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Motivation

Many statistical inference problems result in intractable computations...
e Bayesian posterior over model parameters:

P(DIB)P(0)

P(OID) = =53

e Computing posterior over hidden variables (e.g. for E step of EM):

P(V|H, 0)P(H|)
P(V]0)

P(H|V.08) =

e Computing marginals in a multiply-connected graphical
models:

Plxilx; = e) Z P(x|x; = e)

x\{x;, x/}

Solutions: Markov chain Monte Carlo, variational approx-
imations
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Example: Binary latent factor model

P(5|7T) ZP(S1 ..... SK|7'[) =

plylst, ... sk, 1 0%) =

EM optimizes bound on likelihood:

where (), is expectation under g:

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (s, .. ., sK)
real-valued observation vector y
parameters 0 = {{u;, 7t,~}lK:1, a2}

s ~ Bernoulli
yls ~ Gaussian

F(q.0) = (logp(s, y10))y(s) — (logq(s))4(s)
def

(f(s))g = 2_sf(s)qls)

Exact E step: g(s) = p(sly, ©) distribution over 2K states: intractable for large K
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Example: Binary latent factor model

organised into a vector s = (sq,...,Sk)
real-valued observation vector y
parameters 0 = {{p;, 1;}K |, 0}

s ~ Bernoulli
yls ~ Gaussian

Figure 2: Left panel: Original source images used to generate data. Middle panel: Observed images
resulting from mixture of sources. Right panel: Recovered sources

from Lu et al (2004)
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Review: The EM algorithm

Given a set of observed (visible) variables V, a set of unobserved (hidden / latent /
missing) variables H, and model parameters 8, optimize the log likelihood:

L(0) =logp(V]0) = long(H, V|0)dH,

Using Jensen’s inequality, for any distribution of hidden variables g(H) we have:

p(H, V|0)
q(H)

p(H, VI6)

S dH = F(q.9),

£(6) =1ogjq(H) dH > Jq(H) log

defining the F(g, 0) functional, which is a lower bound on the log likelihood.
In the EM algorithm, we alternately optimize F(q, 0) wrt g and 8, and we can
prove that this will never decrease L.
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The E and M steps of EM

The lower bound on the log likelihood:

(H, V|8)

F(q,0) = Jq(H) log ? iy = Jq(H) log p(H, VIO)dH + 7((q),

where H(gq) = — J q(H)logq(H)dH is the entropy of g. We iteratively alternate:

E step: maximize F(q, 0) wrt the distribution over hidden variables given
the parameters:

q[k](H) ‘= argmax ?(q(H),GU‘ ”) :p(Hlv,G[k .
q(H)

M step: maximize F(q, 0) wrt the parameters given the hidden distribution:

0¥ := argmax Sr(q[k](H), 0) = argmax Jq[k](H) logp(H, V|0)dH,
0 0

which is equivalent to optimizing the expected complete-data log

likelihood log p(H, V10), since the entropy of g(H) does not depend

on 6.
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Variational Approximations to the EM algorithm

Often p(H|V, 8) is computationally intractable, so an exact E step is out of the
question.

Assume some simpler form for q(H), e.g. q e Q, the set of fully-factorized
distributions over the hidden variables: g(H) = [ [, q(H,

E step (approximate): maximize F(q, 0) wrt the distribution over hidden
variables given the parameters:

q[k] (H) := argmax ff"(q(H), 9”"*”).
q(H)eQ

M step : maximize F(q, 0) wrt the parameters given the hidden
distribution:

0% := argmax F(q“d(H),@) = argmax qu(H) logp(H, V|6)dH
] 0

This maximizes a lower bound on the log likelihood.

Using the fully-factorized g is sometimes called a mean-field approximation.
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Example: Binary latent factor model

P(5|7T) ZP(S1 ..... SK|7'[) =

plylst, ... sk, 1 0%) =

EM optimizes bound on likelihood:

where (), is expectation under g:

Model with K binary latent variables, s; € {0, 1},

organised into a vector s = (s, .. ., sK)
real-valued observation vector y
parameters 0 = {{u;, 7t,~}lK:1, a2}

s ~ Bernoulli
yls ~ Gaussian

F(q.0) = (logp(s, y10))y(s) — (logq(s))4(s)
def

(f(s))g = 2_sf(s)qls)

Exact E step: g(s) = p(sly, ©) distribution over 2K states: intractable for large K
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Example: Binary latent factors model (cont.)

F(q.0) = (logp(s,y10))4(s)—(log g(s))4(s)

log  p(s,yl®) +¢

1
= YN silogm +(1—s)log(1—m)—Dlogo — 2Tr2(y_ Zsl-p,i)T(y— Zs,-u,-)

Zf:] silogm,  +(1—s;)log(1 —m)—Dlogo
1
~3o7 (yTy —2) smly+) ) s u,-)
i i

we therefore need (s;) and (s;s;) to compute .
These are the expected sufficient statistics of the hidden variables.
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Example: Binary latent factors model (cont.)

Variational approximation:

S)ZHqi si) HAS’ — A=)

where A; is a parameter of the variational approximation modelling the posterior

mean of s; (compare to 7;; which models the prior mean of s;).

Under this approximation we know (s;) = A; and (s;s;) = A\ + 8;;(A; — A2).
_ oo T . (1—m)
9)—;7\,105;7\1_—1—(1 Az)log(l_)\i)
1 .
~Dlogo— 5[y - Z_Mm (y=2_Am)

262 Z — Ny — 10g(27r)
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Fixed point equations for the binary latent factors
model

Taking derivatives w.r.t. A;:

E—lo Tt
on 1 g

)\- 1
—log T+ Sy =D A T — ST
i

Setting to zero we get fixed point equations:

T 1
}\i:f lOgl_l ZA”/ uz_ 2”’ H;
j#i

where f(x) = 1/(1 + exp(—x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of A for each data point.
M step: re-estimate O given As.
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KL divergence

Note that

E step maximize F(q, 0) wrt the distribution over hidden variables, given
the parameters:

g™ (H) := argmax F(q(H),0"* ).
q(H)€Q

is equivalent to:

E step minimize XL (q||p(H|V,8)) wrt the distribution over hidden
variables, given the parameters:

g® (H) = argminJ'q(H) log 5 g(H) dH

g(H)eQ (H|V,6lk-1])

So, in each E step, the algorithm tries to find the best approximation to p in Q.

This is related to ideas in information geometry.
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Variational Approximations to Bayesian Learning

logp(V) = logJJp(V,HIG)p(B)deG

p(V,H,0)

dH de
q(H, )

> ”q(H,G)log

Constrain g € Qs.t. g(H,0) = gq(H)q(0).
This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).
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Variational Approximations and Graphical Models I

Let q(H) =[], qi(H)).

Variational approximation maximises J:
5lq) = [ alH) logplH, V)dH - | g(H) log g(H)dH
Focusing on one term, g;, we can write this as:
Flq) = Jq,—(H,—) (log p(H, V)., 4y, dH; + Jq,—(H,—) log g;(H,)dH; + const

Where (-) (H)) denotes averaging w.r.t. g;(H;) for all i # j

~q;

Optimum occurs when:

) 1
q; (H;) = 7 eXp (logp(H. V1) 4. (n))
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Variational Approximations and Graphical Models II

Optimum occurs when:

gy 1 &) ()
q; (Hj) = ~ exp {log p(H. V)) g,
=[[;p(Xilpa;)

Assume graphical model: p(H, V)

log Qf(Hi) < Z 1OgP(Xi|PSl,-)>N(]/(H : + const

7

<10gP(Hj|Pa/)>Nq(H + Z (logp( Xklpak)ﬁq ) + const
i) kech,

This defines messages that get passed between nodes in the graph. Each node
receives messages from its Markov boundary: parents, children and parents of

children.
Variational Message Passing (Winn and Bishop, 2004)
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Expectation Propagation (EP)
Data (iid) D = {xV ..., xN)}, model p(x|0), with parameter prior p(8).
N

The parameter posterior is: p(0|D) = [%mp(e) Hp(x(i)
i—1

C)

N
We can write this as product of factors over ©: p(0) Hp(x(” 10) = Hﬂ(e)
i=1 =

where fo(0) p ) and £;(© dﬁf p(x7|@) and we will ignore the constants.

We wish to approximate this by a product of simpler terms: q(0) def Hf,(

=0

G)) (intractable)

N
min XL (Hﬁ-(e)

min KL (ﬁ(e) Hﬁ(G)) (simple, non-iterative, inaccurate)

mm KL (f, Hf, 8) H ]N[/(G)) (simple, iterative, accurate) < EP
(e L
J#i j#i
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Expectation Propagation II

Input fo(9) .. fN _
Initialize £y (0 fo ), fi(8) =1 fori> 0, q(8) = [Lfi(e)

repeat
fori=0...Ndo
Deletion: ¢q.,(0) Hf;
_ j#i
Projection: fV( ) «— arg ;T(léf)l KL(1i(0)qu(0)[f(0)g.(0
Inclusion: (8) «— £2V(0) g.(0)

end for
until convergence

The EP algorithm. Some variations are possible: here we assumed that fj is in the
exponential family, and we updated sequentially over i.

* Tries to minimize the opposite KL to variational methods
* £i(0) in exponential family — projection step is moment matching
* No convergence guarantee (although convergent forms can be developed)
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Chapter 33.
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Research. http://johnwinn.org/Publications/papers/VMP2005.pdf
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Symposium on Biocomputing (PSB) 9:533-544.
http://psb.stanford.edu/psb-online/proceedings/psb04/1lu.pdf
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http://research.microsoft.com/~minka/papers/ep/roadmap.html

® Ghahramani, Z. (1995) Factorial learning and the EM algorithm. In Adv Neur Info
Proc Syst 7.
http://learning.eng.cam.ac.uk/zoubin/zoubin/factorial.abstract.html

¢ Jordan, M.I., Ghahramani, Z., Jaakkola, T.S. and Saul, L.K. (1999) An Introduction
to Variational Methods for Graphical Models. Machine Learning 37:183-233.
Available at: http://learning.eng.cam.ac.uk/zoubin/papers/varintro.pdf
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Appendix: The binary latent factors model for an i.i.d.

data set

21

Assume data set D = {y(!) ..., yN)} of N points and params 0 = {{u;, ;)X |, 0%}

Use a factorislgd distributioq\j

K
(S) = an(s(n)) = Han(SZ(”)) _ H H()\l(n))si(ﬂ (1 _ )\l(n))(lfsx(”))
n=1 i ;

n=1 i=1

N
Hp(y( 'l

ply™le) = ZP s, u, o)p(s|m)

p(DI6)

il
S
o
©
Il

Z?n qn(s™), 0) < logp(D|6)

<10gp(s(’”,y(”]|9)> - <logqn(s(”))>
Gu(st™)) Gn(s()

We need to optimise w.r.t. g,(s"")) for each data point, so
E step: optimize ¢,(s'") (i.e. A") for each 7.

M step: re-estimate 0 given g, (s )’s.
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Appendix: How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by
a variety of other methods.

One approach is to use the variational approximation as as a proposal
distribution for importance sampling.

But this will generally not work well. See exercise 33.6 in David MacKay’s
textbook.
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