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Model Selection in Practice; Hyperparameters

There are two types of task: form and parameters of the covariance function.

Typically, our prior is too weak to quantify aspects of the covariance function.
We use a hierarchical model using hyperparameters. Eg, in ARD:

k(x, x ′) = v2
0 exp

(
−

D∑
d=1

(xd − x ′d)
2

2v2
d

)
, hyperparameters θ = (v0, v1, . . . , vd,σ2

n).
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Rational quadratic covariance function

The rational quadratic (RQ) covariance function:

kRQ(r) =
(

1 +
r2

2α`2

)−α
with α, ` > 0 can be seen as a scale mixture (an infinite sum) of squared
exponential (SE) covariance functions with different characteristic length-scales.

Using τ = `−2 and p(τ|α,β) ∝ τα−1 exp(−ατ/β):

kRQ(r) =

∫
p(τ|α,β)kSE(r|τ)dτ

∝
∫
τα−1 exp

(
−
ατ

β

)
exp

(
−
τr2

2

)
dτ ∝

(
1 +

r2

2α`2

)−α
,
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Rational quadratic covariance function II
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The limit α→ ∞ of the RQ covariance function is the SE.
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Matérn covariance functions

Stationary covariance functions can be based on the Matérn form:

k(x, x ′) =
1

Γ(ν)2ν−1

[√2ν
`

|x − x ′|
]ν
Kν

(√2ν
`

|x − x ′|
)

,

where Kν is the modified Bessel function of second kind of order ν, and ` is the
characteristic length scale.

Sample functions from Matérn forms are bν− 1c times differentiable. Thus, the
hyperparameter ν can control the degree of smoothness

Special cases:

• kν=1/2(r) = exp(− r
`
): Laplacian covariance function, Browninan motion

(Ornstein-Uhlenbeck)

• kν=3/2(r) =
(
1 +

√
3r
`

)
exp

(
−

√
3r
`

)
(once differentiable)

• kν=5/2(r) =
(
1 +

√
5r
`

+ 5r2

3`2

)
exp

(
−

√
5r
`

)
(twice differentiable)

• kν→∞ = exp(− r2

2`2 ): smooth (infinitely differentiable)
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Matérn covariance functions II

Univariate Matérn covariance function with unit characteristic length scale and
unit variance:
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Periodic, smooth functions

To create a distribution over periodic functions of x, we can first map the inputs
to u = (sin(x), cos(x))>, and then measure distances in the u space. Combined
with the SE covariance function, which characteristic length scale `, we get:

kperiodic(x, x
′) = exp(−2 sin2(π(x− x ′))/`2)
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Three functions drawn at random; left ` > 1, and right ` < 1.
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k(x, x ′) =
2
π

arcsin
( 2x>Σx ′√

(1 + x>Σx)(1 + 2x ′>Σx ′)

)
.
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