
4F13 Machine Learning: Coursework #1: Gaussian Processes

Carl Edward Rasmussen & Zoubin Ghahramani

Due: 4pm February 14th, 2013 to Laura Reed, room BNO-37

In this assignment, you’ll need the Gaussian Processes for Machine Learning (GPML) toolbox for matlab
and octave. Get the toolbox and walk through the documentation concerning regression from the Gaussian
Process Web site at www.gaussianprocess.org/gpml/code Note, that sometimes hyperparameters are en-
coded using their logarithms (to avoid having to deal with constrained optimization for positive parameters),
but you will want to report them in their natural domain. All logs are natural logs (ie, base e).

Your answers should contain an explanation of what you do, and 2-4 central commands to achieve it (but
complete listings are unnecessary). You must also give an interpretation of what the numerical values and
graphs you provide mean – why are the results the way they are? Hand in a maximum of 5 pages.

a) 10% : Load data from cw1d.mat. Train a GP with a squared exponential covariance function,
covSEiso. Start the hyper-parameters at hyp.cov = [-1 0]; hyp.lik = 0; and minimize the nega-
tive log marginal likelihood. Show the 95% predictive error bars. Comment on the predictive error
bars and the optimized hyperparameters.

b) 10% : Show that by initializing the hyperparameters differently, you can find a different local optimum
for the hyperparameters. Show the fit. Explain what is going on. Which fit is best, why?

c) 10% : Train instead a GP with a periodic covariance function. Show the fit. Comment on the
behaviour of the error-bars, compared to your fit from a). Do you think the data generating mechanism
was really periodic? Why, why not?

d) 10% : Generate 100 data points at x = linspace(-5,5,100)’; from a GP with the following
covariance function: {@covProd, {@covPeriodic, @covSEiso}}, with covariance hyperparameters
hyp.cov = [-0.5 0 0 2 0]. Don’t add noise to the function values. In order to apply the Cholesky
decomposition to the covariance matrix, you may have to add a small diagonal matrix, for example
1e-6*eye(100), why? Plot some sample functions. Explain their behaviour.

e) 10% : Load cw1e.mat. This data has 2-D input and scalar output. Visualise the data, for example us-
ing mesh(reshape(x(:,1),11,11),reshape(x(:,2),11,11),reshape(y,11,11)); Rotate the data,
to get a good feel for it. Fit the data using a GP with covariance function covSEard. Comment on the
fit. How much noise is there in the data?

f) 10% : Fit the data instead using covSEiso. Is this a better model, why, why not? What is the relative
probability of the two models, e) and f)?

g) 15% : Use instead {@covSum, {@covSEard, @covSEard}} and be sure to break symmetry with the
initial hyperparameters (eg by using hyp.cov = 0.1*randn(6,1);). Why is symmetry breaking nec-
essary? Fit. Explain the model. Is the predicted function significantly different from the one obtained
in e)? Is the probability of the model very different? Explain how to reconcile your last two answers.

h) 10% : Load the data from the file mauna.mat. This a time series of monthly average atmospheric
Carbon Dioxide concentrations in parts per million (vol) measured at Mauna Loa in Hawaii. The
variables are trainyear, trainCO2, testyear, testCO2. Train a GP model with a linear mean
function and a squared exponential covariance function on the training portion of data, to predict the
CO2 values from time variable. Show and comment on the fit and the hypers, and the predictions for
the test data.

i) 15% : Use an additive covariance structure {@covSum, {...}} with what you think may be suitable
components to model the data. Be careful to initialize the hyperparameters for each component to
reasonable values, so that the minimizer finds a good (local) minimum for the negative log marginal
likelihood. Explain, and show your fit.


