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Learning parameters
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Assume each variable x; is discrete and can take on K; values.

The parameters of this model can be represented as 4 tables: 6, has K; entries, 0,
has Ky x K, entries, etc.

These are called conditional probability tables (CPTs) with the following
semantics:

Plx1=k) =01, Plxa=k'lx1 =k) =0s
If node i has M parents, 6; can be represented either as an M + 1 dimensional
table, or as a 2-dimensional table with (H]Epa(i) K,v) x K; entries by collapsing all
the states of the parents of node i. Note that ) ,, 0, = 1.

Assume a data set D = {x"}N_ . How do we learn 6 from D?

Ghahramani & Rasmussen (CUED) Lecture 6: Graphical Models: Learning February 6th, 2008 2/20



Learning parameters

Assume a data set D = {x"}N_ . How do we learn @ from D? (x,)

P(x]0) = P(x1|01)P(x2|x1, 02) P(x3lx1, 03)P(x4|x2, 04)
Likelihood: N
P(D|0) = H (x")]0)

log P(D|0) ZZlogP () 9)

This decomposes into sum of functions of 9 Each 6; can be optimized separately:
e " k,k!

Log Likelihood:

ikk" =
Zk“ ik, k!
where 7;, 5/ is the number of times in D where x; = k&’ and x,,(;) = k.
n, X, 02 X,
2 3 0 04106]| 0
1 3 ] K 3 1 6 =" 030106
ML solution: Simply calculate frequencies! Sler]e
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Maximum Likelihood Learning with Hidden Variables:

The EM Algorithm

6,
()

62 63

@ Assume a model parameterised by 6 with ob-

o servable variables Y and hidden variables X
4

Goal: maximize parameter log likelihood given observed data.

L(6) =logp(Y]0) =log > p(Y,X|6)
X
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Maximum Likelihood Learning with Hidden Variables:

The EM Algorithm

Goal: maximise parameter log likelihood given observables.

L£(0) =logp(Y|e) =log » p(Y,Xl0)
X

The EM algorithm (intuition):

Iterate between applying the following two steps:

* The E step: fill-in the hidden/missing variables
e The M step: apply complete data learning to filled-in data.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.
£(8) =logp(Ye) =log } _p(Y,X|6)
X

The EM algorithm (derivation):

L) = logZ YX|9 Zq ;;}'e)ﬂ“(q(x),e)
X

e The E step: maximize F(g(X), 8%) wrt ¢(X) holding 8" fixed:
q(X) = P(X]Y,8")

e The M step: maximize F(q(X), 0) wrt 0 holding g(X) fixed:

el argmax, Zq Vlogp(Y, X|0)
X

The E-step requires solving the inference problem, finding the distribution over
the hidden variables p(X|Y, 8/) given the current model parameters. This can be
done using belief propagation or the junction tree algorithm.
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Maximum Likelihood Learning with Hidden Variables:

The EM Algorithm

ML Learning with Complete Data (No Hidden Variables)

Log likelihood decomposes into sum of functions of 8;. Each 6; can be optimized

separately:
B — _ Mk
2k Mijkr
where 7, is the number of times in D where x; = k and x,(;) = 7.
Maximum likelihood solution: Simply calculate frequencies!

ML Learning with Incomplete Data (i.e. with Hidden Variables)

Iterative EM algorithm

E step: com]pute expected counts given previous settings of parameters
Eln|D, o]
M step: re-estimate parameters using these expected counts
r+1) Eln|D, 0]
ik ]
2k Elngs|D, 0]
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Bayesian parameter learning with no hidden variables

Let ;3 be the number of times (x; (") — k and x =7)in D.

For each i and j, 0. is a probability vector of length K; x 1.

Since x; is a discrete variable with probabilities given by 6; .., the likelihood is:

reoie) =] [T TPes" HHHGZ}’S
If we choose a prior on 0 of the form:

—CHHHGZT 1

where ¢ is a normalization constant, and } , 8, = 1 V1, , then the posterior
distribution also has the same form:

Kjip — 1
P(8ID) = ¢ HHH%’
where &, = ot + 7.

This distribution is called the Dirichlet distribution.
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Dirichlet Distribution

The Dirichlet distribution is a distribution over the K-dim probability simplex.

Let © be a K-dimensional vector s.t. Vj : 8; > 0 and Z,l 0;=1
(> o) -
P(8la) = Dir(axs, ..., o) & Z == He“f :

where the first term is a normalization constant! and E(6,) = /(Y o)
The Dirichlet is conjugate to the multinomial distribution. Let

x|0 ~ Multinomial(-|0)

That is, P(x = j|0) = 6,. Then the posterior is also Dirichlet:

P(x =jl0)P(8]x)

POk =08 = = p = o

— Dir(&)

where & = o« + 1, and VI #j: & = g

IMx)=(x—1)M(x—1) =[yr ~le=tdt. For integer n, T'(n) = (n—1)!
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Dirichlet Distributions

Examples of Dirichlet distributions over © = (61, 05, 03) which can be plotted in
2D since 03 =1 —0; — 0;:

Dirichlet(1,1,1) Dirichlet(2,2,2) Dirichlet(10,10,10)

.

Dirichlet(2,10,2) Dirichlet(2,2,10) Dirichlet(0.9,0.9,0.9)

5\

(Y |
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Example

Dirichlet(1,1,1)

Assume o, = 1 Vi, j, k.

This corresponds to a uniform prior distribution over parame-
ters 0. This is not a very strong/dogmatic prior, since any pa-
rameter setting is assumed a priori possible.

After observed data D, what are the parameter posterior distributions?
P(0;.|D) = Dir(n;. + 1)
This distribution predicts, for future data:

l/k+1

P(x; = k‘xpa(i] =7 D) = ﬁ
k' Njjs

Adding 1 to each of the counts is a form of smoothing called “Laplace’s Rule”.
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Bayesian parameter learning with hidden variables

Notation: let D be the observed data set, X be hidden variables, and © be model
parameters. Assume discrete variables and Dirichlet priors on ©

Goal: to infer P(0|D) = Y  P(X, 0|D)

Problem: since (a)
P(0|D) ZP 0|X, D)P(X|D),

and (b) for every way of filling in the missing data, P(0|X, D) is a Dirichlet
distribution, and (c) there are exponentially many ways of filling in X, it follows
that P(0|D) is a mixture of Dirichlets with exponentially many terms!

Solutions:

* Find a single best (“Viterbi”) completion of X (Stolcke and Omohundro,
1993)

e Markov chain Monte Carlo methods
* Variational Bayesian methods (Beal and Ghahramani, 2003)
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Summary of parameter learning

Complete (fully observed) data  Incomplete (hidden /missing) data

ML calculate frequencies EM
Bayesian | update Dirichlet distributions ~ MCMC / Viterbi / VBEM

* For complete data, Bayesian learning is not more costly than ML
* For incomplete data, VBEM ~ EM time complexity
e Other parameter priors are possible but Dirichlet is flexible and intuitive.
e For binary data, other parametrizations include:

e Sigmoid:

P(x; = 1lxpagi), ;) = 1/(1 + exp{—0i0 — Y 8;x;})
jepai)
* Noisy-or:
P(x; = 1lxpa(i), 0;) =1 —exp{—0;0 — Z SH
jepali)
* For non-discrete data, similar ideas but generally harder inference and
learning.
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Structure learning

Given a data set of observations of (A, B, C, D, E) can we learn the structure of
the graphical model?

@  ®

Let m denote the graph structure = the set of edges.
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Structure learning

W ® @ (s

Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the
results of conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian
marginal likelihood. Find the structures that maximize this score.
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Score-based structure learning for complete data

Consider a graphical model with structure 1, discrete observed data D, and
parameters 0. Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

score(m) = log P(D|m) = logJP(@\G, m)P(0|m)do

score(m) = Z Z log F(Z i) — Zlog (o) — log F(Z i) + Z log (&)
i k k k k

where &, = ot + n;;.. Note that the score decomposes over 7.
One can incorporate structure prior information P(m1) as well:

score(m) = log P(D|m) + log P(m)
Greedy search algorithm: Start with 7. Consider modifications m — m’ (edge
deletions, additions, reversals). Accept m’ if score(m’) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on .
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Bayesian Structural EM for incomplete data

Consider a graphical model with structure m2, observed data D, hidden variables

X and parameters 0

The Bayesian score is generally intractable to compute:

score(m) = P(D|m) JZP (X, 0, D|m)do
X

Bayesian Structure EM (Friedman, 1998):

©® compute MAP parameters 6 for current model 7 using EM
® find hidden variable distribution P(X|D, )
© for a small set of candidate structures compute or approximate

score(m ZP X|D, 6)log P(D, X|m')

® m «— m’ with highest score
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Directed Graphical Models and Causality

Discovering causal relationships is fundamental to science and cognition.

Although the independence relations are identical, there is a causal difference
between
e “smoking” — “yellow teeth”

* “yellow teeth” — “smoking”

Key idea: interventions and the do-calculus:
P(S|Y =y) # P(S|do(Y = y))
P(Y|S =s) =P(Y|do(S =s))

Causal relationships are robust to interventions on the parents.

The key difficulty in learning causal relationships from observational data is the
presence of hidden common causes:

@—»@@—@@’@\@
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Learning parameters and structure in undirected graphs
4] (8)
o

——

P(x|0) = 757 [ 1;8/(xc;; ;) where Z(0) = 3, ][ g(xc;: 6))

Problem: computing Z(0) is computat1onally intractable for general
(non-tree-structured) undirected models. Therefore, maximum-likelihood
learning of parameters is generally intractable, Bayesian scoring of structures is
intractable, etc.

Solutions:
e directly approximate Z(0) and/or its derivatives (cf. Boltzmann machine
learning; contrastive divergence; pseudo-likelihood)

* use approx inference methods (e.g. loopy belief propagation, bounding
methods, EP).

(Murray & Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.
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Summary

e Parameter learning in directed models:

e complete and incomplete data;
e ML and Bayesian methods

e Structure learning in directed models: complete and incomplete data
* Causality

* Parameter and Structure learning in undirected models
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