

Lecture 7: The Dirichlet Distribution and Text

4F13: Machine Learning

Joaquin Quiñonero-Candela and Carl Edward Rasmussen

Department of Engineering
University of Cambridge

<http://mlg.eng.cam.ac.uk/teaching/4f13/>

Example: word counts in text

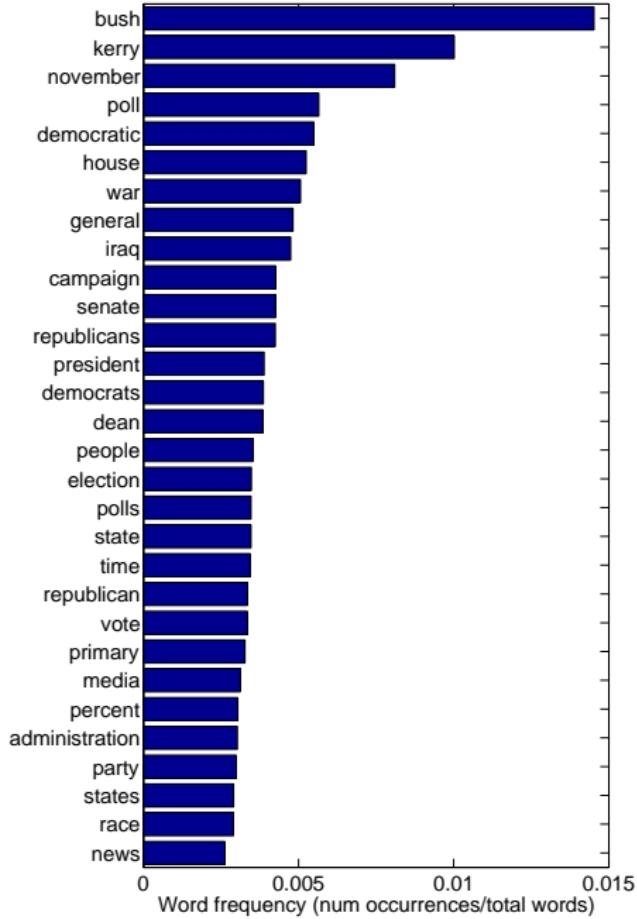
Consider describing a text document by the frequency of occurrence of every distinct word.

The UCI *Bag of Words* dataset from the University of California, Irvine.¹
For illustration consider two collections of documents from this dataset:

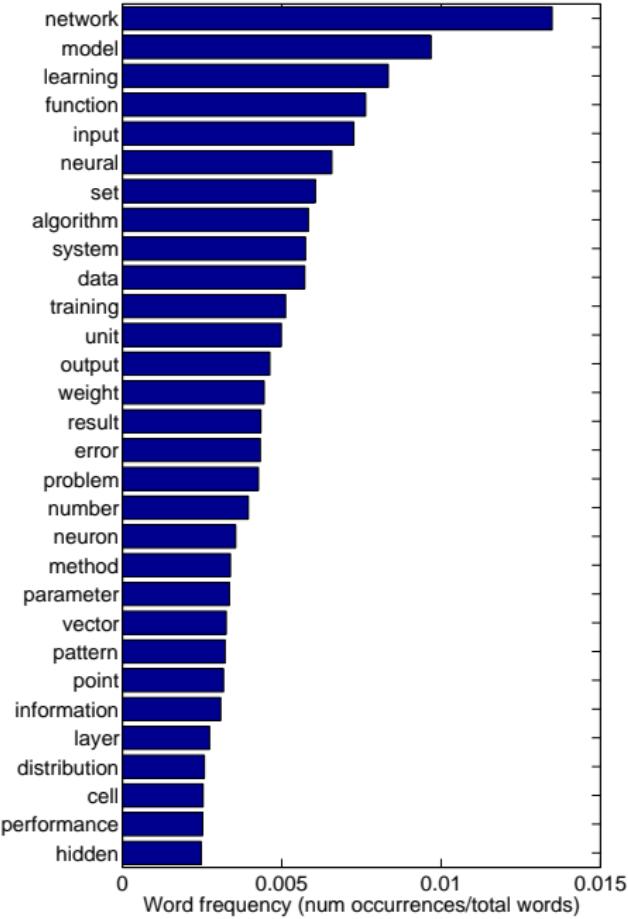
- KOS (political blog — <http://dailykos.com>):
 - $n = 353,160$ words
 - $m = 6,906$ *distinct* words
 - $D = 3,430$ documents (blog posts)
- NIPS (machine learning conference — <http://nips.cc>):
 - $n = 746,316$ words
 - $m = 12,375$ *distinct* words
 - $D = 1,500$ documents (conference papers)

¹<http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/>

Frequency of the most frequent 30 words in the kos dataset

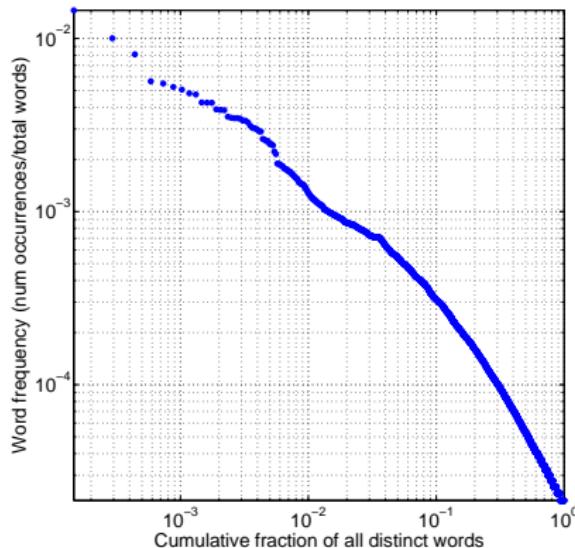


Frequency of the most frequent 30 words in the nips dataset

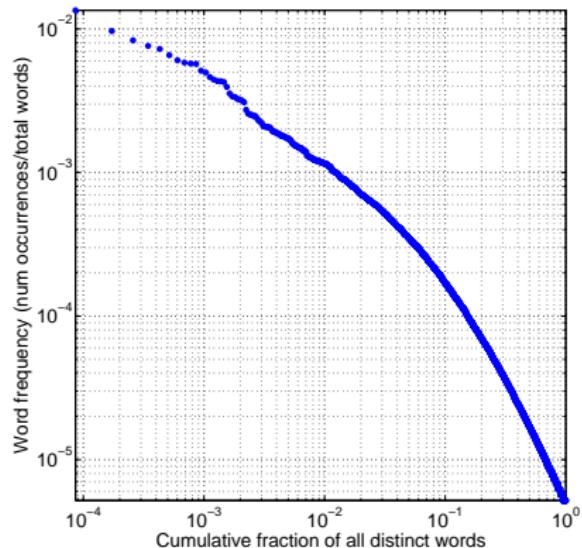


Different text collections, similar behaviour

Frequency of all words ordered by decreasing frequency. KOS data.



Frequency of all words ordered by decreasing frequency. NIPS data.

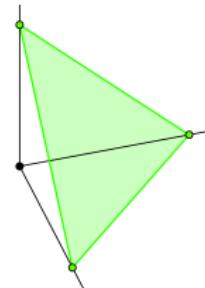


- Zipf's law states that *the frequency of any word is inversely proportional to its rank in the frequency table.*
- In these graphs the frequencies decay even faster.
- These words seem to be drawn from very particularly *sparse* Multinomials.

Priors on Multinomials: The Dirichlet distribution

The Dirichlet distribution is to the Multinomial what the Beta is to the Binomial. It is a generalisation of the Beta defined on the $m - 1$ dimensional simplex.

- Consider the vector $\pi = [\pi_1, \dots, \pi_m]^\top$, with $\sum_{i=1}^m \pi_i = 1$ and $\pi_i \in (0, 1) \ \forall i$.
- Vector π lives in the open standard $m - 1$ simplex.
- π could for example be the parameter vector of a Multinomial. [Figure on the right $m = 3$.]

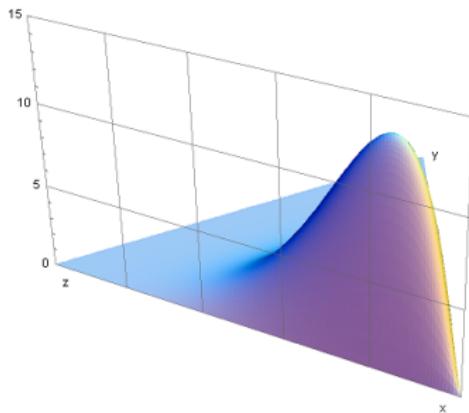
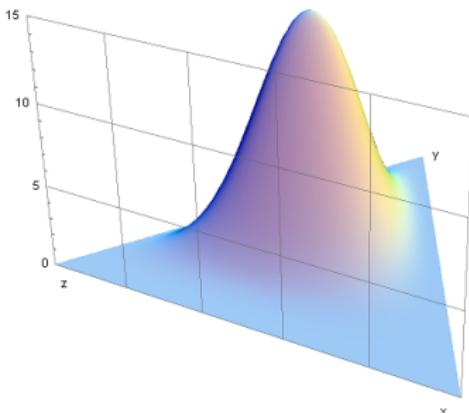
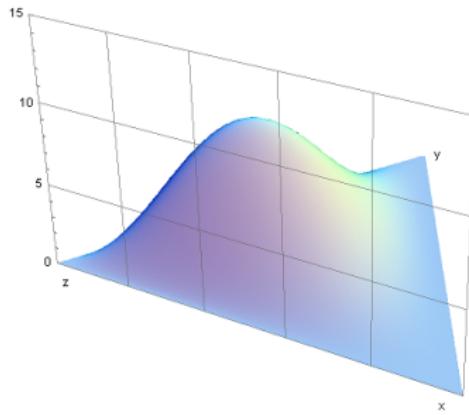
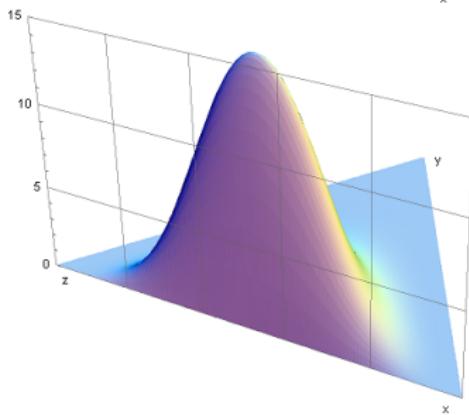


The Dirichlet distribution is given by (0, 1)

$$\text{Dir}(\pi | \alpha_1, \dots, \alpha_m) = \frac{\Gamma(\sum_{i=1}^m \alpha_i)}{\prod_{i=1}^m \Gamma(\alpha_i)} \prod_{i=1}^m \pi_i^{\alpha_i - 1} = \frac{1}{B(\alpha)} \prod_{i=1}^m \pi_i^{\alpha_i - 1}$$

- $\alpha = [\alpha_1, \dots, \alpha_m]^\top$ are the shape parameters.
- $B(\alpha)$ is the multinomial beta function.
- $E(\pi_j) = \frac{\alpha_j}{\sum_{i=1}^m \alpha_i}$ is the mean for the j -th element.

Dirichlet Distributions from Wikipedia

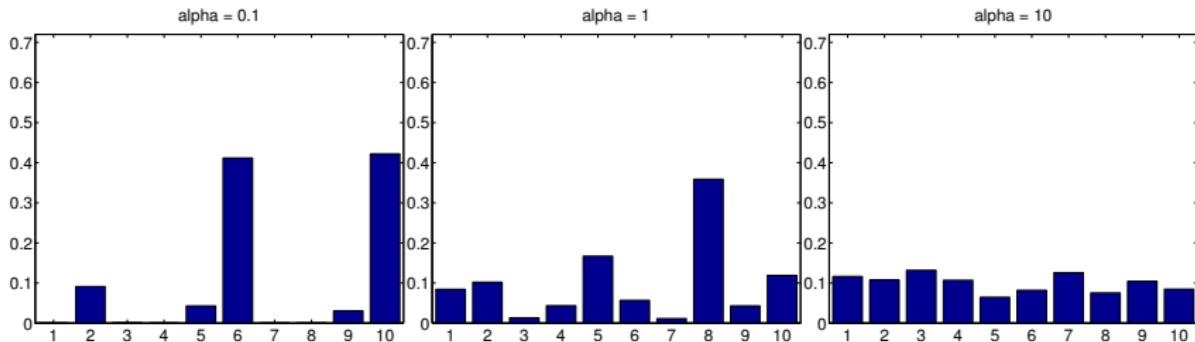


The symmetric Dirichlet distribution

In the symmetric Dirichlet distribution all parameters are identical: $\alpha_i = \alpha, \forall i$.

en.wikipedia.org/wiki/File:LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif

To sample from a symmetric Dirichlet in D dimensions with concentration α use:
`w = randg(alpha,D,1); bar(w/sum(w));`



Distributions drawn at random from symmetric 10 dimensional Dirichlet distributions with various concentration parameters.