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Model Selection in Practice; Hyperparameters

There are two types of task: form and parameters of the covariance function.

Typically, our prior is too weak to quantify aspects of the covariance function.
We use a hierarchical model using hyperparameters. Eg, in ARD:
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Rational quadratic covariance function

The rational quadratic (RQ) covariance function:
2o\«
kna(r) = (1+5.55)

with «, £ > 0 can be seen as a scale mixture (an infinite sum) of squared

exponential (SE) covariance functions with different characteristic length-scales.

Using T = €2 and p(t]a, B) o T ! exp(—oet/P):

Krg(r) = Jp(r\oc,ﬁ)kSE(r\T)dT

x J”t"‘*l exp (— %T) exp (— TTrz)dT x (1 + 2;7)_0(,
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Rational quadratic covariance function II
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The limit o« — oo of the RQ covariance function is the SE.
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Matérn covariance functions

Stationary covariance functions can be based on the Matérn form:

1 [@x_xmv(mx ),

k(x,x') = T2y 1L

where K, is the modified Bessel function of second kind of order v, and ¢ is the
characteristic length scale.

Sample functions from Matérn forms are |v — 1] times differentiable. Thus, the
hyperparameter v can control the degree of smoothness

Special cases:

* ky—1,2(r) = exp(—¢): Laplacian covariance function, Browninan motion
(Ornstein-Uhlenbeck)

* ky_3n(r)=(1+ fr) exp (— @) (once differentiable)
* ky—sp(r) = (1+ fr + 322) exp (— fr) (twice differentiable)

* Ky oo = exp(—ﬁ): smooth (infinitely differentiable)
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Matérn covariance functions II

Univariate Matérn covariance function with unit characteristic length scale and
unit variance:
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1 — v=1/2
— v=1

()] ~~~
e — v=2 e
8 Vo =
g 0.5 - 2
3 5
(&) o

0 " s

0 1 2 3 -5 0 5

input distance input, X

Rasmussen and Ghahramani Lecture 5: Gaussian Process Covariance Functions 6/8



Periodic, smooth functions

To create a distribution over periodic functions of x, we can first map the inputs
to u = (sin(x),cos(x)) ", and then measure distances in the u space. Combined
with the SE covariance function, which characteristic length scale £, we get:

kperiodic(xax/) = CXP(_Z Sinl(n(x_xl))/€2)
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Three functions drawn at random; left £ > 1, and right £ < 1.

Rasmussen and Ghahramani Lecture 5: Gaussian Process Covariance Functions 718



Function drawn at random from a Neural Network covariance function
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k(x,x") = = arcsin ( X =X )
T V1 +xTIX) (1 + 2x/TEx/)
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