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Key concepts

• Distributions over parameters and over functions
• Motivation: representaion of multiple hypothesis
• concepts of prior over functions and over parameters
• priors over functions are priors over long vectors
• GP definition
• joint generation and conditional generation

• Properties of Gaussian Processes
• the predictive distribution
• hyperparameters
• the marginal likelihood for a GP

• Connections between linear in the parameters model and GPs
• from finite linear models to GPs
• weight space and function space views
• infinite dimensional models and why finite dimensional models are

dangerous
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Old question, new marginal likelihood view
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• Should we choose a polynomial? model structure
we will address this soon

• What degree should we choose for the polynomial? model structure
let the marginal likelihood speak

• For a given degree, how do we choose the weights? model parameters
we consider many possible weights under the posterior

• For now, let find the single “best” polynomial: degree and weights.
we don’t do this sort of thing anymore
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Marginal likelihood (Evidence) of our polynomials

Marginal likelihood, or “evidence” of a finite linear model:

p(y|x,M) =

∫
p(f|x,M)p(y|f)df = N(y; 0,σ2

w ΦΦ> + σ2
noise I)

For each polynomial degree, repeat the following infinitely many times:

1 Sample a function fs from the prior: p(f|x,M).
2 Compute the likelihood of that function given the data: p(y|fs).
3 Keep count of the number of samples so far: S.
4 The marginal likelihood is the average likelihood: 1

S

∑S
s=1 p(y|fs)

Luckily for Gaussian noise there is a closed-form analytical solution!
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not simpler, not more complex.
• Too simple models consistently

miss most data.
• Too complex models frequently

miss some data.
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Multiple explanations of the data
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Remember that a finite linear model f(xi) = φ(xi)
>w with prior on the weights

p(w) = N(w; 0,σ2
w) has a posterior distribution

p(w|x, y,M) = N(w; µ, Σ) with
Σ =

(
σ−2

noiseΦ
>Φ+ σ−2

w

)−1

µ =
(
Φ>Φ+

σ2
noise
σ2

w
I
)−1

Φ>y

and predictive distribution

p(y∗|x∗, x, y,M) = N(y∗; φ(x∗)
>µ, φ(x∗)

>Σφ(x∗) + σ
2
noise I)
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Are polynomials a good prior over functions?
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A prior over functions view
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We have learnt that linear-in-the-parameter models with priors on the weights
indirectly specify priors over functions.

True... and those priors over functions might not be good.
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... why not try to specify priors over functions directly?
What? What does a probability density over functions even look like?

Rasmussen and Ghahramani Lecture 3 and 4: Gaussian Processes 7 / 31



The Gaussian Distribution

The Gaussian distribution is given by

p(x|µ,Σ) = N(µ,Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2 (x − µ)>Σ−1(x − µ)
)

where µ is the mean vector and Σ the covariance matrix.
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Conditionals and Marginals of a Gaussian, pictorial

 

 

joint Gaussian
conditional

 

 

joint Gaussian
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Both the conditionals and the marginals of a joint Gaussian are again Gaussian.
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Conditionals and Marginals of a Gaussian, algebra

If x and y are jointly Gaussian

p(x, y) = p
([ x

y

])
= N

([ a
b

]
,
[
A B

B> C

])
,

we get the marginal distribution of x, p(x) by

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x) = N(a, A),

and the conditional distribution of x given y by

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x|y) = N(a+BC−1(y− b), A−BC−1B>),

where x and y can be scalars or vectors.
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What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to
infinitely many variables.

Informally: infinitely long vector ' function

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. �

A Gaussian distribution is fully specified by a mean vector, µ, and covariance
matrix Σ:

f = (f1, . . . , fn)> ∼ N(µ,Σ), indexes i = 1, . . . ,n

A Gaussian process is fully specified by a mean function m(x) and covariance
function k(x, x ′):

f ∼ GP(m,k), indexes: x ∈ X

here f and m are functions on X, and k is a function on X× X
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The marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical. . .

. . . luckily we are saved by the marginalization property:

Recall:

p(x) =

∫
p(x, y)dy.

For Gaussians:

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x) = N(a, A)
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

p(f(x)) ∼ GP
(
m k

)
, where m(x) = 0, and k(x, x ′) = exp(− 1

2 (x− x
′)2).

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f(x1), f(x2), . . . , f(xn))>, for which

f ∼ N(0,Σ), where Σij = k(xi, xj).

Then plot the coordinates of f as a function of the corresponding x values.
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Joint Generation

To generate a random sample from a D dimensional joint Gaussian with
covariance matrix K and mean vector m: (in octave or matlab)

z = randn(D,1);
y = chol(K)’*z + m;

where chol is the Cholesky factor R such that R>R = K.

Thus, the covariance of y is:

E[(y −m)(y −m)>] = E[R>zz>R] = R>E[zz>]R = R>IR = K.
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Sequential Generation

Factorize the joint distribution

p(f1, . . . , fn|x1, . . . xn) =

n∏
i=1

p(fi|fi−1, . . . , f1, xi, . . . , x1),

and generate function values sequentially. For Gaussians:

p(fi, f<i) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(fi|f<i) = N(a+BC−1(f<i−b), A−BC−1B>).
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Non-parametric Gaussian process models

In our non-parametric model, the “parameters” are the function itself!

Gaussian likelihood, with noise variance σ2
noise

p(y|x, f(x),Mi) ∼ N(f, σ2
noiseI),

Gaussian process prior with zero mean and covariance function k

p(f(x)|Mi) ∼ GP(m ≡ 0, k),

Leads to a Gaussian process posterior

p(f(x)|x, y,Mi) ∼ GP(mpost, kpost),

where
{
mpost(x) = k(x, x)[K(x, x) + σ2

noiseI]
−1y,

kpost(x, x ′) = k(x, x ′) − k(x, x)[K(x, x) + σ2
noiseI]

−1k(x, x ′),

And a Gaussian predictive distribution:

p(y∗|x∗, x, y,Mi) ∼ N
(
k(x∗, x)>[K+ σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K+ σ2

noiseI]
−1k(x∗, x)

)
.
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Prior and Posterior
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Predictive distribution:

p(y∗|x∗, x, y) ∼ N
(
k(x∗, x)>[K+ σ2

noiseI]
−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)>[K+ σ2

noiseI]
−1k(x∗, x)

)
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Some interpretation

Recall our main result:

f∗|x∗, x, y ∼ N
(
K(x∗, x)[K(x, x) + σ2

noiseI]
−1y,

K(x∗, x∗) − K(x∗, x)[K(x, x) + σ2
noiseI]

−1K(x, x∗)
)
.

The mean is linear in two ways:

µ(x∗) = k(x∗, x)[K(x, x) + σ2
noiseI]

−1y =

n∑
i=1

βiyi =

n∑
i=1

αik(x∗, xi).

The last form is most commonly encountered in the kernel literature.

The variance is the difference between two terms:

V(x∗) = k(x∗, x∗) − k(x∗, x)[K(x, x) + σ2
noiseI]

−1k(x, x∗),

the first term is the prior variance, from which we subtract a (positive) term,
telling how much the data x has explained.
Note, that the variance is independent of the observed outputs y.
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The marginal likelihood

Log marginal likelihood:

logp(y|x,Mi) = −
1
2

y>K−1y −
1
2

log |K|−
n

2
log(2π)

is the combination of a data fit term and complexity penalty. Occam’s Razor is
automatic.

Learning in Gaussian process models involves finding

• the form of the covariance function, and
• any unknown (hyper-) parameters θ.

This can be done by optimizing the marginal likelihood:

∂ logp(y|x, θ,Mi)

∂θj
=

1
2

y>K−1 ∂K

∂θj
K−1y −

1
2

trace(K−1 ∂K

∂θj
)
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Example: Fitting the length scale parameter

Parameterized covariance function: k(x, x ′) = v2 exp
(
−

(x− x ′)2

2`2
)
+ σ2

noiseδxx′ .
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Characteristic Lengthscales

The mean posterior predictive function is plotted for 3 different length scales (the
green curve corresponds to optimizing the marginal likelihood). Notice, that an
almost exact fit to the data can be achieved by reducing the length scale – but the
marginal likelihood does not favour this!
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Why, in principle, does Bayesian Inference work?
Occam’s Razor

too simple

too complex

"just right"

All possible data sets

P
(Y

|M
i)

Y
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An illustrative analogous example

Imagine the simple task of fitting the variance, σ2, of a zero-mean Gaussian to a
set of n scalar observations.

The log likelihood is logp(y|µ,σ2) = − 1
2 y>Iy/σ2− 1

2 log |Iσ2|− n
2 log(2π)
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From finite linear models to Gaussian processes (1)

Finite linear model with Gaussian priors on the weights:

f(xi) =

M∑
k=1

wkφk(xi) p(w) = N(w; 0,A)

The joint distribution of any f = [f(x1), . . . , f(xN)]> is a multivariate Gaussian –
this looks like a Gaussian Process!

The prior p(f) is fully characterized by the mean and covariance functions.

m(xi) = Ew
(
f(xi)

)
=

∫ ( M∑
k=1

wkφk(xi)
)
p(w)dw =

M∑
k=1

φk(xi)

∫
wkp(w)dw

=

M∑
k=1

φk(xi)

∫
wkp(wk)dwk = 0

The mean function is zero.
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From finite linear models to Gaussian processes (2)

Covariance function of a finite linear model

f(xi) =
∑M
k=1wkφk(xi) = w>φ(xi)

p(w) = N(w; 0,A)
φ(xi) = [φ1(xi), . . . ,φM(xi)]

>
(N×1)

k(xi, xj) = Covw
(
f(xi), f(xj)

)
= Ew

(
f(xi)f(xj)

)
− Ew

(
f(xi)

)
Ew
(
f(xj)

)︸ ︷︷ ︸
0

=

∫
...
∫ ( M∑

k=1

M∑
l=1

wkwlφk(xi)φl(xj)
)
p(w)dw

=

M∑
k=1

M∑
l=1

φk(xi)φl(xj)

∫∫
wkwlp(wk,wl)dwkdwl︸ ︷︷ ︸

Akl

=

M∑
k=1

M∑
l=1

Aklφk(xi)φl(xj)

k(xi, xj) = φ(xi)
>Aφ(xj)

Note: If A = σ2
wI then k(xi, xj) = σ2

w
∑M
k=1φk(xi)φk(xj) = σ

2
wφ(xi)

>φ(xj)
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Equiv. between GPs and Linear in the parameters
models

We’ve seen that a Linear in the parameters model, with a Gaussian prior on the
weights is also a GP.

Note the different computational complexity: GP: O(n3), linear model O(nm2)
where m is the number of basis functions and n the number of training cases.

So, which representation is most efficient?

Might it also be the case that every GP corresponds to a Linear in the parameters
model? (Mercer’s theorem.)
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From infinite linear models to Gaussian processes

Consider the class of functions (sums of squared exponentials):

f(x) = lim
n→∞ 1

n

∑
i

γi exp(−(x− i/n)2), where γi ∼ N(0, 1), ∀i

=

∫∞
−∞γ(u) exp(−(x− u)2)du, where γ(u) ∼ N(0, 1), ∀u.

The mean function is:

µ(x) = E[f(x)] =

∫∞
−∞ exp(−(x− u)2)

∫∞
−∞γp(γ)dγdu = 0,

and the covariance function:

E[f(x)f(x ′)] =

∫
exp

(
− (x− u)2 − (x ′ − u)2)du

=

∫
exp

(
− 2(u−

x+ x ′

2
)2 +

(x+ x ′)2

2
− x2 − x ′2

)
du ∝ exp

(
−

(x− x ′)2

2

)
.

Thus, the squared exponential covariance function is equivalent to regression
using infinitely many Gaussian shaped basis functions placed everywhere, not just
at your training points!
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Using finitely many basis functions may be dangerous!(1)

Finite linear model with 5 localized basis functions)
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Gaussian process with infinitely many localized basis functions
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Using finitely many basis functions may be dangerous!(2)

Finite linear model with 5 localized basis functions)
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Gaussian process with infinitely many localized basis functions
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Using finitely many basis functions may be dangerous!(3)

Finite linear model with 5 localized basis functions)
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Gaussian process with infinitely many localized basis functions
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Matrix and Gaussian identities cheat sheet

Matrix identities

• Matrix inversion lemma (Woodbury, Sherman & Morrison formula)

(Z+UWV>)−1 = Z−1 − Z−1U(W−1 + V>Z−1U)−1V>Z−1

• A similar equation exists for determinants

|Z+UWV>| = |Z| |W| |W−1 + V>Z−1U|

The product of two Gaussian density functions

N(x|a,A)N(P x|b,B) = zcN(x|c,C)

• is proportional to a Gaussian density function with covariance and mean

C =
(
A−1 + P B−1P>

)−1
c = C

(
A−1a + P B−1 b

)
• and has a normalizing constant zc that is Gaussian both in a and in b

zc = (2π)−
m
2 |B+ P>AP|−

1
2 exp

(
−

1
2
(b − P a)>

(
B+ P>AP

)−1
(b − P a)

)
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