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Latent Variable Models

Explain correlations in y by assuming a generative model with latent (hidden)
variables x

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

x ∼ p(x|θx)

y|x ∼ p(y|x, θy)

p(x, y|θx, θy) = p(y|x, θy)p(x|θx)

p(y|θx, θy) =

∫
p(y|x, θy)p(x|θx)dx
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Inference and Learning; latent variables and parameters

Some of the variables in our model are termed latent variables and some are
called parameters, why?

• each example has separate latent values; so there are many
• we usually try to integrate out latent values

The process of finding the distribution over latent variables is called inference.
The process of finding parameters is called learning.

Ideally, we would want to integrate over all unknown quantities

p(y) =

∫∫
p(y|x, θ)p(x|θ)p(θ)dxdθ,

but unfortunately, this is not trivial — but we will show you how to do this
approximately in a few weeks time.

Today, we concentrate on the simpler task where parameters are treated as
deterministic quantities

p(y) ' p(y|�θ), where �θ = argmax
∫

p(y|x, θ)p(x|θ)dx.
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Factor Analysis

Latent variable models are useful even when both latent and observed variables
are Gaussian.

YDY1 Y2
�

X1 KX

Λ
Linear generative model: yd =

K∑
k=1

Λdk xk + εd

• xk are independent N(0, 1) Gaussian factors
• εd are independent N(0,Ψdd) Gaussian noise
• K<D

So, y is Gaussian with: p(y) =

∫
p(x)p(y|x)dx = N(0,ΛΛ> + Ψ)

where Λ is a D× K matrix, and Ψ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high
dimensional data that captures the correlation structure of the data.
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Inference in the Factor Analysis Model

Given an observation, y, what is the distribution of the latent cause?

Use Bayes’ rule:

p(x|y) =
p(y|x)p(x)

p(y)
∝ p(y|x)p(x).

In detail:

p(x|y) ∝ p(x) p(y|x)

= (2π)−K/2 exp
[
− 1

2 x>x
]

|2πΨ|−1/2 exp
[
− 1

2 (y − Λx)>Ψ−1(y − Λx)
]

∝ exp
(
− 1

2 [x>x + (y − Λx)>Ψ−1(y − Λx)]
)

∝ exp
(
− 1

2 [x>(I + Λ>Ψ−1Λ)x − 2x>Λ>Ψ−1y]
)

∝ exp
(
− 1

2 [x>Σ−1x − 2x>Σ−1µ + µ>Σ−1µ]
)
∝ N(µ,Σ),

where Σ = (I + Λ>Ψ−1Λ)−1 = I − βΛ, µ = ΣΛ>Ψ−1y = βy, and β = ΣΛ>Ψ−1.

Note that µ is a linear function of y and Σ does not depend on y.
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Learning in the Factor Analysis Model

Integrating over the latent variables, we obtained:

p(y) =

∫
p(x)p(y|x)dx = N(0,ΛΛ> + Ψ).

Note that Factor Analysis is a restricted form of Gaussian model.

The unrestricted (zero mean) Gaussian model has a closed form solution

p(y) ∼ N
(
0,

1
n

∑
c y(c)y(c)>)

,

but is no closed form solution for the Factor Analysis model.

We could try to use the gradients to do maximum likelihood wrt the parameters
Λ and Ψ.

It turns out that there is a better algorithm for learning (the EM algorithm).
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Eigenvalues and Eigenvectors

λ is an eigenvalue and x is an eigenvector of A if:

Ax = λx

and x is a unit vector (x>x = 1).

Interpretation: the operation of A in direction x is a scaling by λ.

The K Principal Components are the K eigenvectors with the largest eigenvalues
of the data covariance matrix (i.e. K directions with the largest variance).

Note: Σ can be decomposed:
Σ = USU>,

where S is diag(σ2
1, . . . ,σ

2
D) and U is a an orthonormal matrix.
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Example of PCA: Eigenfaces

from http://vismod.media.mit.edu/vismod/demos/facerec/basic.html

Ghahramani & Rasmussen (CUED) Lecture 2, 3: PCA, FA and EM January 23rd, 25th, 2008 8 / 27



Principal Components Analysis (PCA)

YDY1 Y2
�

X1 KX

Λ

Noise variable becomes infinitesimal compared to the scale of the data:
Ψ = lim

σ2→0
σ2I

Equivalently: reconstruction cost becomes infinite compared to the cost of coding
the hidden units under the prior.

p(x|y) = N(βy, I − βΛ),

where
β = lim

σ2→0
Λ>(ΛΛ> + σ2I)−1 = (Λ>Λ)−1Λ>.
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From Supervised Learning to PCA: linear autoencoder

YDY1 Y2

X1 KX

YDY1 Y2
^^ ^

hidden
units

output
units

input
units

encoder
"recognition"

decoder
"generation"

A linear autoencoder neural network trained to minimise squared error learns to
perform PCA (Baldi & Hornik, 1989).
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FA vs PCA

• PCA is rotationally invariant; FA is not
• FA is measurement scale invariant; PCA is not
• FA defines a probabilistic model; PCA does not
• PCA can be computed in closed form; FA can not
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Jensen’s Inequality

log(x) 

 x
1

 α x
1
 + (1−α)x

2
 x

2

 α log(x
1
) + (1−α) log(x

2
)

 log(α x
1
 + (1−α) x

2
)

For αi > 0,
∑

αi = 1 and any {xi > 0}

log
( ∑

i

αixi
)

>
∑

i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).
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The Expectation Maximization (EM) algorithm

Given a set of observed (visible) variables V, a set of unobserved (hidden / latent /
missing) variables H, and model parameters θ, optimize the log likelihood:

L(θ) = log p(V|θ) = log
∫

p(H, V|θ)dH, (1)

where we have written the marginal for the visibles in terms of an integral over
the joint distribution for hidden and visible variables.

Using Jensen’s inequality for any distribution of hidden states q(H) we have:

L = log
∫

q(H)
p(H, V|θ)

q(H)
dH >

∫
q(H) log

p(H, V|θ)

q(H)
dH = F(q, θ), (2)

defining the F(q, θ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q, θ) wrt q and θ, and we can
prove that this will never decrease L.
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The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =

∫
q(H) log

p(H, V|θ)

q(H)
dH =

∫
q(H) log p(H, V|θ)dH + H(q), (3)

where H(q) = −

∫
q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: optimize F(q, θ) wrt the distribution over hidden variables given the
parameters:

q(k)(H) := argmax
q(H)

F
(
q(H), θ(k−1)

)
. (4)

M step: maximize F(q, θ) wrt the parameters given the hidden distribution:

θ(k) := argmax
θ

F
(
q(k)(H), θ

)
= argmax

θ

∫
q(k)(H) log p(H, V|θ)dH, (5)

which is equivalent to optimizing the expected complete-data likelihood
p(H, V|θ), since the entropy of q(H) does not depend on θ.

Ghahramani & Rasmussen (CUED) Lecture 2, 3: PCA, FA and EM January 23rd, 25th, 2008 14 / 27



EM as Coordinate Ascent in F
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The EM algorithm never decreases the log likelihood

The difference between the cost functions:

L(θ) − F(q, θ) = log p(V|θ) −

∫
q(H) log

p(H, V|θ)

q(H)
dH

= log p(V|θ) −

∫
q(H) log

p(H|V, θ)p(V|θ)

q(H)
dH

= −

∫
q(H) log

p(H|V, θ)

q(H)
dH = KL

(
q(H), p(H|V, θ)

)
,

is called the Kullback-Liebler divergence; it is non-negative and only zero if and
only if q(H) = p(H|V, θ) (thus this is the E step). Although we are working with
the wrong cost function, the likelihood is still increased in every iteration:

L
(
θ(k−1)

)
=

E step
F

(
q(k)

, θ(k−1)
)

6
M step

F
(
q(k)

, θ(k)
)

6
Jensen

L
(
θ(k)

)
,

where the first equality holds because of the E step, and the first inequality comes
from the M step and the final inequality from Jensen. Usually EM converges to a
local optimum of L (although there are exceptions).
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EM for Factor Analysis

YDY1 Y2
�

X1 KX

Λ
The model for y:
p(y|θ) =

∫
p(x|θ)p(y|x, θ)dx = N(0,ΛΛ> + Ψ)

Model parameters: θ = {Λ,Ψ}.

E step: For each data point yc, compute the posterior distribution of hidden
factors given the observed data: qc(xc) = p(xc|yc, θ

(t)).

M step: Find the θ(t+1) that maximises F(q, θ):

F(q, θ) =
∑

c

∫
qc(xc)

[
log p(xc|θ) + log p(yc|xc, θ) − log qc(xc)

]
dxc

=
∑

c

∫
qc(x)

[
log p(xc|θ) + log p(yc|xc, θ)

]
dx + const.
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The M step for Factor Analysis

M step: Find θ(t+1) maximising F =
∑

c

∫
qc(x) [log p(x|θ) + log p(yc|x, θ)] dx.

log p(x|θ) + log p(yc|x, θ)

= const − 1
2 x>c xc − 1

2 log |Ψ| − 1
2 (yc − Λxc)

>Ψ−1(yc − Λxc)

= const’ − 1
2 log |Ψ| − 1

2 [y>c Ψ−1yc − 2y>c Ψ−1Λxc + x>c Λ>Ψ−1Λxc]

= const’ − 1
2 log |Ψ| − 1

2 [y>c Ψ−1yc − 2y>c Ψ−1Λxc + trace Λ>Ψ−1Λxcx>c ]

Taking expectations over qc(xc). . .

= const’ − 1
2 log |Ψ| − 1

2

[
y>c Ψ−1yc − 2y>c Ψ−1Λµc + trace Λ>Ψ−1Λ(µcµ

>
c + Σ)

]
.

Note that we don’t need to know everything about q, just the expectations of x
and xx> under q (i.e. the expected sufficient statistics).
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The M step for Factor Analysis (cont.)

F =

const’ −
N
2

log |Ψ| − 1
2

∑
c

[
y>c Ψ−1yc − 2y>c Ψ−1Λµc + trace(Λ>Ψ−1Λ(µcµ

>
c + Σ))

]
Taking derivatives w.r.t. Λ and Ψ−1, using ∂ trace AB

∂B = A> and ∂ log |A|
∂A = A−>:

∂F

∂Λ
= Ψ−1

∑
c

ycµ
>
c − Ψ−1Λ

(
NΣ +

∑
c

µcµ
>
c

)
= 0

Λ =
(

NΣ+
∑

c

µcµ
>
c

)−1 ∑
c

ycµ
>
c

∂F

∂Ψ−1 =
N
2

Ψ −
1
2

∑
c

[
ycy>c − Λµcy

>
c − ycµ

>
c Λ> + Λ(µcµ

>
c + Σ)Λ>

]
Ψ =

1
N

∑
c

[
ycy>c − Λµcy

>
c − ycµ

>
c Λ> + Λ(µcµ

>
c + Σ)Λ>

]
= ΛΣΛ>+

1
N

∑
c

(yc − Λµc)(yc − Λµc)
> (squared residual s)

Note: we should actually only take derivarives w.r.t. Ψdd since Ψ is diagonal.
When Σ→ 0 these become the equations for linear regression!
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Limitations and Mixtures

So far, we have assumed that the data is reasonably well approximated by a
Gaussian.

−0.5 0 0.5 1 1.5
0

0.5

1

Uniform

−0.5 0 0.5 1 1.5
0

1

2

Triangle

−2 0 2
0

0.5

1

Heavy tails

A mixture distribution has a single discrete latent variable:

si ∼ Discrete[π] yi|si ∼ p(yi|θsi)

Mixtures arise naturally when observations from different sources have been
collated.

They can also be used to approximate arbitrary distributions.
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Clustering with MoG
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Clustering with MoG
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Likelihood for the Mixture of Gaussians model

Likelihood:

p(y1, . . . , yn|θ) =

n∏
c=1

k∑
i=1

πi N(yc|µi,Σi)

=

n∏
c=1

k∑
i=1

πi |2πΣi|
−1/2 exp

(
− (yc − µi)

>Σ−1
i (yc − µi)

)
.

Here, πi are the mixing proportions, (non-negative, sum to one) and the
parameters are collected in θ = (π,µ1, . . . ,µk,Σ1, . . . ,Σk).
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Mixture of Gaussians, E-step

The likelihood (for a single data point) in the mixture of Gaussians model is

p(y|θ) =

k∑
j=1

p(y, h|θ) =

k∑
j=1

p(h = j|θ)p(y|h = j, θ),

where θ = (π1, . . . ,πk,µ1, . . . ,µk,Σ1, . . . ,Σk) are the parameters, and h is the
hidden, or latent, variable.

In the E-step we maximize the lower bound functional F(q(H), θ) wrt q(H) for
fixed θ. We have seen that this is equivalent to setting q(H) equal to the posterior:

q(H) = p(h|y, θ) =
p(y|h, θ)p(h|θ)

p(y|θ)
∝ p(y|h, θ)p(h|θ).

Thus, the responsibilities are:

rj = p(h = j|y, θ) ∝ πj|Σj|
1/2 exp

(
− (y − µj)

>Σ−1
j (y − µj)/2

)
,

normalized such that
∑

j rj = 1. For multiple data points, responsibilities are
computed analogously: rcj = p(hc = j|yc, θ).
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Mixture of Gaussians, M-step

In the M-step, we maximize the lower bound functional F(q(H), θ) wrt. θ.
Recall, that this is equivalent to maximizing

E(θ) =

∫
q(H) log

(
p(H, V|θ)

)
dH =

∫
q(H)

∑
c

log
(
p(Hc, Vc|θ)

)
dH,

for a fixed q(H). For mixtures of Gaussians:

E(θ) =
∑
c,j

rcj

[
log(πj) − 1

2 log |Σj| − (yc − µj)
>Σ−1

j (yc − µj)/2
]
.
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Mixture of Gaussians, M-step, cont.

Optimizing wrt the θ parameters (and Sj = Σ−1
j ):

∂E(θ)

∂µj
=

∑
c

rcjΣ
−1
j (yc − µ) = 0 =⇒ µj =

∑
c

rcjyc/(
∑

c

rcj)

∂E(θ)

∂Sj
=

1
2

∑
c

rcj

[
S−1

j − (yc − µj)(yc − µj)
>

]
= 0

=⇒ Σj =

n∑
c=1

rcj(yc − µj)(yc − µj)
>/(

∑
c

rcj),

∂E(θ)

∂πj
=

∑
c

rcj

πj
− λ = 0 =⇒ πj =

∑
c

rcj/(
∑
c,j

rcj),

where λ is the Lagrange multiplier which ensures that the mixture normalizes∑
j πj = 1.
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Mixture of Gaussian issues

The EM algorithm converges to a local maximum of the likelihood. There may be
many local maxima.

There could be many bad local maxima, ie with low values of the likelihood.

In fact, we are not interested in the global optimum!

Another problem: “How many mixture components?”
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