
Lecture 13, 14, 15: Reinforcement Learning

4F13: Machine Learning

Zoubin Ghahramani and Carl Edward Rasmussen

Department of Engineering, University of Cambridge

February 29th, March 5th and 7th, 2008

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 1 / 25

Intelligent Behaviour?

Imagine a creature/agent (human/animal/machine) which receives sensory inputs
and can take some actions in an environment:

Agent

x: observed
sensory
input a: actions/decisions

Environment

s: hidden state

Assume that the creature also receives rewards (or penalties/losses) from the
environment.
The goal of the creature is to maximise the rewards it receives (or equivalently
minimise the losses).
A theory for choosing actions that minimize losses is a theory for how to behave
optimally...

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 2 / 25

Bayesian Decision Theory

Bayesian decision theory deals with the problem of making optimal
decisions—that is, decisions or actions that minimize an expected loss.

• Let’s say we have a choice of taking one of k possible actions a1 . . . ak.
• Assume that the world can be in one of m different states s1, . . . , sm.
• If we take action ai and the world is in state sj we incur a loss `ij

• Given all the observed data D and prior background knowledge B , our
beliefs about the state of the world are summarized by p(s|D,B).

• The optimal action is the one which is expected to minimize loss (or
maximize utility):

a∗ = argmin
ai

m∑
j=1

`ij p(sj|D,B)

Bayesian sequential decision theory (statistics)
Optimal control theory (engineering)
Reinforcement learning (computer science / psychology)

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 3 / 25

A simple example

Assume we have two actions:

a1 : play
a2 : don’t play

And two outcomes:

s1 : win lottery
s2 : don’t win lottery

Optimal action:

a∗ = argmin
ai

m∑
j=1

`ij p(sj|ai,B)

p(s1|a1,B) = 0.000001 `11 = −100000
p(s2|a1,B) = 0.999999 `12 = +0.9
p(s1|a2,B) = 0 `21 = 0
p(s2|a2,B) = 1 `22 = 0

What is the optimal action for this decision problem?

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 4 / 25

Comments about the above framework

The optimal action is the one which is expected to minimize loss (or maximize
utility):

a∗ = argmin
ai

m∑
j=1

`ij p(sj|D,B)

• This is a theory for how to make a single decision. How do we make a
sequence of decisions in order to achieve some long-term goals/rewards?

• This assumes that we know what the losses are for each action-state pair.
The losses may in fact have to be learned from experience.

• We need a model for how the observed data D relates to the states of the
world s.

• It may be impossible to enumerate all possible actions and states. What
about continuous state and action spaces?

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 5 / 25

Markov Decision Problems (MDPs)

States: st

Actions: at

Rewards: rt

The variable st is the state of the world and agent at time t

The agent takes action at and receives reward rt (or loss, if you like to think
negatively...)

The reward is assumed to depend on the state and the action.

st+1 st+2st

at+1

rt+1 rt+2rt

at+2at

Markov property: p(st+1, rt|st, at, st−1, at−1, rt−1, . . .) = p(st+1, rt|st, at)

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 6 / 25

Markov Decision Problems (MDPs)

st+1 st+2st

at+1

rt+1 rt+2rt

at+2at

......

The world is characterized by

Transition Probabilities: Pa
ss′ = p(st+1 = s ′|st = s, at = a)

Expected rewards: Ra
ss′ = E[rt+1|st = s, at = a, st+1 = s ′]

The agent is characterized by

Policy: π(s, a) = p(at = a|st = s)

Why is the action at time t only dependent on the state at time t?

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 7 / 25

Markov Decision Problems (MDPs)

Why is the action at time t only dependent on the state at time t?

st+1 st+2st

at+1

rt+1 rt+2rt

at+2at

......

Actions at should be chosen to maximize sum of (discounted) future rewards Rt.

By the Markov properties in the graph (i.e. conditional independence), future
rewards and states are independent of past rewards, actions, and states given st

and at:

p(st+1, rt+1, st+2, rt+2, . . . |st, at, st−1, at−1, . . .) = p(st+1, rt+1, st+2, rt+2, . . . |st, at)

If st is known, the expected value of the return Rt depends only on at, so previous
states and actions are irrelevant.

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 8 / 25

Value Functions

Value Function: how good is it to be in a given state? This obviously depends on
the agent’s policy:

Vπ(s) = Eπ[Rt|st = s] = Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣st = s
]
.

State-action value function: how good is it to be in a given state and take a given
action, and then follow policy π:

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]
.

The relation between the state value function and the state-action value function:

Vπ(s) =
∑

a

π(s, a)Qπ(s, a)

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 9 / 25

Self-Consistency of Value Functions

A fundamental property of value functions is that they satisfy a set of recursive
consistency equations. Vπ is the unique solution to these equations.

Vπ(s) = Eπ[Rt|st = s]

= Eπ

[
rt+1 + γ

∞∑
k=0

γkrt+k+2

∣∣∣st = s
]

=
∑

a

π(s, a)
∑

s′
Pa

ss′

(
Ra

ss′ + γEπ

[∞∑
k=0

γkrt+k+2

∣∣∣st+1 = s ′
])

=
∑

a

π(s, a)
∑

s′
Pa

ss′

(
Ra

ss′ + γVπ(s ′)
)

We can solve them using a “backup operation” from s ′ → s (or other means).
Linear system of N ≡ |s| equations in N unknowns.

v =
(
I − γ

∑
a

diag(πa)P
a)−1(∑

a

πa � diag(PaRa>)
)

There is a similar equation for Qπ(s, a)
Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 10 / 25

Optimal Policies and Values

Optimal Policy: π∗ such that Vπ∗
(s) > Vπ(s) ∀s.

There may be more than one optimal policy.

Question: Is there always at least one optimal policy? YES

Optimal state value function: V∗(s) = maxπ Vπ(s) ∀s

Optimal state-action value function: Q∗(s, a) = maxπ Qπ(s, a) ∀s. This is the
expected return of action a in state s, thereafter following optimal policy.

Q∗(s, a) = E[rt+1 + γV∗(st+1)|st = s, at = a].

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 11 / 25

Bellman Optimality Equation

V∗(s) = max
a

Qπ∗
(s, a)

= max
a

Eπ∗

[∞∑
k=0

γkrt+k+1

∣∣∣st = s, at = a
]

= max
a

Eπ∗

[
rt+1 + γV∗(st+1)

∣∣∣st = s, at = a
]

= max
a

∑
s′

Pa
ss′

(
Ra

ss′ + γV∗(s ′)
)

N nonlinear equations in N unknowns for V∗.

Q∗(s, a) = E
[
rt+1 + γ max

a′
Q∗(st+1, a ′)

∣∣∣st = s, at = a
]

=
∑

s′
Pa

ss′
(
Ra

ss′ + γ max
a′

Q∗(s ′, a ′)
)

NA nonlinear equations in NA unknowns for Q∗

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 12 / 25

Solving MDPs

Given the optimal value function, V∗, it is easy to get optimal policy π∗: be
greedy w.r.t. V∗.

If you have V∗, the actions that appear best after a one-step search will be
optimal.

V∗ turns a long-term reward into a quantity that is locally and immediately
available.

Using Q∗ it is even easier to get the optimal policy:

π∗(s, a) = 0 ∀a s.t. Q∗(s, a) 6= max
a′

Q∗(s, a ′)

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 13 / 25

Policy Improvement Theorem

Policy Evaluation Vπ
k+1(s)←

∑
a

π(s, a)
∑

s′
Pa

ss′
(
Ra

ss′ + γVπ
k (s ′)

)
assumes P known, R known, and a full backup (we can also sweep in place)

Policy Improvement Theorem

Qπ(s,π ′(s)) > Vπ(s) ∀s =⇒ Vπ′
(s) > Vπ(s)

Proof:
Vπ(s) 6 Qπ(s,π ′(s))

= Eπ′ [rt+1 + γVπ(st+1)|st = s]

6 Eπ′ [rt+1 + γQπ(st+1,π
′(st+1))|st = s]

= Eπ′
[
rt+1 + γEπ′ [rt+2 + γVπ(st+2)]|st = s

]
= Eπ′ [rt+1 + γrt+2 + γ2Vπ(st+2)|st = s]

...

6 Vπ′
(s)

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 14 / 25

Policy Iteration

The policy improvement theorem suggests a way of improving policies:

π ′(s) ← arg max
a

Qπ(s, a) ∀s

= arg max
a

E[rt+1 + γVπ(st+1)|st = s, at = a]

This procedure converges to an optimal policy by policy improvement theorem
and Bellman optimality.

Vπ′
(s) > arg max

a
Qπ(s, a) >

∑
a

π(s, a)Qπ(s, a) = Vπ(s)

Policy Iteration: Iterates between evaluation and improvement

π0
E−→ Vπ0 I−→ π1

E−→ Vπ1 I−→ π2 . . .π∗

Problem with Policy Iteration: Evaluation step can be really slow...

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 15 / 25

Value Iteration

Do we really need to wait until convergence of the evaluation step?

In fact, we can improve after one sweep of evaluation!

Vk+1(s) ← max
a

E[rt+1 + γVk(st+1)|st = s, at = a]

= max
a

∑
s′

Pa
ss′

(
Ra

ss′ + γVk(s
′)

)
converges: Vk −→ V∗. At each step we also have a policy.

Problem: it is still not feasible to update the value of every single state.

E.g. backgammon has 1020 states!

Bellman called this the curse of dimensionality

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 16 / 25

Asynchronous dynamic programming

These are in-place iterated dynamic programming (DP) algorithms that are not
organized in terms of systematic sweeps over all the states.

States are backed-up in order visited or randomly.

To converge the algorithms must continue to visit every state.

Key idea in RL: We can run the DP algorithm at the same time as the agent is
actually experiencing the MDP.

This leads to an exploration vs exploitation tradeoff: act so as to visit new parts
of state space or exploit already visited part of state-space?

An example of a simple exploration strategy are ε-greedy policies:

πε(s, a) = (1 − ε)π(s, a) + εu(a)

where u(a) is a uniform distribution over actions.

Can you think of anything wrong with this?

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 17 / 25

Monte Carlo and TD

Monte Carlo methods solve RL problems by averaging sample returns.

Question: how do you trade off length of sampled trajectory, vs previously
estimated values?

V(st) ← V(st) + α[rt+1 + γV(st+1) − V(st)] (1)

V(st) ← V(st) + α[rt+1 + γrt+2 + γ2V(st+2) − V(st)]

V(st) ← V(st) + α[rt+1 + γrt+2 + γ2rt+3 + γ3V(st+3) − V(st)]

...

V(st) ← V(st) + α[Rt − V(st)] (2)

Equation (1) is Temporal Difference learning, TD(0). TD(λ) approximates the
range eqn (1)–(2), where higher λ is closer to the full MC method.

TD(λ) has been proven to converge

These are general methods for controlling the bias-variance tradeoff.

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 18 / 25

SARSA and Q Learning

Definitions: on-policy methods evaluate or improve the current policy used for
control. Off-policy methods evaluate or improve one policy, while acting using
another (behavior) policy.

In off-policy methods, the behavior policy must have non-zero probability for
each state-action the evaluated policy does.

SARSA: on-policy greedy control

Q(st, at) ← Q(st, at) + α[rt+1 + γ Q(st+1, at+1) − Q(st, at)]

Q Learning: off-policy greedy control

Q(st, at) ← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a) − Q(st, at)]

Converges if ∀a, s are visited and updated infinitely often.

We can also combine the bias-variance ideas with Q and SARSA, to get Q(λ) and
SARSA(λ).

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 19 / 25

Function Approximation

For very large or continuous state spaces it is hopeless to store a table with all the
state values or state-action values.

It makes sense to use function approximation

V(s) = fθ(s)

e.g. basis function representation:

V(s) =
∑

i

θiφi(s)

Similarly for Q(s, a).

This should hopefully lead to better general-
ization

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s

V
(s

)
Gradient descent methods:

θ(t + 1) = θ(t) + α[vt − Vt(st)]
∂Vt(st)

∂θ

where α is a learning rate and vt is a measured/estimated value. See chapter 8 of
Sutton and Barto.

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 20 / 25

Optimal Control

Optimal Control: The engineering field of optimal control covers exactly the
same topics as RL, except the state and action space is usually assumed to be
continuous, and the model is often known.

The Hamilton-Jacobi-Bellman optimality conditions are the continuous state
generalization of the Bellman equations.

A typical elementary problem in optimal control is the linear quadratic Gaussian
control LQG problem. Here the cost function is quadratic in states xt and actions
ut, and the system is a linear-Gaussian state-space model.

xt+1 = Axt + But + εt

For this model the optimal policy can be computed from the estimated state. It’s a
linear feedback controller:

ut = L�xt

The optimal policy here happens not depend on the uncertainty in xt. This is not
generally the case.

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 21 / 25

Influence Diagrams

You can extend the framework of directed
acyclic probabilistic graphical models (a.k.a.
Bayesian networks) to include decision nodes
and value nodes. These are called influence
diagrams.
Solving an influence diagram corresponds to
finding the settings of the decision nodes that
maximize the expectation of the value node.

st+1 st+2st

rt+1 rt+2rt

......

at at+1 at+2

U

It is possible to convert the problem of solving an influence diagram into the
problem of doing inference in a (usually multiply connected) graphical model
(Shachter and Peot, 1992). Exact solutions can be computationally intractable.

Like other graphical models, influence diagrams can contain both observed and
hidden variables...

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 22 / 25

POMDPs

POMDP = Partially-observable Markov
decision problem.
The agent does not observe the full state
of the environment.
What is the optimal policy?

st+1 st+2st

rt+1 rt+2rt

......

at at+1 at+2

ot ot ot

actions

hidden
states

rewards and
observations

• If the agent has the correct model of the world, it turns out that the optimal
policy is a (piece-wise linear) function of the belief state,
P(st|a1, . . . , at−1, r1, . . . , rt, o1, . . . , ot).
Unfortunately, the belief state can grow exponentially complex.

• Equivalently, we can view the optimal policy as being a function of the entire
sequence of past actions and observations (this is the usual way the policy in
influence diagrams is represented).
Unfortunately, the set of possible such sequences grows exponentially.

Efficient methods for approximately solving POMDPs is an active research area.
Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 23 / 25

RL summary

Central ideas in reinforcement learning

• the difference between reward and value

• Bellman consistency of values Vπ(s) =
∑

a π(s, a)
∑

s′ P
a
ss′

(
Ra

ss′ + γVπ(s ′)
)

• Policy Iteration = Policy Evaluation + Policy Improvement
• Requires knowledge of and represenatation of transitions and rewards
• Key idea: run the algorithms as we’re experiencing the MDP
• on-policy and off-policy methods (SARSA and Q-learning) don’t require

knowledge of transition probabilities and rewards
• exploration vs. exploitation

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 24 / 25

Some References on Reinforcement Learning

• Kaelbling, L.P., Littman, M.L. and Moore, A.W. (1996) Reinforcement
Learning: A Survey. Journal of Aritificial Intelligence Research 4:237-285.

• Sutton, R.S. and Barto, A.G. (2000) Reinforcement Learning: An
Introduction. MIT Press.
http://www.cs.ualberta.ca/∼sutton/book/ebook

• Bertsekas, D.P. and Tsitsiklis, J.N. (1996) Neuro-Dynamic Programming.
Athena Scientific.

• Bryson, A.E. and Ho, Y.-C. (1975) Applied Optimal Control. Hemisphere
Publishing Corp. Washington DC.

Ghahramani & Rasmussen (CUED) Lecture 13, 14, 15: Reinforcement Learning February 29th, March 5th and 7th, 2008 25 / 25

