
4F13 Machine Learning: Coursework #1: Message Passing in Factor Graphs

Zoubin Ghahramani & Carl Edward Rasmussen

Due: 4pm Tuesday Feb 24th, 2009 to Rachel Fogg, room 37 (Baker)

In this assignment you will implement inference in a family of binary factor graphs. Below are some hints about the data
structures which you can use for your implementation; this is not necessarily the most e�cient implementation possible, but
su�cient for our purposes. We assume that all variables, x1, . . . xN, are binary, taking on values 0 and 1. In order to simplify
the problem we will also assume that each factor connects to not more than two variables.

Most of the questions in the assignment will concern one particular graph, described below. However, the code which you
are asked to write should be applicable in general to singly connected graphs with binary units and at most two variables
connected to each factor. The implementation should be written in Matlab (or Octave). Hand in compact but commented
printouts of the code and results of running it on the questions below. Your solution should not exceed 5 pages.

The number of variables in the graph is N = 6 and the number of factors is K = 5. The topology of the graph is given by the
binary graph matrix G of size N by K, each element indicating which variables are connected to which factors. The graph
matrix is:

G =


1 0 0 0 0
1 0 1 0 1
0 1 1 1 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

There is a 2 × 2 table representing each of the K factors; these are collected in the 3 dimensional array F with the entries
which result in running the following Matlab script:

F = ones(K,2,2);

F(1,2,2) = 5; F(2,1,2) = 0.5; F(3,1,1) = 0; F(4,1,1) = 2;

Here, F(j,p,q) is the value of factor j when the variable with the smaller numerical index is set to p − 1 and the variable
with the larger numerical index is set to q − 1.

10% Draw the factor graph for G. Is it singly connected?

40% Write a function computeMarginals which implements factor graph propagation to compute the marginal probabilities
of all variables in the graph, updating messages from variables to factors and from factors to variables. The function
should be called in the following way:

B = computeMarginals(G, F);

where G is the graph matrix and F is the factor array, and B is the returned N × 2 matrix of marginal probabilities
(e.g. B(3,1)=P(x3 = 0) and B(3,2)=P(x3 = 1)). Inside the function, you will need data structures to represent the
messages from variables to factors, VF, and from factors to variables, FV, with the following sizes

VF = ones(N, K, 2); FV = ones(K, N, 2);

and you will also need binary matrices Vsent and Fsent of sizes

Vsent = zeros(N, K); Fsent = zeros(K, N);

to remember which messages have been sent (e.g. Vsent(2,5) means variable 2 has sent a message to factor 5). Run
your function on G and F and report the answer B.

15% If you are interested in only knowing the marginal probability of one of the variables, describe how you would modify
your algorithm to be more e�cient by avoiding sending unnecessary messages (you do not have to implement this
modi�cation).

15% Write a function bruteForce which enumerates all 2N con�gurations of the variables and returns the marginals

B = bruteForce(G, F);

Report B and compare to the result of computeMarginals.

10% Consider the problem of computing the marginals when conditioning on observed values of one or more of the vari-
ables. Describe a way you could do this by adding additional factors to the original graph and using the function
computeMarginals.

10% Use your idea from the question above to compute p(x2|x1 = 0, x4 = 1) and report your result.


