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How do we fit this dataset?

−1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

x
i

y
i

• Dataset D = {xi,yi}Ni=1 of N pairs of inputs xi and targets yi.
This data can for example be measurements in an experiment.

• Goal: predict target y∗ associated to any arbitrary input x∗.
This is known a as a regression task in machine learning.

• Note: Here the inputs are scalars, we have a single input feature.
Inputs to regression tasks are often vectors of multiple input features.
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Model of the data
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• In order to predict at a new x∗ we need to postulate a model of the data.
We will estimate y∗ with f(x∗).

• But what is f(x)? Example: a polynomial

fw(x) = w0 +w1 x+w2 x
2 +w3 x

3 + . . . +wM xM

The wj are the weights of the polynomial, the parameters of the model.
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Model of the data. Example: polynomials of degree M
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Model structure and model parameters
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• Should we choose a polynomial? model structure
• What degree should we choose for the polynomial? model structure
• For a given degree, how do we choose the weights? model parameters
• For now, let find the single “best” polynomial: degree and weights.
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Fitting model parameters: the least squares approach
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• Idea: measure the quality of the fit to the training data.
• For each training point, measure the squared error e2

i = (yi − f(xi))
2.

• Find the parameters that minimise the sum of squared errors:

E(w) =

N∑
i=1

e2
i

fw(x) is a function of the parameter vector w = [w0,w1, . . . ,wM]>.
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Least squares in detail. (1) Notation

Some notation: training targets y, predictions f and errors e.

• y = [y1, . . . ,yN]> is a vector that stacks the N training targets.
• f = [fw(x1), . . . , fw(xN)]> stacks fw(x) evaluated at the N training inputs.
• e = y − f is the vector of training prediction errors.

The sum of squared errors is therefore given by

E(w) = ‖e‖2 = e>e = (y − f)>(y − f)

More notation: weights w, basis functions φj(x) and matrix Φ.

• w = [w0,w1, . . . ,wM]> stacks the M+ 1 model weights.
• φj(x) = x

j is a basis function of our linear in the parameters model.

fw(x) = w0 1 +w1 x+w2 x
2 + . . . +wM xM =

M∑
j=0

wjφj(x)

• Φij = φj(xi) allows us to write f = Φw.
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Least squares in detail. (2) Solution

A Gradient View. The sum of squared errors is a convex function of w:

E(w) = (y − f)>(y − f) = (y −Φw)>(y −Φw)

The gradient with respect to the weights is:

∂E(w)

∂w
= 2Φ>(y −Φw) = 2Φ> y − 2Φ>Φw

The weight vector ŵ that sets the gradient to zero minimises E(w):

ŵ = (Φ>Φ)−1 Φ> y

A Geometrical View. This is the matrix form of the Normal equations.

• The vector of training targets y lives in an N-dimensional vector space.
• The vector of training predictions f lives in the same space, but it is

constrained to being generated by the M+ 1 columns of matrix Φ.
• The error vector e is minimal if it is orthogonal to all columns of Φ:

Φ> e = 0 ⇐⇒ Φ> (y −Φw) = 0
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Least squares fit for polynomials of degree 0 to 17
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Have solved the problem?
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• Ok, so have we solved the problem?
• What do we think y∗ is for x∗ = −0.25? And for x∗ = 2?
• If M is large enough, we can find a model that fits the data
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Overfitting
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• All the models in the figure are polynomials of degree 17 (18 weights).
• All perfectly fit the 17 training points, plus any desired y∗ at x∗ = −0.25.
• We have not solved the problem. Key missing ingredient: assumptions!
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A laundry list of open questions

• Do we think that all models are equally probable... before we see any data?

What does the probability of a model even mean?

• Do we need to choose a single “best” model or can we consider several?

We need a “language” to represent them.

• Perhaps our training targets are contaminated with noise. What to do?

This question is a bit easier, we will start here.
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Observation noise
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• Imagine the data was in reality generated by the red function.
• But each f(x∗) was independently contaminated by a noise term εi.
• The observations are noisy: yi = fw(xi) + εi.
• We can characterise the noise with a probability density function.

For example a Gaussian density function, εi ∼ N(εi; 0,σ2
noise):

p(εi) =
1√

2πσ2
noise

exp
(
−

ε2
i

2σ2
noise

)
Quiñonero-Candela & Rasmussen (CUED) Lecture 1 and 2: Probabilistic Regression 13 / 32



Probability of the observed data given the model

A vector and matrix notation view of the noise.

• ε = [ε1, . . . , εN]> stacks the independent noise terms:

ε ∼ N(ε; 0, σ2
noiseI) p(ε) =

N∏
i=1

p(εi) =
( 1√

2πσ2
noise

)N
exp

(
−

ε>ε

2σ2
noise

)
• Given that y = f + ε we can write the probability of y given f:

p(y|f, σ2
noise) = N(y; f, σ2

noise) =
( 1√

2πσ2
noise

)N
exp

(
−
‖y − f‖2

2σ2
noise

)
=
( 1√

2πσ2
noise

)N
exp

(
−
E(w)

2σ2
noise

)
• E(w) =

∑N
i=1(yi − fw(xi))

2 = ‖y −Φw‖2 is the sum of squared errors.
• Since f = Φw we can write p(y|w, σ2

noise) = p(y|f, σ
2
noise) for a given Φ.
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Likelihood function

Likelihood of the weights and probability of the data.

• p(y|w, σ2
noise) is the probability of the observed data given the weights.

• L(w) ∝ p(y|w, σ2
noise) is the likelihood of the weights given the observed data.

Maximum likelihood.

• We can fit the model weights to the data by maximising the likelihood:

ŵ = argmax L(w) = argmax exp
(
−
E(w)

2σ2
noise

)
= argmin E(w)

• With an additive Gaussian independent noise model, the maximum
likelihood and the least squares solutions are the same.

• So ... we still have not solved the prediction problem! We still overfit.
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Multiple explanations of the data

Multiple explanations:

• We do not know what particular function generated the data.
• More than one of our models can perfectly fit the data.
• We want to reason in terms of a set of possible explanations, not just one.
• We believe more than one of our models could have generated the data.
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Model complexity:

• We do not believe all models are equally likely to explain the data.
• We may believe a simpler model is more likely than a complex one.
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Medical inference (diagnosis)

Breast cancer facts:

• 1% of scanned women have breast cancer
• 80% of women with breast cancer get positive mammography
• 9.6% of women without breast cancer also get positive mammography

Question: A woman get’s a scan, and it is positive; what is the probability that
she has breast cancer?

1 less than 1%

2 around 10%

3 around 90%

4 more than 99%
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Medical inference, numerical

Define: C = presence of breast cancer, C̄ = no cancer

The probability of cancer for scanned women is p(C) = 1%

If there is cancer, the probability of a positive mammography is p(M|C) = 80%

If there is no cancer, we still have p(M|C̄) = 9.6%

The question is what is p(C|M)?

Consider 10000 subjects of screening

• p(C) = 1%, therefore 100 of them have cancer, of which
• p(M|C) = 80%, therefore 80 get a positive mammography
• 20 get a negative mammography

• p(C̄) = 99%, therefore 9900 of them do not have cancer, of which
• p(M|C̄) = 9.6%, therefore 950 get a positive mammography
• 8950 get a a negative mammography

Quiñonero-Candela & Rasmussen (CUED) Lecture 1 and 2: Probabilistic Regression 18 / 32



M M̄

C 80 20

C̄ 950 8950

p(C|M) is obtained as the proportion of all positive mammographies for which
there actually is breast cancer

p(C|M) =
p(C,M)

p(C,M) + p(C̄,M)
=
p(C,M)

p(M)
=

80
80 + 950

' 7.8%

This is an example of Bayes’ rule:

p(A|B) =
p(B|A)p(A)

p(B)
.

Which is just a consequence of the definition of conditional probability

p(A|B) =
p(A,B)
p(B)

, (where p(B) 6= 0).
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Just two rules of probability theory

Astonishingly, the rich theory of probability can be derived using just two rules:

The sum rule states that

p(A) =
∑
B

p(A,B), or p(A) =

∫
B

p(A,B)dB,

for discrete and continuous variables. Sometimes called marginalization.

The product rule states that

p(A,B) = p(A|B)p(B).

It follows directly from the definition of conditional probability, and leads
directly to Bayes’ rule

p(A|B)p(B) = p(A,B) = p(B|A)p(A) ⇒ p(A|B) =
p(B|A)p(A)

p(B)
.

Special case:
if A and B are independent, p(A|B) = p(A), and thus p(A,B) = p(A)p(B).
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Posterior probability of a function

Given the prior functions p(f) how can we make predictions?

• Of all functions generated from the prior, keep those that fit the data.
• The notion of closeness to the data is given by the likelihood p(y|f).
• We are really interested in the posterior distribution over functions:

p(f|y) =
p(y|f)p(f)
p(y)

Bayes Rule
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Samples from the posterior
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Prior probability of a function

A model M is the choice of a model structure and of parameter values.

fw(x) =

M∑
j=0

wjφj(x)

The prior p(w|M) determines what functions this model can generate. Example:

• Imagine we choose M = 17, and p(wi) = N(wi; 0,σ2
w).

• We have actually defined a prior distribution over functions p(f|M).

This figure is generated as follows:
• Use polynomial basis functions,
φj(x) = x

j.
• Define a uniform grid of x

values in [-1.5, 2].
• Generate matrix Φ for M = 17.
• Set σ2

w = 1 and sample wi

values.
• Compute f = Φw and plot it. −1.5 −1 −0.5 0 0.5 1 1.5 2

−5

−4

−3

−2

−1

0

1

2

3

Quiñonero-Candela & Rasmussen (CUED) Lecture 1 and 2: Probabilistic Regression 22 / 32



Maximum likelihood, parametric model

Supervised parametric learning:

• data: x, y
• model M: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w,M) ∝
N∏
i=1

exp(− 1
2 (yi − fw(xi))

2/σ2
noise).

Maximize the likelihood:

wML = argmax
w

p(y|x, w,M).

Make predictions, by plugging in the ML estimate:

p(y∗|x∗, wML,M)
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Bayesian Inference, parametric model

Supervised parametric learning:

• data: x, y
• model M: y = fw(x) + ε

Gaussian likelihood:

p(y|x, w,M) ∝
N∏
i=1

exp(− 1
2 (yi − fw(xi))

2/σ2
noise).

Parameter prior:
p(w|M)

Posterior parameter distribution by Bayes rule p(a|b) = p(b|a)p(a)/p(b):

p(w|x, y,M) =
p(w|M)p(y|x, w,M)

p(y|x,M)
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Bayesian inference, parametric model, cont.

Making predictions (marginalizing out the parameters):

p(y∗|x∗, x, y,M) =

∫
p(y∗, w|x, y, x∗,M)dw

=

∫
p(y∗|w, x∗,M)p(w|x, y,M)dw.

Marginal likelihood:

p(y|x,M) =

∫
p(w|M)p(y|x, w,M)dw.

Second level inference, model comparison, Bayes’ rule again

p(M|y, x) =
p(y|x,M)p(M)

p(y|x)
∝ p(y|x,M)p(M).

The marginal likelihood is used to select between models.
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Some useful Gaussian identities

If x is multivariate Gaussian with mean µ and covariance matrix Σ

p(x;µ,Σ) = (2π|Σ|)−D/2 exp
(
− (x − µ)>Σ−1(x − µ)/2

)
,

then

E[x] = µ,

V[x] = E[(x − E[x])2] = Σ.

For any matrix A, if z = Ax then

E[z] = Aµ,

V[z] = AΣA>.
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Marginal likelihood and predictive distribution in detail

Marginal likelihood for a linear in the paramters model with i.i.d. Gaussian noise:

• Gaussian prior on the weights: p(w|M) = N(w; 0, σ2
w I)

• Gaussian likelihood of the weights: p(y|x, w,M) = N(y; Φw, σ2
noise I)

p(y|x,M) =

∫
p(w|M)p(y|x, w,M)dw = N(y; 0,σ2

w ΦΦ> + σ2
noise I)

Posterior parameter distribution by Bayes rule p(a|b) = p(b|a)p(a)/p(b):

p(w|x, y,M) =
p(w|M)p(y|x, w,M)

p(y|x,M)
= N(w; µ, Σ)

Σ =
(
σ−2

noiseΦ
>Φ+ σ−2

w I
)−1

and µ =
(
Φ>Φ+

σ2
noise

σ2
w

I
)−1

Φ>y

The predictive distribution is given by:

p(y∗|x∗, x, y,M) = N(y∗; φ(x∗)
>µ, φ(x∗)

>Σφ(x∗) + σ
2
noise I)
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Understanding the marginal likelihood (1). Models

Consider 3 models M1, M2 and M3. Given our data:

• We want to compute the marginal likelihood for each model.
• We want to obtain the predictive distribution for each model.
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Understanding the marginal likelihood (2). Noise

Consider a very simple noise model

• εi ∼ Uniform(−0.2, 0.2) and all noise terms are independent.
• p(yi|f(xi)) = 0 if |yi − f(xi)| > 0.2, and p(yi|f(xi)) = 1/0.4 = 2.5 otherwise.
• The likelihood of a given function from the prior is

p(y|f) =
N∏
i=1

p(yi|f(xi)) =

{
0 if any |yi − f(xi)| > 0.2
2.5N otherwise

We will approximate the marginal likelihood by rejection sampling:

p(y|Mi) =

∫
p(y|f)p(f|Mi) d f ≈ 1

S

S∑
s=1

p(y|fs) =
Sa

S
· 2.5N

• fj is a sample function drawn from the prior p(f|Mi).
• A total of S functions are sampled from the prior.
• Sa is the number of samples with non-zero likelihood: these are accepted.

The remaining S− Sa samples are rejected.
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Understanding the marginal likelihood (3). Posterior

Posterior samples for each of the models obtained by rejection sampling.

• For each model we draw 1 million samples from the prior.
• We only keep the samples that have non-zero likelihood.

Sa p(y|Mi)

8 8.10−4

88 9.10−3

17 2.10−3
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Predictive distribution

Predictive distribution for each of the models obtained.

• For each model we take all the posterior functions from rejection sampling.
• We compute the average and standard deviation of fs(xi).
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Conclusions

Probability theory provides a framework for

• making inference in a model
• making probabilistic predictions

in parametric models.

It also provides a principled and automatic way of doing

• model comparison

In the follwing lectures, we’ll demonstrate how to use this framework to solve
challenging machine learning problems.
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