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What is machine learning?

* Machine learning is an interdisciplinary field focusing on both the
mathematical foundations and practical applications of systems that learn,
reason and act.

* Other related terms: Pattern Recognition, Neural Networks, Data Mining,
Statistical Modelling ...

e Using ideas from: Statistics, Computer Science, Engineering, Applied
Mathematics, Cognitive Science, Psychology, Computational Neuroscience,
Economics

e The goal of these lectures: to introduce important concepts, models and
algorithms in machine learning.

e For more: We have organised a “Tutorial Lecture Series on Machine
Learning” with a series of guest lecturers (Thursdays, 4-6pm in LT2). Go to
talks.cam.ac.uk, search for “Machine Learning” for various local reading
groups, lectures, and seminars.
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Warning!

Lecture 1 will overlap somewhat with my lectures in 3f3: Pattern
Processing—but don’t despair, a lot of new material later!
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What is machine learning useful for?
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Automatic speech recognition
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Computer vision: e.g. object, face and handwriting

recognition
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Information retrieval
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Financial prediction
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Medical diagnosis
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Bioinformatics
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e.g. modelling gene microarray data, protein structure prediction
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Robotics

DARPA $2m Grand Challenge
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Movie recommendation systems

NETELLX
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Mo ies For You

The Netfix Prize seeks to substantially
improve the accuracy of predictions about
how much someone is going to love a
movie based on their movie preferances.
Improve itenough and you win one (or
more) Prizes. Winning the Netfix Prize
improves our ability to connect peaple o
the movies they love.

Read the Rulesto see whatis required to
win the Prizes. Ifyou are interested in
joining the quest, you should register &

questions about the Prize. And check out
how various teams are doing on the
Leaderboard,

1 e
Wnrds i You should also read the frequeniy-asked

rtDataA
BD-

Good luck and thanks for helping!

Challenge: to improve the accuracy of movie preference predictions

Netflix $1m Prize. Competition started Oct 2, 2006 and still ongoing.
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Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:
X1,%2,X3, X4, ...

Supervised learning: The machine is also given desired outputs y1,y,, .. ., and its
goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build a model of x that can
be used for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce actions a1, a5, ... which
affect the state of the world, and receives rewards (or punishments) 7{, 75, .. .. Its
goal is to learn to act in a way that maximises rewards in the long term.

(In this course we’ll focus mostly on unsupervised learning and reinforcement
learning.)
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Key Ingredients

Data
We will represent data by vectors in some vector space’
Let x denote a data point with elements x = (x1,x,...,%p)

The elements of x, e.g. x4, represent measured (observed) features of the data
8. X4, Iep
point; D denotes the number of measured features of each point.

The data set D consists of N data points:

D ={xM x? . xN)

I'This assumption can be relaxed.
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Key Ingredients

Data
Let x = (x1,%2,...,xp) denote a data point, and D = {xV), ... xN} a data set
Predictions

We are generally interested in predicting
something based on the observed data.

Given D what can we say about x(N+1)?
: (N+1) _(N+1) (N+1)
Given D and x; ", x,  ,...,xp

N+1
what can we say about x;) 15
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Key Ingredients

Data
Let x = (x1,%2,...,%p) be a data point, and D = {xV), x(2) . x(N)} a data set
Predictions

We are interested in predicting something based on the observed data set.
Given D what can we say about x(N*+1)?
(N+1) 5

. N+1) (N+1 N+1
Given D and x\N"1 xINTV kN D what can we say about x!)

Model

To make predictions, we need to make some assumptions. We can often express
these assumptions in the form of a model, with some parameters, 6.

Given data D, we learn the model parameters 0, from which we can predict new
data points.

The model can often be expressed as a probability distribution over data points
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Basic Rules of Probability

Let X be a random variable taking values x in some set X.
Probabilities are non-negative P(X = x) > 0 Vx.
Probabilities normalise: ) .o P(X = x) = 1 for distributions if x is a discrete

variable and jfij p(x)dx = 1 for probability densities over continuous variables

The joint probability of X =xand Y=1yis: P(X =x,Y =y).

The marginal probability of X = x is: P(X =x) = } | P(X =x, ), assuming y is
discrete. I will generally write P(x) to mean P(X = x).

The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

Bayes Rule:

P(x,y) = P(x)P(ylx) = P(y)P(xly) = P(ylx) = %

Warning: I will not be obsessively careful in my use of p and P for probability density and
probability distribution. Should be obvious from context.
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Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?
Some axioms (informally):

e if something is certain, its uncertainty = 0
e uncertainty should be maximum if all choices are equally probable
e uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the
entropy function:

H(X)=-) P(X=x) logP(X =x)
xeX

measured in bits (binary digits) if the base 2 logarithm is used or nats (natural
digits) if the natural (base e) logarithm is used.
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Some Definitions Relating to Information Theory

Surprise (for event X = x): —log P(X = x)
* Entropy = average surprise: H(X) = -3 . P(X =x) logP(X =x)

Conditional entropy

H(X|Y) = ZZny log P(xly)

Mutual information
I(X:Y) = H(X) — H(X|Y) = H(Y) — H(Y|X) = H(X) + H(Y) — H(X, Y)
* Independent random variables: P(x,y) = P(x)P(y) Vx Vy

How do we relate information theory and probabilistic modelling?

Ghahramani & Rasmussen (CUED) Lecture 1: Introduction to Machine Learning January 16th, 2009 19/26



The source coding problem

Imagine we have a set of symbols X ={a,b, c,d, e, £, g, h}.

We want to transmit these symbols over some binary communication channel, i.e.
using a sequence of bits to represent the symbols.

Since we have 8 symbols, we could use 3 bits per symbol (2° = 8). For example:
a=000,b=001,¢c=010, ..., h =111

Is this optimal?

What if some symbol, a, is much more probable than other symbols, e.g. £?
Shouldn’t we use fewer bits to transmit the more probable symbols?

Think of a discrete variable X taking on values in X, having probability
distribution P(X).

How does the probability distribution P(X) relate to the number of bits we need
for each symbol to optimally and losslessly transmit symbols from X?
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Shannon’s Source Coding Theorem

A discrete random variable X, distributed according to P(X) has entropy:

Z P(x)log, P(

xeX

Shannon’s source coding theorem: Consider a random variable X, with entropy
H(X). A sequence of # independent draws from X can be losslessly compressed
into a minimum expected code of length 7L bits, where H(X) < L < H(X) + 1

If each symbol is given a code length /(x) = —log, O(x) then the expected
per-symbol length Lo of the code is

Lo =) Px)x) ZP )log, O(x) = H(X) + KL(P||Q),

where the relative-entropy or Kullback-Leibler divergence is

KL(PIQ) = 3 Plx) o, o 20

Take home message: better probabilistic models = more efficient codes
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Some distributions

Univariate Gaussian density (x € R):

Y
plotu ) = = exp { -2

Multivariate Gaussian density (x € RP):

p(xlp £) = 275~} exp {—i(x CWTE (x— u)}

Bernoulli distribution (x € {0, 1}):
p(x[8) = 0%(1—-0)

1—x

L}):
p(x/6) Hez ()

where 8(a,b) = 1iffa=b,and Y}, 0, =1and 6, > 0 VL.
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Some distributions (cont)

Uniform (x € [a, b]):

fa<x<b
otherwise

plata,b) = { 7

Gamma (x > 0):

ba
p(xla,b) = r(a)x"*1 exp{—bx}
Beta (x € [0, 1]):
_ Pt B) aipq _ yp-t

where I'(z) = fgo 2~ le~tdt is the gamma function, a generalisation of the
factorial: T'(n) = (n— 1)1.
Dirichlet (p € RP, py > 0, ZdD:1 pa=1):

p(ple) =

Ghahramani & Rasmussen (CUED) Lecture 1: Introduction to Machine Learning January 16th, 2009

23/26



Dirichlet Distributions

Examples of Dirichlet distributions over p = (p1, p2, p3) which can be plotted in
2D since p3 =1 —p1 — pa:

Dirichlet(1,1,1) Dirichlet(2,2,2) Dirichlet(10,10,10)
Dirichlet(2,10,2) Dirichlet(2,2,10) Dirichlet(0.9,0.9,0.9)

\
.
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Other distributions you should know about...

Exponential family of distributions:

P(x|8) = f(x) g(8) exp {P(0) u(x)}
where ¢ (0) is the vector of natural parameters, u are sufficient statistics
e Binomial
e Multinomial

e Poisson

¢ Student t distribution
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End Notes

It is very important that you understand all the material in the following
cribsheet:
http://learning.eng.cam.ac.uk/zoubin/ml06/cribsheet.pdf

Here is a useful statistics / pattern recognition glossary:
http://research.microsoft.com/~minka/statlearn/glossary/
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