# Lecture 1: Introduction to Machine Learning

4F13: Machine Learning

#### Zoubin Ghahramani and Carl Edward Rasmussen

Department of Engineering, University of Cambridge

January 18th, 2008

# What is machine learning?

- Machine learning is an interdisciplinary field focusing on both the mathematical foundations and practical applications of systems that learn, reason and act.
- Other related terms: Pattern Recognition, Neural Networks, Data Mining, Statistical Modelling ...
- Using ideas from: Statistics, Computer Science, Engineering, Applied Mathematics, Cognitive Science, Psychology, Computational Neuroscience, Economics
- The goal of these lectures: to introduce important concepts, models and algorithms in machine learning.
- For more: We have organised a "Tutorial Lecture Series on Machine Learning" with a series of guest lecturers (Thursdays, 4-6pm in LT2). Go to talks.cam.ac.uk, search for "Machine Learning" for various local reading groups, lectures, and seminars.

# Warning!

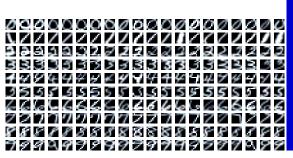
Lecture 1 will overlap somewhat with my lectures in 3f3: Pattern Processing—but don't despair, a lot of new material later!

What is machine learning useful for?

### Automatic speech recognition



# Computer vision: e.g. object, face and handwriting recognition





(NORB image from Yann LeCun)

#### Information retrieval



#### Web Pages

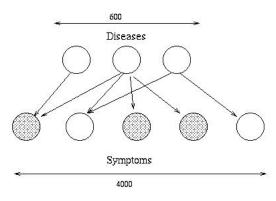
Retrieval Categorisation Clustering Relations between pages

January 18th, 2008

# Financial prediction

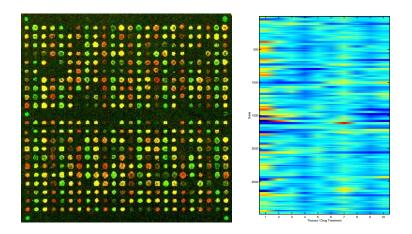


### Medical diagnosis



(image from Kevin Murphy)

#### **Bioinformatics**



e.g. modelling gene microarray data, protein structure prediction

### **Robotics**



#### DARPA \$2m Grand Challenge

### Movie recommendation systems



Challenge: to improve the accuracy of movie preference predictions Netflix \$1m Prize. Competition started Oct 2, 2006 and still ongoing.

### Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:

$$x_1, x_2, x_3, x_4, \dots$$

Supervised learning: The machine is also given desired outputs  $y_1, y_2, ...$ , and its goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build a model of x that can be used for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce actions  $a_1, a_2, \ldots$  which affect the state of the world, and receives rewards (or punishments)  $r_1, r_2, \ldots$ . Its goal is to learn to act in a way that maximises rewards in the long term.

(In this course we'll focus mostly on unsupervised learning and reinforcement learning.)

# **Key Ingredients**

#### Data

We will represent data by vectors in some vector space<sup>1</sup>

Let **x** denote a data point with elements  $\mathbf{x} = (x_1, x_2, \dots, x_D)$ 

The elements of x, e.g.  $x_d$ , represent measured (observed) features of the data point; D denotes the number of measured features of each point.

The data set  $\mathcal{D}$  consists of N data points:

$$\mathcal{D} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \dots, \mathbf{x}^{(N)}\}\$$

<sup>&</sup>lt;sup>1</sup>This assumption can be relaxed.

# **Key Ingredients**

#### Data

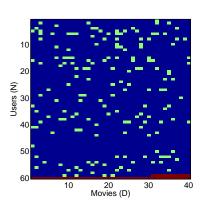
Let  $\mathbf{x} = (x_1, x_2, \dots, x_D)$  denote a data point, and  $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}\$ , a data set

#### **Predictions**

We are generally interested in predicting something based on the observed data.

Given  $\mathcal{D}$  what can we say about  $\mathbf{x}^{(N+1)}$ ?

Given  $\mathcal{D}$  and  $x_1^{(N+1)}, x_2^{(N+1)}, \dots, x_{D-1}^{(N+1)}$ , what can we say about  $x_D^{(N+1)}$ ?



# **Key Ingredients**

#### Data

Let  $\mathbf{x} = (x_1, x_2, \dots, x_D)$  be a data point, and  $\mathcal{D} = {\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}}$ , a data set

#### Predictions

We are interested in predicting something based on the observed data set.

Given  $\mathcal{D}$  what can we say about  $\mathbf{x}^{(N+1)}$ ?

Given  $\mathcal{D}$  and  $x_1^{(N+1)}, x_2^{(N+1)}, \dots, x_{D-1}^{(N+1)}$ , what can we say about  $x_D^{(N+1)}$ ?

#### Model

To make predictions, we need to make some *assumptions*. We can often express these assumptions in the form of a model, with some parameters,  $\theta$ .

Given data  $\mathcal{D}$ , we learn the model parameters  $\theta$ , from which we can predict new data points.

The model can often be expressed as a probability distribution over data points

### Basic Rules of Probability

Let X be a random variable taking values x in some set  $\mathfrak{X}$ .

Probabilities are non-negative  $P(X = x) \ge 0 \ \forall x$ .

Probabilities normalise:  $\sum_{x \in \mathcal{X}} P(X = x) = 1$  for distributions if x is a discrete variable and  $\int_{-\infty}^{+\infty} p(x)dx = 1$  for probability densities over continuous variables

The joint probability of X = x and Y = y is: P(X = x, Y = y).

The marginal probability of X = x is:  $P(X = x) = \sum_{y} P(X = x, y)$ , assuming y is discrete. I will generally write P(x) to mean P(X = x).

The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

#### Bayes Rule:

$$P(x,y) = P(x)P(y|x) = P(y)P(x|y)$$
  $\Rightarrow$   $\left| \frac{P(y|x)}{P(x)} \right|$ 

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Warning: I will not be obsessively careful in my use of p and P for probability density and probability distribution. Should be obvious from context.

# Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty? Some axioms (informally):

- if something is certain, its uncertainty = 0
- uncertainty should be maximum if all choices are equally probable
- uncertainty (information) should add for independent sources

This leads to a discrete random variable *X* having uncertainty equal to the entropy function:

$$H(X) = -\sum_{x \in \mathcal{X}} P(X = x) \log P(X = x)$$

measured in *bits* (binary digits) if the base 2 logarithm is used or *nats* (natural digits) if the natural (base *e*) logarithm is used.

# Some Definitions Relating to Information Theory

- Surprise (for event X = x):  $-\log P(X = x)$
- Entropy = average surprise:  $H(X) = -\sum_{x \in \mathcal{X}} P(X = x) \log P(X = x)$
- Conditional entropy

$$H(X|Y) = -\sum_{x} \sum_{y} P(x, y) \log P(x|y)$$

Mutual information

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X, Y)$$

• Independent random variables:  $P(x, y) = P(x)P(y) \forall x \forall y$ 

How do we relate information theory and probabilistic modelling?

# The source coding problem

Imagine we have a set of symbols  $X = \{a, b, c, d, e, f, g, h\}$ .

We want to transmit these symbols over some binary communication channel, i.e. using a sequence of bits to represent the symbols.

Since we have 8 symbols, we could use 3 bits per symbol  $(2^3 = 8)$ . For example: a = 000, b = 001, c = 010, ..., h = 111

#### Is this optimal?

What if some symbol, a, is much more probable than other symbols, e.g. f? Shouldn't we use fewer bits to transmit the more probable symbols?

Think of a discrete variable X taking on values in  $\mathfrak{X}$ , having probability distribution P(X).

How does the probability distribution P(X) relate to the number of bits we need for each symbol to optimally and losslessly transmit symbols from  $\mathfrak{X}$ ?

### Shannon's Source Coding Theorem

A discrete random variable X, distributed according to P(X) has entropy:

$$H(X) = -\sum_{x \in \mathcal{X}} P(x) \log_2 P(x)$$

**Shannon's source coding theorem:** Consider a random variable X, with entropy H(X). A sequence of n independent draws from X can be losslessly compressed into a minimum expected code of length  $n\mathcal{L}$  bits, where  $H(X) \leq \mathcal{L} < H(X) + \frac{1}{n}$ .

If each symbol is given a code length  $l(x) = -\log_2 Q(x)$  then the expected per-symbol length  $\mathcal{L}_Q$  of the code is

$$\mathcal{L}_{Q} = \sum_{x} P(x)l(x) = -\sum_{x} P(x)\log_{2}Q(x) = H(X) + KL(P\|Q),$$

where the relative-entropy or Kullback-Leibler divergence is

$$KL(P||Q) = \sum_{x} P(x) \log_2 \frac{P(x)}{Q(x)} \geqslant 0$$

Take home message: better probabilistic models ≡ more efficient codes

#### Some distributions

Univariate Gaussian density  $(x \in \Re)$ :

$$p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Multivariate Gaussian density ( $\mathbf{x} \in \mathfrak{R}^D$ ):

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = |2\pi\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

Bernoulli distribution ( $x \in \{0, 1\}$ ):

$$p(x|\theta) = \theta^x (1-\theta)^{1-x}$$

Discrete distribution ( $x \in \{1, L\}$ ):

$$p(x|\theta) = \prod_{\ell=1}^{L} \theta_{\ell}^{\delta(x,\ell)}$$

where  $\delta(a, b) = 1$  iff a = b, and  $\sum_{\ell=1}^{L} \theta_{\ell} = 1$  and  $\theta_{\ell} \ge 0 \ \forall \ell$ .

### Some distributions (cont)

Uniform  $(x \in [a, b])$ :

$$p(x|a,b) = \begin{cases} \frac{1}{b-a} & \text{if } a \leqslant x \leqslant b\\ 0 & \text{otherwise} \end{cases}$$

Gamma  $(x \ge 0)$ :

$$p(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp\{-bx\}$$

Beta  $(x \in [0, 1])$ :

$$p(x|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

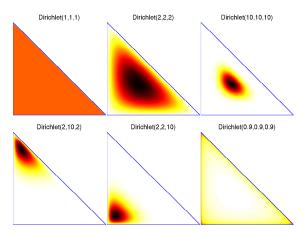
where  $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$  is the gamma function, a generalisation of the factorial:  $\Gamma(n) = (n-1)!$ .

Dirichlet ( $\mathbf{p} \in \mathfrak{R}^D$ ,  $p_d \geqslant 0$ ,  $\sum_{d=1}^D p_d = 1$ ):

$$p(\mathbf{p}|\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{d=1}^{D} \alpha_d)}{\prod_{d=1}^{D} \Gamma(\alpha_d)} \prod_{d=1}^{D} p_d^{\alpha_d - 1}$$

#### Dirichlet Distributions

Examples of Dirichlet distributions over  $\mathbf{p} = (p_1, p_2, p_3)$  which can be plotted in 2D since  $p_3 = 1 - p_1 - p_2$ :



# Other distributions you should know about...

#### Exponential family of distributions:

$$P(\mathbf{x}|\mathbf{\theta}) = f(\mathbf{x}) g(\mathbf{\theta}) \exp \{ \mathbf{\phi}(\mathbf{\theta})^{\top} \mathbf{u}(\mathbf{x}) \}$$

where  $\phi(\theta)$  is the vector of natural parameters, **u** are sufficient statistics

- Binomial
- Multinomial
- Poisson
- Student t distribution
- ...

#### **End Notes**

It is very important that you *understand* all the material in the following cribsheet:

http://learning.eng.cam.ac.uk/zoubin/ml06/cribsheet.pdf

Here is a useful statistics / pattern recognition glossary:

http://research.microsoft.com/~minka/statlearn/glossary/