4F13 Machine Learning: Coursework #1: Gaussian Processes

Carl Edward Rasmussen & Joaquin Quiñonero-Candela

Due: 4pm Thursday Feb 16th, 2012 to Rachel Fogg, room BNO-37

In this assignment, you'll need the Gaussian Processes for Machine Learning (GPML) toolbox for matlab and octave. Get the toolbox and walk through the documentation concerning regression at www.gaussianprocess.org/gpml/code

Your answers should contain an explanation of what you do, and 2-4 central commands to achieve it (but complete listings are unnecessary). Hand in a maximum of 5 pages.

- a) 10%: Load data from cw1d.mat. Train a GP with a squared exponential covariance function, covSEiso. Start the hyper-parameters at hyp.cov = [-1 0]; hyp.lik = 0; and minimize the negative log marginal likelihood. Show the 95% predictive error bars. Comment on the optimized hyperparameters.
- b) 10% : Show that by initializing the hyperparameters differently, you can find a different local optimum for the hyperparameters. Show the fit. Explain what is going on. Which fit is best, why?
- c) 10% : Train instead a GP with a periodic covariance function. Show the fit. Comment on the behaviour of the error-bars, compared to your fit from a). Do you think the data generating mechanism was really periodic? Why, why not?
- d) 10%: Generate 100 data points at x = linspace(-5,5,100)'; from a GP with the following covariance function: {@covProd, {@covPeriodic, @covSEiso}}, with covariance hyperparameters hyp.cov = [-0.5 0 0 2 0]. In order to apply the Cholesky decomposition to the covariance matrix, you may have to add a small diagonal matrix, say 1e-6*eye(100), why? Plot some sample functions. Explain their behaviour.
- e) 10%: Load cw1e.mat. This data has 2-D input and scalar output. Visualise the data using mesh(reshape(x(:,1),11,11),reshape(x(:,2),11,11),reshape(y,11,11)); Rotate the data, to get a good feel for it. Fit the data using a GP with covariance function covSEard. Comment on the fit. How much noise is there in the data?
- f) 10% : Fit the data instead using covSEiso. Is this a better model, why, why not? What is the relative probability of the two models, e) and f)?
- g) 15% : Use instead {@covSum, {@covSEard, @covSEard}} and be sure to break symmetry with the initial hyperparameters (eg by using hyp.cov = 0.1*randn(6,1);). Why is symmetry breaking necessary? Fit. Explain the model.
- h) 10% : Load the data from the file mauna.txt. This a time series of monthly average atmospheric Carbon Dioxide concentrations in parts per million (vol) measured at Mauna Loa in Hawaii. Extract the year and co2 variables: year = mauna(:,1); co2 = mauna(:,2); Divide the data into two sets: before Jan 1st 2004 for training and after Jan 1st 2004 for testing. Train a GP model with a linear mean function and a squared exponential covariance function. Show and comment on the fit.
- i) 15%: Use an additive covariance structure with what you think may be suitable components to model the data. Be careful to initialize the hyperparameters for each component to reasonable values, so that the minimizer finds a good (local) minimum for the negative log marginal likelihood. Explain, and show your fit.