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Model complexity and overfitting:
a simple example
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Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?
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. q D
How many auditory sources in the input?
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Using Occam’s Razor to Learn Model Structure

Compare model classes 7 using their posterior probability given the data:
P(y|m)P(m
Plrly) = T iy = [ Pyl mPI@n) dos
P(y) CH

Interpretation of P(y|m): The probability that randomly selected parameter
values from the model class would generate data set y.

Model classes that are too simple are unlikely to generate the data set.

Model classes that are too complex can generate many possible data sets, so
again, they are unlikely to generate that particular data set at random.

P(YIM;)

J———. "just right"

Y

All possible data sets
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Bayesian Model Comparison: Terminology

A model class m is a set of models parameterised by 0,,, e.g. the set of all
possible mixtures of 72 Gaussians.

The marginal likelihood of model class #:

Plylm) :J P(y18yn, 1) P(8,lm) dO,,

m

is also known as the Bayesian evidence for model .
The ratio of two marginal likelihoods is known as the Bayes factor:

P(ylm)
P(ylm’)

The Occam’s Razor principle is, roughly speaking, that one should prefer
simpler explanations than more complex explanations.

Bayesian inference formalises and automatically implements the Occam’s
Razor principle.
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Bayesian MOdCl Comparison: Occam’s Razor at Work
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e.g. for quadratic (M=2): y = ao + a1x + a»x* + €, where € ~ N(0, 1) and
02 = [ag a1 a> T

demo: polybayes
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Practical Bayesian approaches

* Laplace approximations:

e Makes a Gaussian approximation about the maximum a posteriori
parameter estimate.

* Bayesian Information Criterion (BIC)
* an asymptotic approximation.
e Markov chain Monte Carlo methods (MCMC):

¢ In the limit are guaranteed to converge, but:
e Many samples required to ensure accuracy.
e Sometimes hard to assess convergence.

* Variational approximations

Note: other deterministic approximations have been developed more recently and
can be applied in this context: e.g. Bethe approximations and Expectation
Propagation.
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Laplace Ap rox1mat10n

data set: y elssm=1. parameter sets: 01 ..., Oy

Model Comparlson. (mly) o P(m)P(y|m)

For large amounts of data (relative to number of parameters, d) the parameter

posterior is approximately Gaussian around the MAP estimate 0,,:

P(0,,ly, m) ~ (271) 7' |Al? exp {—i(em —6,,) A(8,, — ém)}

P(0, ylm)

PO = 5o, ly, m)

Evaluating the above for In P(y|m) at 8,, we get the Laplace approximation:

In P(ylm) = In P(,y/m) + In Py Iém,m)—l—%lann—%lnlA\

—A is the d x d Hessian matrix of log P(0,,ly, m):
Ape = WIHP( mly, m)lg .
Can also be derived from 2" order Taylor expansion of log posterior.

The Laplace approximation can be used for model comparison.
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Bayesian Information Criterion (BIC)

BIC can be obtained from the Laplace approximation:
In P(ylm) ~ In P(6,,|m) + In P(y|6,,, m) + ; In27— %ln |A|

in the large sample limit (N — oo) where N is the number of data points, A
grows as NAg for some fixed matrix Ao, so

In|A| — In|NAg| = In(N?Aq|) = dIn N + In|Ao|. Retaining only terms that grow
in N we get:

In P(ylm) ~ In P(y|6,,, m) — %llnN

Properties:

* Quick and easy to compute, and does not depend on the prior
* We can use the ML estimate of 0 instead of the MAP estimate

e It assumes that in the large sample limit, all the parameters are
well-determined (i.e. the model is identifiable; otherwise, d should be the
number of well-determined parameters)

e Danger: counting parameters can be deceiving! (c.f. sinusoid)
e It is equivalent to the “Minimum Description Length” (MDL) criterion
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Sampling Approximations

Let’s consider a non-Markov chain method, Importance Sampling:

In P(y|m)

an P(y|0,,,, m)P(0,,lm) dO,,
6”1

P(0,,|m)
0(0,)
P(0;|m)
o(el))

O(0,:) do,,

an P(y]0,,, m)
O,,

Q

1
(k)
In % % P(ylo,) m)

where 0% are i.i.d. draws from Q(8,,). Assumes we can sample from and
evaluate Q(0,,) (incl. normalization!) and we can compute the likelihood
P(yle};,m).

Although importance sampling does not work well in high dimensions, it inspires
the following approach: Create a Markov chain, Q; — Q41 . .. for which:

* 0.(0) can be evaluated including normalization
* limp . Qk(0) = P(Oly, m)
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Variational Bayesian Learning
Lower Bounding the Marginal Likelihood

Let the hidden latent variables be x, data y and the parameters 0.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s

inequality:

InP(y) = andXdGP(y,x,B) ||

P(y,x,0)

0(x,0)
P(y,x, 0)

O(x,0)

Use a simpler, factorised approximation to Q(x, 0):

andxdG O(x, 0)

> dede O(x.0)In

P(y,x, 0)

InPly) > dede Ox(x)Q0 (@) In 55515

= F(Ox(x),Qe(0).y).

Maximize this lower bound.
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Variational Bayesian Learning ...

Maximizing this lower bound, ¥, leads to EM-like updates:

Ox(x) o exp(InP(x,y10))5, (o) E—like step
Op(0) oc P(O)exp(InP(x,y0))¢ () M-—like step

Maximizing JF is equivalent to minimizing KL-divergence between the
approximate posterior, Q(0)Q(x) and the true posterior, P(0, x]y).

InP(y) — F(Ox(x), Qe(0),y)
(y

P(y,x, 0)
InP(y) — [ dxdo Ou(x)Q0(0) In 5L
0.(x)Q0(0) _
[ dxdo 0uix100(0)1n LLHTIE — ki(QIP)
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Mixture of Factor Analysers

Goal: &

¢ Infer number of clusters

e Infer intrinsic dimensionality of each cluster

Under the assumption that each cluster is Gaussian
embed_demo
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Mixture of Factor Analysers

True data: 6 Gaussian clusters with dimensions: (1 7 4 3 2 2) embedded in 10-D

Inferred structure:

number of points intrinsic dimensionalities

per cluster 1 7 4 3 2 2
8 | 2 [ 1 |
8 L2 1 2 |
16 1 [ 4 | 2
32 1 6 3 3 2 2
64 1 7 4 3 2 2
128 1 7 4 3 2 2

e Finds the clusters and dimensionalities efficiently.
* The model complexity reduces in line with the lack of data support.

demos: run_simple and ueda_demo
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Hidden Markov Models

i .zz ~E)

Discrete hidden states, s;.
Observations vy;.

How many hidden states?
What structure state-transition matrix?

demo: vbhmm_demo
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Linear Dynamical Systems

W ® © )
* Assumes y; generated from a sequence of Markov hidden state variables x;

e If transition and output functions are linear, time-invariant, and noise
distributions are Gaussian, this is a linear-Gaussian state-space model:

X; = AX;—1 + Wy, Y = Cx;+v,

e Three levels of inference:

I Given data, structure and parameters, Kalman smoothing — hidden
state;
IT Given data and structure, EM — hidden state and parameter point
estimates;
III Given data only, VEM — model structure and distributions over
parameters and hidden state.
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Summary & Conclusions

* Bayesian learning avoids overfitting and can be used to do model comparison

/ selection.
* But we need approximations:

e Laplace

e BIC

e Sampling
e Variational
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