
Lecture 8 and 9: Message passing on Factor Graphs

4F13: Machine Learning

Carl Edward Rasmussen and Zoubin Ghahramani

Department of Engineering
University of Cambridge

http://mlg.eng.cam.ac.uk/teaching/4f13/

Rasmussen & Ghahramani (CUED) Lecture 8 and 9: Message passing on Factor Graphs 1 / 20



Factor Graphs

Factor graphs allow to represent the product structure of a function.

They are bipartite graphs with two types of nodes:

• Factor node: � Variable node: ©
• Edges represent the dependency of factors on variables.

Example: consider the factorising probability density function

p(v,w, x,y, z) = f1(v,w)f2(w, x)f3(x,y)f4(x, z)

• What are the marginal distributions of the individual variables?
• What is p(w)?
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Factor trees: separation (1)

p(w) =
∑
v

∑
x

∑
y

∑
z

f1(v,w)f2(w, x)f3(x,y)f4(x, z)

• If v, x, y and z take K values each, we have ≈ 3K4 products and ≈ K4 sums.
• Multiplication is distributive: c(a+ b) = ca+ cb.

The left hand is more efficient!
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Factor trees: separation (2)

p(w) =
[∑
v

f1(v,w)
]
·
[∑
x

∑
y

∑
z

f2(w, x)f3(x,y)f4(x, z)
]

• From sums of products to products of sums.
• The complexity is now ≈ 2K3.
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Factor trees: separation (3)

p(w) =
[∑
v

f1(v,w)
]

︸ ︷︷ ︸
mf1→w(w)

·
[∑
x

∑
y

∑
z

f2(w, x)f3(x,y)f4(x, z)
]

︸ ︷︷ ︸
mf2→w(w)

• Sums of products becomes products of sums of all messages from
neighbouring factors to variable.
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Messages: from factors to variables (1)

mf2→w(w) =
∑
x

∑
y

∑
z

f2(w, x)f3(x,y)f4(x, z)
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Messages: from factors to variables (2)

mf2→w(w) =
∑
x

f2(w, x) ·
[∑
y

∑
z

f3(x,y)f4(x, z)
]

︸ ︷︷ ︸
mx→f2(x)

• Factors only need to sum out all their local variables.
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Messages: from variables to factors (1)

mx→f2(x) =
∑
y

∑
z

f3(x,y)f4(x, z)
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Messages: from variables to factors (2)

mx→f2(x) =
[∑
y

f3(x,y)
]

︸ ︷︷ ︸
mf3→x(x)

·
[∑
z

f4(x, z)
]

︸ ︷︷ ︸
mf4→x(x)

• Variables pass on the product of all incoming messages.
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Factor graph marginalisation: summary

p(w) =
∑
v

∑
x

∑
y

∑
z

f1(v,w)f2(w, x)f3(x,y)f4(x, z)

=
[∑
v

f1(v,w)
]

︸ ︷︷ ︸
mf1→w(w)

·
[∑
x

f2(w, x) ·
[[∑

y

f3(x,y)
]

︸ ︷︷ ︸
mf3→x(x)

·
[∑
z

f4(x, z)
]

︸ ︷︷ ︸
mf4→x(x)

]

︸ ︷︷ ︸
mx→f2(x)

]

︸ ︷︷ ︸
mf2→w(w)

• The complexity is now reduced to ≈ K.
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The sum-product algorithm

Three update equations:

• Marginals are the product of all incoming messages from neighbour factors

p(t) =
∏
f∈Ft

mf→t(t)

• Messages from factors sum out all variables except the receiving one

mf→t(t1) =
∑
t2

∑
t3

. . .
∑
tn

f(t1, t2, . . . , tn)
∏
i>1

mti→f(t)

• Messages from variables are the product of all incoming messages except
that from the receiving factor

mt→f(t) =
∏

fj∈Ft\{f}

mfj→t(t)

Messages are results of partial computations. Computations are localised.
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The full TrueSkill graph

Prior: fi(wi) = N(wi;µ0,σ2
0)

“Game” factor:

hg(wIg ,wJg , tg) = N(tg;wIg −wJg , 1)

(Ig and Jg are the players in game g)

Outcome factor:

kg(tg,yg) = δ
(
yg − sign(tg)

)

We are interested in the marginal distributions of the skills wi.

• What shape do these distributions have?
• We need to make some approximations.
• We will also pretend the structure is a tree (ignore loops).
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Expectation Propagation in the full TrueSkill graph

Iterate

(1) Update skill marginals.

(2) Compute skill to game messages.

(3) Compute game to performance messages.

(4) Approximate performance marginals.

(5) Compute performance to game messages.

(6) Compute game to skill messages.
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Message passing for TrueSkill

mτ=0
hg→wIg(wIg) = 1, mτ=0

hg→wJg(wJg) = 1, ∀ g,

qτ(wi) = f(wi)

N∏
g=1

mτhg→wi(wi) ∼ N(µi,σ2
i),

mτwIg→hg(wIg) =
qτ(wIg)

mτhg→wIg(wIg)
, mτwJg→hg(wJg) =

qτ(wJg)

mτhg→wJg(wJg)
,

mτhg→tg(tg) =

∫∫
hg(tg,wIg ,wJg)m

τ
wIg→hg(wIg)m

τ
wJg→hg(wJg)dwIgdwJg ,

qτ+1(tg) = Approx
(
mτhg→tg(tg)mkg→tg(tg)

)
,

mτ+1
tg→hg(tg) =

qτ+1(tg)

mτhg→tg(tg)
,

mτ+1
hg→wIg(wIg) =

∫∫
hg(tg,wIg ,wJg)m

τ+1
tg→hg(tg)m

τ
wJg→hg(wJg)dtgdwJg ,

mτ+1
hg→wJg(wJg) =

∫∫
hg(tg,wJg ,wJg)m

τ+1
tg→hg(tg)m

τ
wIg→hg(wIg)dtgdwIg .
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In a little more detail

At iteration τ messages m and marginals q are Gaussian, with means µ, standard
deviations σ, variances v = σ2, precisions r = v−1 and natural means λ = rµ.

Step 0 Initialise incoming skill messages:

rτ=0
hg→wi = 0
µτ=0
hg→wi = 0

}
mτ=0
hg→wi(wi)

Step 1 Compute marginal skills:

rτi = r0 +
∑
g r
τ
hg→wi

λτi = λ0 +
∑
g λ
τ
hg→wi

}
qτ(wi)

Step 2 Compute skill to game messages:

rτwi→hg = rτi − r
τ
hg→wi

λτwi→hg = λτi − λ
τ
hg→wi

}
mτwi→hg(wi)
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Step 3 Game to performance messages:

vτhg→tg = 1 + vτwIg→hg + v
τ
wJg→hg

µτhg→tg = µτIg→hg − µ
τ
Jg→hg

}
mτhg→tg(tg)

Step 4 Compute marginal performances:

p(tg) ∝ N(µτhg→tg , vτhg→tg)I
(
y− sign(t)

)
' N(µ̃τ+1

g , ṽτ+1
g ) = qτ+1(tg)

We find the parameters of q by moment matching

ṽτ+1
g = vτhg→tg

(
1 −Λ

(µτhg→tg
στhg→tg

))
µ̃τ+1
g = µτhg→tg + σ

τ
hg→tgΨ

(µτhg→tg
στhg→tg

)
qτ+1(tg)

where we have defined Ψ(x) = N(x)/Φ(x) and Λ(x) = Ψ(x)(Ψ(x) + x).
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Step 5 Performance to game message:

rτ+1
tg→hg = r̃τ+1

g − rτhg→tg
λτ+1
tg→hg = λ̃τ+1

g − λτhg→tg

}
mτ+1
tg→hg(tg)

Step 6 Game to skill message:
For player 1 (the winner):

vτ+1
hg→wIg

= 1 + vτ+1
tg→hg + v

τ
wJg→hg

µτ+1
hg→wIg

= µτwJg→hg + µ
τ+1
tg→hg

}
mτ+1
hg→wIg(wIg)

and for player 2 (the looser):

vτ+1
hg→wJg

= 1 + vτ+1
tg→hg + v

τ
wIg→hg

µτ+1
hg→wJg

= µτwIg→hg − µ
τ+1
tg→hg

}
mτ+1
hg→wJg(wJg)

Go back to Step 1 with τ := τ+ 1 (or stop).
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Moments of a truncated Gaussian density (1)

Consider the truncated Gaussian density function

p(t) =
1
Zt
δ
(
y− sign(t)

)
N(t;µ,σ2)

where y ∈ {−1, 1} and δ(x) = 1 only if x = 0 (δ(x) = 0 if x 6= 0).

We have seen that the normalisation constant is Zt = Φ
(
yµ
σ

)
.

We want to approximate p(t) by a Gaussian density function q(t) with mean and
variance equal to the first and second central moments of p(t).

This means we need to compute:

• First moment: E[t] = 〈t〉p(t)
• Second central moment: V[t] = 〈t2〉p(t) − 〈t〉2p(t)
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Moments of a truncated Gaussian density (2)

First moment. We take the derivative of Zt wrt. µ:

∂Zt

∂µ
=
∂

∂µ

∫+∞
0
N(t;yµ,σ2)dt =

∫+∞
0

∂

∂µ
N(t;yµ,σ2)dt

=

∫+∞
0
yσ−2(t− yµ)N(t;yµ,σ2)dt = yZtσ−2

∫+∞
−∞(t− yµ)p(t)dt

= yZtσ
−2〈t− yµ〉p(t) = yZtσ−2〈t〉p(t) − µZtσ−2

where 〈t〉p(t) is the expectation of t under p(t). We can also write:

∂Zt

∂µ
=
∂

∂µ
Φ
(yµ
σ

)
= yN(yµ; 0,σ2)

Combining both expressions for ∂Zt
∂µ

we obtain

〈t〉p(t) = yµ+ σ2N(yµ; 0,σ2)

Φ(yµ
σ
)

= yµ+ σ
N(yµ

σ
; 0, 1)

Φ(yµ
σ
)

= yµ+ σΨ
(yµ
σ

)
where use N(yµ; 0,σ2) = σ−1N(yµ

σ
; 0, 1) and define Ψ(z) = N(z;0,1)

Φ(z) .
Rasmussen & Ghahramani (CUED) Lecture 8 and 9: Message passing on Factor Graphs 19 / 20



Moments of a truncated Gaussian density (3)

Second moment. We take the second derivative of Zt wrt. µ:

∂2Zt

∂µ2 =
∂

∂µ

∫+∞
0
yσ−2(t− yµ)N(t;yµ,σ2)dt

= Φ
(yµ
σ

)
〈−σ−2 + σ−4(t− yµ)2〉p(t)

We can also write

∂2Zt

∂µ2 =
∂

∂µ
yN(yµ; 0,σ2) = −σ−2yµN(yµ; 0,σ2)

Combining both we obtain

V[t] = σ2(1 −Λ(
yµ

σ
)
)

where we define Λ(z) = Ψ(z)
(
Ψ(z) + z

)
.
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