
4F13 Machine Learning: Coursework #3: Variational Inference

Zoubin Ghahramani & Carl Edward Rasmussen

Due: 4pm Tuesday March 8th, 2011 to Rachel Fogg, room BNO-37

Consider the following binary latent factor model exactly as in Coursework 2, with a vector s of K binary latent
variables, s = (s1, . . . , sK), a real-valued observed vector y and parameters θ = {{µi,πi}
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where y us a D-dimensional vector and I is the D × D identity matrix. Assume you have a data set of N i.i.d.
observations of y, i.e. Y = {y(1), . . . , y(N)}. More details are provided in Appendix A.

General Matlab hint: wherever possible, avoid looping over the data points. Many (but not all) of these functions
can be written using matrix operations. In Matlab it's much faster.

Warning: Each question depends on earlier questions. Start as soon as possible.

Hand in: Derivations, code and plots. Your solution should not exceed 7 pages.

a) 40% : In this exercise you will implement the fully factored (a.k.a. mean-�eld) variational approximation
described in the course notes. That is, for each data point y

(n), the code will approximate the posterior
distribution over the hidden variables by a distribution:
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and �nd the λ(n)'s that maximize Fn holding θ �xed. Speci�cally, you should write a Matlab function:

[lambda,F] = MeanField(Y,mu,sigma,pie,lambda0,maxsteps)

where lambda is N × K, F is the lower bound on the likelihood, Y is the N ×D data matrix, mu is the D × K
matrix of means, pie is the 1×K vector of priors on s, lambda0 are initial values for lambda and maxsteps are
maximum number of steps of the �xed point equations. Run the function on data generated from genimages.m

using the parameters in parameters.mat from Coursework 2, and plot the value of the lower bound as a
function of steps. You might want to set a convergence criterion so that if F changes by less than some very
small number ε the iterations halt.

b) 20% : Using the parameters in parameters.mat and given just the �rst data point in the data set y
(1), run

the MeanField function in a). Convergence of a variational approximation results when the value of λ's as
well as F stops changing. Plot F and log(F(t)-F(t-1)) as a function of iteration number t for MeanField.
How rapidly does it converge? Plot F for three widely varying sigmas. How is this a�ected by increases and
decreases of sigma? Why? Support your arguments.

c) 20% : Recall from Coursework 2 the function:

[mu, sigma, pie] = MStep(Y,ES,ESS).

Put the variational E step and this M step code together into a function:

[mu, sigma, pie] = LearnBinFactors(Y,K,iterations)

where K is the number of binary factors, iterations is the maximum number of iterations of EM. Make sure
F always increases (this is a good debugging tool). This function should start by initialising the parameters
randomly from some suitable distribution. Describe what suitable means in this context.

d) 20% : Run your algorithm for learning the binary latent factor model on the data set generated by genimages.m
for several random parameter initialisations. What features mu does the algorithm learn (rearrange them into
4× 4 images) and how do they compare to the true parameters?


