ2

(
y

(n) −

K∑
i=1

s
(n)
i µi

)>(
y

(n) −

K∑
i=1

s
(n)
i µi

) . (2)

When this process is repeated we end up obtaining a set of visible data Y = {y(1), . . . , y(N)} generated by a set of N binary
vectors S = {s(1), . . . , s(N)} and some model parameters θ = {µ,σ2,π}, which are constant across all the data. Given just
Y, both S and θ are unknown. We might want to �nd the set of parameters that maximise the likelihood function P (Y|θ);
�the parameters that make the data probable�. EM is an approach towards this goal which takes our knowledge about the
uncertain S into account.

In the EM algorithm we optimise the objective function

F(q,θ) = 〈log p (S, Y| θ)〉q(S) − 〈logq (S)〉q(S)

=
∑
n

〈
log p

(
s
(n), y(n)

∣∣∣θ)〉
q(s(n))

−
∑
n

〈
logq

(
s
(n)
)〉

q(s(n))
,

(3)

alternately increasing F by changing the distribution q (S) in the �E-step�, and the parameters in the �M-step�. This document
gives a derivation and Matlab implementation of the M-step. In this assignment you will implement two approximate E-steps
and apply this EM algorithm to a data set.

B M-step derivation

Here we maximise F with respect to each of the parameters using di�erentiation. This only requires the term with θ

dependence: ∑
n

〈
log p

(
s
(n), y(n)

∣∣∣θ)〉
q(s(n))

=
∑
n

〈
log p

(
y

(n)|s(n),θ
)

+ log P
(
s
(n)|θ

)〉
q(s(n))

(4)

Substituting the given distributions from equations ?? and ?? gives:

= −
ND

2
log 2π − ND logσ

−
1

2σ2

 N∑
n=1

y
(n)>

y
(n) +

∑
i,j

µ>i µj

N∑
n=1

〈
s
(n)
i s

(n)
j

〉
q(s(n))

− 2
∑

i

µ>i

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

y
(n)


+

K∑
i=1

[
logπi

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

+ log (1 − πi)

(
N −

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

)]
.

(5)

From which we can obtain all the required parameter settings:

∂F

∂πi
=

1

πi

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

+
1

1 − πi

[
N∑

n=1

〈
s
(n)
i

〉
q(s(n))

− N

]
= 0 (6)

⇒ π = 1

N

∑N
n=1

〈
s
(n)
〉

q(s(n)) , (7)

∂F

∂µi
= −

1

σ2

N∑
n=1

∑
j

〈
s
(n)
i s

(n)
j

〉
q(s(n))

−
〈
s
(n)
i

〉
q(s(n))

y
(n)


∑

j

N∑
n=1

〈
s
(n)
i s

(n)
j

〉
q(s(n))

µj =

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

y
(n)

(8)

⇒ µj =
∑

i

[∑N
n=1

〈
s
(n)

s
(n)>〉

q(s(n))

]−1

ji

∑N
n=1

〈
s
(n)
i

〉
q(s(n))

y
(n) (9)

and

∂F

∂σ
=0⇒

σ2 = 1

ND

[∑N
n=1 y

(n)>
y

(n) +
∑

i,j µ>i µj

∑N
n=1

〈
s
(n)
i s

(n)
j

〉
q(s(n))

−2
∑

i µ>i
∑N

n=1

〈
s
(n)
i

〉
q(s(n))

y
(n)

] . (10)

Note that the required su�cient statistics of q (S) are
〈
s
(n)
〉

q(s(n)) and
∑N

n=1

〈
s
(n)

s
(n)>〉

q(s(n)). In the code these are known

as ES and ESS.

All of the sums above can be interpreted as matrix multiplication or trace operations. This means that each of the boxed
parameters above can neatly be computed in one line of Matlab.

C M-step code

MStep.m

% [mu, sigma , p i e] = MStep (Y, ES , ESS)
%
% Inpu t s :
% −−−−−−−−−−−−−−−−−

% Y NxD data mat r i x
% ES NxK E_q[s]
% ESS KxK sum ove r data p o i n t s o f E_q [ss '] (NxKxK)
% i f E_q [ss '] i s p rov ided , the sum ove r N i s done f o r you .
%
% Outputs :
% −−−−−−−−

% mu DxK mat r i x o f means i n p (y | { s_i } ,mu, s igma)
% sigma 1x1 s t anda rd d e v i a t i o n i n same
% p i e 1xK v e c t o r o f pa ramete r s s p e c i f y i n g g e n e r a t i v e d i s t r i b u t i o n f o r s
%

f u n c t i o n [mu, sigma , p i e] = MStep (Y, ES , ESS)

[N,D] = s i z e (Y) ;
i f (s i z e (ES,1)~=N) , e r r o r ('ES must have the same number o f rows as Y ') ; end ;
K = s i z e (ES , 2) ;
i f (i s e q u a l (s i z e (ESS) , [N,K,K])) , ESS = s h i f t d im (sum (ESS , 1) , 1) ; end ;
i f (~ i s e q u a l (s i z e (ESS) , [K,K]))

e r r o r ('ESS must be squa r e and have the same number o f columns as ES ') ;
end ;

mu = (i n v (ESS)*ES '*Y) ' ;
s igma = s q r t ((t r a c e (Y'*Y)+ t r a c e (mu'*mu*ESS)−2* t r a c e (ES '*Y*mu)) / (N*D)) ;
p i e = mean (ES , 1) ;

