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How do we fit this dataset?

* Dataset D = {xi,yi})\; of N pairs of inputs x; and targets y;.
This data can for example be measurements in an experiment.

* Goal: predict target y, associated to any arbitrary input x..
This is known a as a regression task in machine learning.

* Note: Here the inputs are scalars, we have a single input feature.
Inputs to regression tasks are often vectors of multiple input features.

Quifionero-Candela & Rasmussen (CUED) Lecture 1 and 2: Probabilistic Regression 2/32



Model of the data
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* In order to predict at a new x, we need to postulate a model of the data.
We will estimate y, with f(x,).

* But what is f(x)? Example: a polynomial
fw(x) = Wo+wix+wrx? +w3x® +... +wp xM
The wj are the weights of the polynomial, the parameters of the model.
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Model of the data. Example: polynomials of degree M
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Model structure

Qi

and model parameters
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Should we choose a polynomial?

What degree should we choose for the polynomial?
For a given degree, how do we choose the weights?
For now, let find the single “best” polynomial: degree and weights.
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Fitting model parameters: the least squares approach

e Idea: measure the quality of the fit to the training data.
* For each training point, measure the squared error eZ = (y; — f (x1))?.
* Find the parameters that minimise the sum of squared errors:

N
E(w) = ) e
i=1

fw(x) is a function of the parameter vector w = [wo, Wi, ...,wml .
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Least squares in detail. (1) Notation

Some notation: training targets y, predictions f and errors e.

* y=1[yi,...,yn] ' isa vector that stacks the N training targets.

o f=[fy(x1),...,fw(xn)]" stacks fy(x) evaluated at the N training inputs.

e e =y — fis the vector of training prediction errors.
The sum of squared errors is therefore given by
E(w) = [lef* = eTe = (y—0)(y—1)
More notation: weights w, basis functions ¢;(x) and matrix ®.

* w=[wo,Wi,...,wnml ' stacks the M + 1 model weights.

* ¢j(x) =] is a basis function of our linear in the parameters model.

M
fw(x) = Wol4+wix4+wr x> +...+wux™ = ij Pj(x)
j=0

* @y = dj(xy) allows us to write f = D w.
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Least squares in detail. (2) Solution

A Gradient View. The sum of squared errors is a convex function of w:
Ew) = (y=—fH'(y—f) = (y-@ow) (y-®w)
The gradient with respect to the weights is:

%‘:’V) =20 (y—Dw) =20 y—20" dw

The weight vector w that sets the gradient to zero minimises E(w):

w= (oo 'o'y

A Geometrical View. This is the matrix form of the Normal equations.

* The vector of training targets y lives in an N-dimensional vector space.

* The vector of training predictions f lives in the same space, but it is
constrained to being generated by the M + 1 columns of matrix @.

* The error vector e is minimal if it is orthogonal to all columns of ®:

Ple=0 < O (y—dw) =0
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Least squares fit for polynomials of degree 0 to 17
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Have solved the problem?

e Ok, so have we solved the problem?
e What do we think y, is for x, = —0.25? And for x, = 2?
e If M is large enough, we can find a model that fits the data
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Overfitting
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* All the models in the figure are polynomials of degree 17 (18 weights).
e All perfectly fit the 17 training points, plus any desired y, at x, = —0.25.
* We have not solved the problem. Key missing ingredient: assumptions!
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A laundry list of open questions

* Do we think that all models are equally probable... before we see any data?

What does the probability of a model even mean?

* Do we need to choose a single “best” model or can we consider several?

We need a “language” to represent them.

* Perhaps our training targets are contaminated with noise. What to do?

This question is a bit easier, we will start here.
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Observation noise

* Imagine the data was in reality generated by the red function.
e But each f(x,) was independently contaminated by a noise term ;.
* The observations are noisy: y; = fy(xi) + €i.
* We can characterise the noise with a probability density function.
For example a Gaussian density function, €; ~ N(ei; 0, 0% ...):
1 €?

pler) = ————exp(— 55—
27 Grzloise 2 Grzloise
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Probability of the observed data given the model

A vector and matrix notation view of the noise.
* € =leq,...,en] " stacks the independent noise terms:
.

e~N(e; 0, o

* Given that y = f + € we can write the probability of y given f:

1 N f||2
P(Y|f, 0%oise) - (y’ f 6“0156) - (72) eXp( ||2yG ” )

. noise
27-[ GHOISC

(e

/ 202
27 O'rlOlse noise

o E(w) =Y N (yi — fw(x1))? = ||y — @ w|]? is the sum of squared errors.
plylf, o%,.) for a given @.

* Since f = ® w we can write p(y\w, 02 ) =
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Likelihood function

Likelihood of the weights and probability of the data.

* plylw, o2,..) is the probability of the observed data given the weights.
2

noise

* L(w) o< p(ylw, o= . ) is the likelihood of the weights given the observed data.

Maximum likelihood.

* We can fit the model weights to the data by maximising the likelihood:

E(w)
2 g2

noise

W = argmax L(w) = argmax exp (— ) = argmin E(w)

e With an additive Gaussian independent noise model, the maximum
likelihood and the least squares solutions are the same.

* So ... we still have not solved the prediction problem! We still overfit.
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Multiple explanations of the data

Multiple explanations:

* We do not know what particular function generated the data.

* More than one of our models can perfectly fit the data.

* We want to reason in terms of a set of possible explanations, not just one.
* We believe more than one of our models could have generated the data.

15 -1 -05 0 0.5 1 15 2

Model complexity:

* We do not believe all models are equally likely to explain the data.
* We may believe a simpler model is more likely than a complex one.
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Medical inference (diagnosis)

Breast cancer facts:

* 1% of scanned women have breast cancer
* 80% of women with breast cancer get positive mammography
* 9.6% of women without breast cancer also get positive mammography

Question: A woman get’s a scan, and it is positive; what is the probability that
she has breast cancer?

® less than 1%
® around 10%
® around 90%
® more than 99%

Quifi o0-Candela & R (CUED) Lecture 1 and 2: Probabilistic Regression

17/32



Medical inference, numerical

Define: C = presence of breast cancer, C = no cancer

The probability of cancer for scanned women is p(C) = 1%

If there is cancer, the probability of a positive mammography is p(M|C) = 80%
If there is no cancer, we still have p(M|C) = 9.6%

The question is what is p(C|M)?

Consider 10000 subjects of screening

* p(C) = 1%, therefore 100 of them have cancer, of which
* p(MJ|C) = 80%, therefore 80 get a positive mammography
20 get a negative mammography

e p(C) = 99%, therefore 9900 of them do not have cancer, of which

* p(M|C) = 9.6%, therefore 950 get a positive mammography
e 8950 get a a negative mammography
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M M
C| 80 20

C | 950 | 8950

p(C|M) is obtained as the proportion of all positive mammographies for which
there actually is breast cancer

p(C,M) p(C,M) 80
CM = g = = ~ 7.8%
PIEM) = e M+ peM) — p(M) 80+950

This is an example of Bayes’ rule:

p(BIA)p(A)
p(B)

Which is just a consequence of the definition of conditional probability

p(A[B) =

p(AIB) — p;’?];?), (where p(B) £ 0).
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Just two rules of probability theory

Astonishingly, the rich theory of probability can be derived using just two rules:
The sum rule states that
PA) = Y pABL o pA) = | plABIE,
5 B
for discrete and continuous variables. Sometimes called marginalization.

The product rule states that

p(A,B) = p(A[B)p(B).

It follows directly from the definition of conditional probability, and leads
directly to Bayes’ rule

P(BIA)p(A)

p(AB)p(B) = p(A,B) = p(BIA)p(A) = p(AB) = (B

Special case:
if A and B are independent, p(A|B) = p(A), and thus p(A,B) = p(A)p(B).
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Posterior probability of a function

Given the prior functions p(f) how can we make predictions?

e Of all functions generated from the prior, keep those that fit the data.
* The notion of closeness to the data is given by the likelihood p(ylf).
* We are really interested in the posterior distribution over functions:

pfly) = pifpH Bayes Rule

ply)

15 2 :§.5 -1 -0.5 0 0.5 1 15 2

Some samples from the prior Samples from the posterior
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Prior probability of a function

A model M is the choice of a model structure and of parameter values.
M
fu(x) = ) wjd;(x)
=0

The prior p(w|M) determines what functions this model can generate. Example:

¢ Imagine we choose M = 17, and p(w;) = N(wy; 0, 02).
* We have actually defined a prior distribution over functions p(fM).

This figure is generated as follows: .

¢ Use polynomial basis functions, o
b;(x) =) Bl
* Define a uniform grid of x of
values in [-1.5, 2]. -t
* Generate matrix @ for M = 17. -2
* Set 02, = 1 and sample w; =
values. -
e Compute f = @ w and plot it. s s 2
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Maximum likelihood, parametric model
Supervised parametric learning:

* data: x,y
e model M: y = fy(x) + ¢

Gaussian likelihood:

plylx,w, M) Hexp *% i — fw(x1))2/ 0% oise)-

Maximize the likelihood:

wmr = argmax p(ylx, w, M).
w

Make predictions, by plugging in the ML estimate:
P(Yuhxe, W, M)
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Bayesian Inference, parametric model

Supervised parametric learning:

* data: x,y
e model M: y = fy(x) + ¢

Gaussian likelihood:

N
plyl,w, M) oc [ [exp(—3(yi — fuw(xi))?/0nice)-

i=1

Parameter prior:
p(wiM)

Posterior parameter distribution by Bayes rule p(alb) = p(bla)p(a)/p(b):

p(WIM)p(ylx, w, M)
plylx, M)

p(wix,y, M) =
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Bayesian inference, parametric model, cont.
Making predictions (marginalizing out the parameters):
P(y*\x*, X5, M) = JP(U*, W|X3 Y5 Xxs M)dW

- Jp(y*\w,x*,mm(wm,y,M)dw.

Marginal likelihood:

P20 = [pWOP(ylx, w0 dw,

Second level inference, model comparison, Bayes’ rule again

plylx, M)p(M)

pOMly,x) = PR S

oc p(ylx, M)p(M).

The marginal likelihood is used to select between models.
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Some useful Gaussian identities

If x is multivariate Gaussian with mean p and covariance matrix X

P, L) = 2aZ) P 2exp (— (x—w) I (x—w)/2),
then

Ex] = n,
Vix] = E[(x—E[x])?] = £.

For any matrix A, if z = Ax then

Elz] = Ay,
Viz] = AZAT.
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Marginal likelihood and predictive distribution in detail

Marginal likelihood for a linear in the paramters model with i.i.d. Gaussian noise:

e Gaussian prior on the weights: p(w|M) = N(w; 0, 02 1)

* Gaussian likelibood of the weights: p(y|x, w, M) = N(y; ®w, o2_. 1)

noise

Y

noise

plylx, M) = Jp(w\M)pmx,w,M)dw — N(y; 0,2 D DT + 02

Posterior parameter distribution by Bayes rule p(alb) = p(bla)p(a)/p(b):

p(WIM)p(ylx, w, M)
(wh, y, M) = = N(w; u, X)
ey Py, 2
1 . 52 S
L= ( ;ozlse(DT(I)+o-_ZI) and = ((D D + nmse I) () y
O_W

The predictive distribution is given by:

P(U*|X*,X;Y,M) = N(U*§ (D(X*)THJ (b(X,*)TZ(b(X*) +Gr210iseI)
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Understanding the marginal likelihood (1). Models

Consider 3 models M, M, and M3. Given our data:

* We want to compute the marginal likelibood for each model.
* We want to obtain the predictive distribution for each model.
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Understanding the marginal likelihood (2). Noise

Consider a very simple noise model

e ¢; ~ Uniform(—0.2,0.2) and all noise terms are independent.
* p(yilf(xi)) = 0 if ly; — f(xi)| > 0.2, and p(yilf(xi)) = 1/0.4 = 2.5 otherwise.
* The likelihood of a given function from the prior is

[0 if any |y; — f(xi)] > 0.2
p(ylf) = HP Yilf(xi)) = { 2.5N  otherwise

We will approximate the marginal likelihood by rejection sampling:

—_

S
p(ymi):jp(ym (E0,) df~§§ p(ylf) = Sa. 25N

e f; is a sample function drawn from the prior p(f{M;).

* A total of S functions are sampled from the prior.

e S, is the number of samples with non-zero likelihood: these are accepted.
The remaining S — S, samples are rejected.
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Understanding the marginal likelihood (3). Posterior

Posterior samples for each of the models obtained by rejection sampling.

* For each model we draw 1 million samples from the prior.
* We only keep the samples that have non-zero likelihood.

Sa |
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8.10~* of ¥ !
LN | ‘ ‘ A
-6 -4 -2 0 2 4 6
9.103

21073

o0-Candela & R

30/32



Predictive distribution

Predictive distribution for each of the models obtained.

* For each model we take all the posterior functions from rejection sampling.
* We compute the average and standard deviation of f(x;).

2,
+
or £ +
L ‘ ‘ ‘ b TRV ‘
-6 -4 -2 0 2 4 6
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Conclusions

Probability theory provides a framework for

* making inference in a model

* making probabilistic predictions

in parametric models.

It also provides a principled and automatic way of doing
* model comparison

In the follwing lectures, we’ll demonstrate how to use this framework to solve
challenging machine learning problems.
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