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Learning parameters
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Assume each variable xi is discrete and can take on Ki values.

The parameters of this model can be represented as 4 tables: θ1 has K1 entries, θ2

has K1 × K2 entries, etc.

These are called conditional probability tables (CPTs) with the following
semantics:

P(x1 = k) = θ1,k P(x2 = k ′|x1 = k) = θ2,k,k′

If node i has M parents, θi can be represented either as an M + 1 dimensional

table, or as a 2-dimensional table with
(∏

j∈pa(i) Kj

)
× Ki entries by collapsing all

the states of the parents of node i. Note that
∑

k′ θi,k,k′ = 1.

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?
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Learning parameters

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?

P(x|θ) = P(x1|θ1)P(x2|x1, θ2)P(x3|x1, θ3)P(x4|x2, θ4)

x1

x2

x3
x4

Likelihood:
P(D|θ) =

N∏
n=1

P(x(n)|θ)

Log Likelihood:
log P(D|θ) =

N∑
n=1

∑
i

log P(x(n)
i |x(n)

pa(i), θi)

This decomposes into sum of functions of θi. Each θi can be optimized separately:
�θi,k,k′ =

ni,k,k′∑
k′′ ni,k,k′′

where ni,k,k′ is the number of times in D where xi = k ′ and xpa(i) = k.

ML solution: Simply calculate frequencies!
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm
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Assume a model parameterised by θ with ob-
servable variables Y and hidden variables X

Goal: maximize parameter log likelihood given observed data.

L(θ) = log p(Y|θ) = log
∑

X

p(Y, X|θ)
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.

L(θ) = log p(Y|θ) = log
∑

X

p(Y, X|θ)

The EM algorithm (intuition):

Iterate between applying the following two steps:

• The E step: fill-in the hidden/missing variables
• The M step: apply complete data learning to filled-in data.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.

L(θ) = log p(Y|θ) = log
∑

X

p(Y, X|θ)

The EM algorithm (derivation):

L(θ) = log
∑

X

q(X)
p(Y, X|θ)

q(X)
>

∑
X

q(X) log
p(Y, X|θ)

q(X)
= F(q(X), θ)

• The E step: maximize F(q(X), θ[t]) wrt q(X) holding θ[t] fixed:
q(X) = P(X|Y, θ[t])

• The M step: maximize F(q(X), θ) wrt θ holding q(X) fixed:

θ[t+1] ← argmaxθ

∑
X

q(X) log p(Y, X|θ)

The E-step requires solving the inference problem, finding the distribution over
the hidden variables p(X|Y, θ[t]) given the current model parameters. This can be
done using belief propagation or the junction tree algorithm.
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Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

ML Learning with Complete Data (No Hidden Variables)

Log likelihood decomposes into sum of functions of θi. Each θi can be optimized
separately:

�θijk ←
nijk∑
k′ nijk′

where nijk is the number of times in D where xi = k and xpa(i) = j.
Maximum likelihood solution: Simply calculate frequencies!

ML Learning with Incomplete Data (i.e. with Hidden Variables)

Iterative EM algorithm

E step: compute expected counts given previous settings of parameters
E[nijk|D,θ[t]].
M step: re-estimate parameters using these expected counts

θ
[t+1]
ijk ←

E[nijk|D,θ[t]]∑
k′ E[nijk′ |D,θ[t]]
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Bayesian parameter learning with no hidden variables

Let nijk be the number of times (x(n)
i = k and x(n)

pa(i) = j) in D.

For each i and j, θij· is a probability vector of length Ki × 1.
Since xi is a discrete variable with probabilities given by θi,j,·, the likelihood is:

P(D|θ) =
∏

n

∏
i

P(x(n)
i |x(n)

pa(i),θ) =
∏

i

∏
j

∏
k

θ
nijk

ijk

If we choose a prior on θ of the form:

P(θ) = c
∏

i

∏
j

∏
k

θ
αijk−1
ijk

where c is a normalization constant, and
∑

k θijk = 1 ∀i, j, then the posterior
distribution also has the same form:

P(θ|D) = c ′
∏

i

∏
j

∏
k

θ
�αijk−1
ijk

where �αijk = αijk + nijk.

This distribution is called the Dirichlet distribution.
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Dirichlet Distribution

The Dirichlet distribution is a distribution over the K-dim probability simplex.
Let θ be a K-dimensional vector s.t. ∀j : θj > 0 and

∑K
j=1 θj = 1

P(θ|α) = Dir(α1, . . . ,αK)
def
=

Γ(
∑

j αj)∏
j Γ(αj)

K∏
j=1

θ
αj−1
j

where the first term is a normalization constant1 and E(θj) = αj/(
∑

k αk)
The Dirichlet is conjugate to the multinomial distribution. Let

x|θ ∼ Multinomial(·|θ)

That is, P(x = j|θ) = θj. Then the posterior is also Dirichlet:

P(θ|x = j,α) =
P(x = j|θ)P(θ|α)

P(x = j|α)
= Dir(�α)

where �αj = αj + 1, and ∀` 6= j : �α` = α`

1Γ(x) = (x − 1)Γ(x − 1) =
∫∞

0 tx−1e−tdt. For integer n, Γ(n) = (n − 1)!
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Dirichlet Distributions
Examples of Dirichlet distributions over θ = (θ1, θ2, θ3) which can be plotted in
2D since θ3 = 1 − θ1 − θ2:
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Example

Assume αijk = 1 ∀i, j, k.

This corresponds to a uniform prior distribution over parame-
ters θ. This is not a very strong/dogmatic prior, since any pa-
rameter setting is assumed a priori possible.

After observed data D, what are the parameter posterior distributions?

P(θij·|D) = Dir(nij· + 1)

This distribution predicts, for future data:

P(xi = k|xpa(i) = j,D) =
nijk + 1∑

k′(nijk′ + 1)

Adding 1 to each of the counts is a form of smoothing called “Laplace’s Rule”.
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Bayesian parameter learning with hidden variables

Notation: let D be the observed data set, X be hidden variables, and θ be model
parameters. Assume discrete variables and Dirichlet priors on θ

Goal: to infer P(θ|D) =
∑

X P(X,θ|D)

Problem: since (a)
P(θ|D) =

∑
X

P(θ|X,D)P(X|D),

and (b) for every way of filling in the missing data, P(θ|X,D) is a Dirichlet
distribution, and (c) there are exponentially many ways of filling in X, it follows
that P(θ|D) is a mixture of Dirichlets with exponentially many terms!

Solutions:

• Find a single best (“Viterbi”) completion of X (Stolcke and Omohundro,
1993)

• Markov chain Monte Carlo methods
• Variational Bayesian methods (Beal and Ghahramani, 2003)
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Summary of parameter learning
Complete (fully observed) data Incomplete (hidden /missing) data

ML calculate frequencies EM
Bayesian update Dirichlet distributions MCMC / Viterbi / VBEM

• For complete data, Bayesian learning is not more costly than ML
• For incomplete data, VBEM ≈ EM time complexity
• Other parameter priors are possible but Dirichlet is flexible and intuitive.
• For binary data, other parametrizations include:

• Sigmoid:

P(xi = 1|xpa(i), θi) = 1/(1 + exp{−θi0 −
∑

j∈pa(i)

θijxj})

• Noisy-or:

P(xi = 1|xpa(i), θi) = 1 − exp{−θi0 −
∑

j∈pa(i)

θijxj}

• For non-discrete data, similar ideas but generally harder inference and
learning.
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Structure learning

Given a data set of observations of (A, B, C, D, E) can we learn the structure of
the graphical model?

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

Let m denote the graph structure = the set of edges.
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Structure learning
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Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the
results of conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian
marginal likelihood. Find the structures that maximize this score.
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Score-based structure learning for complete data

Consider a graphical model with structure m, discrete observed data D, and
parameters θ. Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

score(m) = log P(D|m) = log
∫

P(D|θ, m)P(θ|m)dθ

score(m) =
∑

i

∑
j

[
log Γ(

∑
k

αijk) −
∑

k

log Γ(αijk) − log Γ(
∑

k

�αijk) +
∑

k

log Γ(�αijk)

]
where �αijk = αijk + nijk. Note that the score decomposes over i.

One can incorporate structure prior information P(m) as well:

score(m) = log P(D|m) + log P(m)

Greedy search algorithm: Start with m. Consider modifications m→ m ′ (edge
deletions, additions, reversals). Accept m ′ if score(m ′) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on m.
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Bayesian Structural EM for incomplete data

Consider a graphical model with structure m, observed data D, hidden variables
X and parameters θ

The Bayesian score is generally intractable to compute:

score(m) = P(D|m) =

∫ ∑
X

P(X, θ,D|m)dθ

Bayesian Structure EM (Friedman, 1998):

1 compute MAP parameters �θ for current model m using EM

2 find hidden variable distribution P(X|D, �θ)

3 for a small set of candidate structures compute or approximate

score(m ′) =
∑

X

P(X|D, �θ) log P(D, X|m ′)

4 m← m ′ with highest score
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Directed Graphical Models and Causality

Discovering causal relationships is fundamental to science and cognition.

Although the independence relations are identical, there is a causal difference
between

• “smoking”→ “yellow teeth”
• “yellow teeth”→ “smoking”

Key idea: interventions and the do-calculus:

P(S|Y = y) 6= P(S|do(Y = y))

P(Y|S = s) = P(Y|do(S = s))

Causal relationships are robust to interventions on the parents.

The key difficulty in learning causal relationships from observational data is the
presence of hidden common causes:

A
H

B A BA B
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Learning parameters and structure in undirected graphs
A
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E
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E

P(x|θ) = 1
Z(θ)

∏
j gj(xCj ;θj) where Z(θ) =

∑
x
∏

j gj(xCj ;θj).

Problem: computing Z(θ) is computationally intractable for general
(non-tree-structured) undirected models. Therefore, maximum-likelihood
learning of parameters is generally intractable, Bayesian scoring of structures is
intractable, etc.

Solutions:
• directly approximate Z(θ) and/or its derivatives (cf. Boltzmann machine

learning; contrastive divergence; pseudo-likelihood)
• use approx inference methods (e.g. loopy belief propagation, bounding

methods, EP).

(Murray & Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.
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Summary

• Parameter learning in directed models:
• complete and incomplete data;
• ML and Bayesian methods

• Structure learning in directed models: complete and incomplete data
• Causality
• Parameter and Structure learning in undirected models

Ghahramani & Rasmussen (CUED) Lecture 6: Graphical Models: Learning February 6th, 2008 20 / 20


