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Motivation for ranking

Competition is central to our lives. It is an innate biological trait, and the driving
principle of many sports.

In the Ancient Olympics (700 BC), the winners of the events were admired and
immortalised in poems and statues.

Today in pretty much every sport there are player or team rankings. (Football
leagues, Poker tournament rankings, etc).

We are going to focus on one example: tennis players, in men singles games.

We are going to keep in mind the goal of answering the following question:
What is the probability that player 1 defeats player 2?
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The ATP ranking system for tennis players

Men Singles ranking as of 28 December 2011:
Rank, Name & Nationality Points Tournaments Played
1 Djokovic, Novak (SRB) 13,675 19
2 Nadal, Rafael (ESP) 9,575 20
3 Federer, Roger (SUI) 8,170 19
4 Murray, Andy (GBR) 7,380 19
5 Ferrer, David (ESP) 4,880 23
6 Tsonga, Jo-Wilfried (FRA) 4,335 25
7 Berdych, Tomas (CZE) 3,700 24
8 Fish, Mardy (USA) 2,965 24
9 Tipsarevic, Janko (SRB) 2,595 28
10 Almagro, Nicolas (ESP) 2,380 27
11 Del Potro, Juan Martin (ARG) 2,315 22
12 Simon, Gilles (FRA) 2,165 28
13 Soderling, Robin (SWE) 2,120 22
14 Roddick, Andy (USA) 1,940 20
15 Monfils, Gael (FRA) 1,935 23
16 Dolgopolov, Alexandr (UKR) 1,925 30
17 Wawrinka, Stanislas (SUI) 1,820 23
18 Isner, John (USA) 1,800 25
19 Gasquet, Richard (FRA) 1,765 21
20 Lopez, Feliciano (ESP) 1,755 28

ATP: Association of Tennis Professionals (www.atpworldtour.com)
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The ATP ranking system explained (to some degree)

• Sum of points from best 18 results of the past 52 weeks.
• Mandatory events: 4 Grand Slams, and 8 Masters 1000 Series events.
• Best 6 results from International Events (4 of these must be 500 events).

Points breakdown for all tournament categories (2012):
W F SF QF R16 R32 R64 R128 Q

Grand Slams 2000 1200 720 360 180 90 45 10 25
Barclays ATP World Tour Finals *1500
ATP World Tour Masters 1000 1000 600 360 180 90 45 10(25) (10) (1)25
ATP 500 500 300 180 90 45 (20) (2)20
ATP 250 250 150 90 45 20 (5) (3)12
Challenger 125,000 +H 125 75 45 25 10 5
Challenger 125,000 110 65 40 20 9 5
Challenger 100,000 100 60 35 18 8 5
Challenger 75,000 90 55 33 17 8 5
Challenger 50,000 80 48 29 15 7 3
Challenger 35,000 +H 80 48 29 15 6 3
Futures** 15,000 +H 35 20 10 4 1
Futures** 15,000 27 15 8 3 1
Futures** 10,000 18 10 6 2 1

The Grand Slams are the Australian Open, the French Open, Wimbledon, and the US Open.
The Masters 1000 Tournaments are: Cincinnati, Indian Wells, Madrid, Miami, Monte-Carlo, Paris, Rome, Shanghai, and Toronto.
The Masters 500 Tournaments are: Acapulco, Barcelona, Basel, Beijing, Dubai, Hamburg, Memphis, Rotterdam, Tokyo, Valencia and Washington.
The Masters 250 Tournaments are: Atlanta, Auckland, Bangkok, Bastad, Belgrade, Brisbane, Bucharest, Buenos Aires, Casablanca, Chennai, Delray Beach, Doha,
Eastbourne, Estoril, Gstaad, Halle, Houston, Kitzbuhel, Kuala Lumpur, London, Los Angeles, Marseille, Metz, Montpellier, Moscow, Munich, Newport, Nice, Sao
Paulo, San Jose, ’s-Hertogenbosch, St. Petersburg, Stockholm, Stuttgart, Sydney, Umag, Vienna, Vina del Mar, Winston-Salem, Zagreb and Dusseldorf.
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A laundry list of objections and open questions

Rank, Name & Nationality Points
1 Djokovic, Novak (SRB) 13,675
2 Nadal, Rafael (ESP) 9,575
3 Federer, Roger (SUI) 8,170
4 Murray, Andy (GBR) 7,380

Some questions:

• Is a player ranked higher than another more likely to win?
• What is the probability that Nadal defeats Djokovic?
• How much would you (rationally) bet on Nadal?

And some concerns:

• The points system ignores who you played against.
• 6 out of the 18 tournaments don’t need to be common to two players.

Other examples: Premier League. Meaningless intermediate results throughout
the season: doesn’t say whom you played and whom you didn’t!
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Towards a probabilistic ranking system

What we really want is to infer is a player’s skill.

• Skills must be comparable: a player of higher skill is more likely to win.
• We want to do probabilistic inference of players’ skills.
• We want to be able to compute the probability of a game outcome.

A generative model for game outcomes:

1 Take two tennis players with known skills (wi ∈ R)
• Player 1 with skill w1.
• Player 2 with skill w2.

2 Compute the difference between the skills of Player 1 and Player 2:
s = w1 −w2

3 Add noise (n ∼ N(0, 1)) to account for performance inconsistency:
t = s+ n

4 The game outcome is given by y = sign(t)
• y = +1 means Player 1 wins.
• y = −1 means Player 2 wins.
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The likelihood in a picture

t = w1 −w2 + n

p(y|t) = sign(yt) Φ(a) =

∫a
−∞ N(x; 0, 1)dx
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The Likelihood

t = w1 −w2 + n

y = sign(t)

p(y|w1,w2) =

∫∫
p(y|t)p(t|s)p(s|w1,w2)dsdt =

∫
p(y|t)p(t|w1,w2)dt

= Φ(y(w1 −w2)).
(
where Φ(a) =

∫a
−∞ N(x; 0, 1)dx

)
Φ(a) is the Gaussian cumulative distribution function, or ‘probit’ function.
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TrueSkill™, a probabilistic skill rating system

• w1 and w2 are the skills of Players 1 and 2.
We treat them in a Bayesian way:

prior p(wi) = N(wi|µi,σ2
i)

• s = w1 −w2 is the skill difference.
• t ∼ N(t|s, 1) is the performance difference.
• y = sign(t) is the game outcome.
• The probability of outcome given skills is:

p(y|w1,w2) =

∫∫
p(y|t)p(t|s)p(s|w1,w2)dsdt

likelihood
• The posterior over skills given the game outcome is:

p(w1,w2|y) =
p(w1)p(w2)p(y|w1,w2)∫∫

p(w1)p(w2)p(y|w1,w2)dw1dw2

TrueSkill™: A Bayesian Skill Rating System. Herbrich, Minka and Graepel, NIPS19, 2007.Rasmussen and Ghahramani Lecture 6 and 7: Probabilistic Ranking 9 / 22



An intractable posterior

The joint posterior distribution over skills does not have a closed form:

p(w1,w2|y) =
N(w1;µ1,σ2

1)N(w2;µ2,σ2
2)Φ(y(w1 −w2))∫∫

N(w1;µ1,σ2
1)N(w2;µ2,σ2

2)Φ(y(w1 −w2))dw1dw2

• w1 and w2 become correlated, the posterior does not factorise.
• The posterior is no longer a Gaussian density function.

The normalising constant of the posterior, the prior over y does have closed form:

p(y) =

∫∫
N(w1;µ1,σ2

1)N(w2;µ2,σ2
2)Φ(y(w1 −w2))dw1dw2 = Φ

( y(µ1 − µ2)√
1 + σ2

1 + σ
2
2

)

This is a smoother version of the likelihood p(y|w1,w2).
Can you explain why?
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Joint posterior after several games

Each player playes against multiple opponents, possibly multiple times; what does
the joint posterior look like?
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The combined posterior is difficult to picture.

How do we do inference with an ugly posterior like that?

How do we predict the outcome of a match?
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How do we do integrals wrt an intractable posterior?

Approximate expectations of a function φ(x) wrt probability p(x):

Ep(x)[φ(x)] = φ̄ =

∫
φ(x)p(x)dx, where x ∈ RD,

when these are not analytically tractable, and typically D� 1.
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Assume that we can evaluate φ(x) and p(x).
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Numerical integration on a grid

Approximate the integral by a sum of products∫
φ(x)p(x)dx '

T∑
τ=1

φ(x(τ))p(x(τ))∆x,

where the x(τ) lie on an equidistant grid (or fancier versions of this).
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Problem: the number of grid points required, kD, grows exponentially with the
dimension D. Practicable only to D = 4 or so.
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Monte Carlo

The fundamental basis for Monte Carlo approximations is

Ep(x)[φ(x)] ' φ̂ =
1
T

T∑
τ=1

φ(x(τ)), where x(τ) ∼ p(x).
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Under mild conditions, φ̂→ E[φ(x)] as T →∞. For moderate T , φ̂ may still be a
good approximation. In fact it is an unbiased estimate with

V[φ̂] =
V[φ]
T

, where V[φ] =

∫ (
φ(x) − φ̄

)2
p(x)dx.

Note, that this variance is independent of the dimension D of x.
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Markov Chain Monte Carlo

This is great, but how do we generate random samples from p(x)?

If p(x) has a standard form, we may be able to generate independent samples.

Idea: could we design a Markov Chain, q(x ′|x), which generates (dependent)
samples from the desired distribution p(x)?

x→ x ′ → x ′′ → x ′′′ → . . .

One such algorithm is called Gibbs sampling: for each component i of x in turn,
sample a new value from the conditional distribution of xi given all other
variables:

x ′i ∼ p(xi|x1, . . . , xi−1, xi+1, . . . , xD).

It can be shown, that this will eventually generate dependent samples from the
joint distribution p(x).

Gibbs sampling reduces the task of sampling from a joint distribution, to
sampling from a sequence of univariate conditional distributions.
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Gibbs sampling example: Multivariate Gaussian

20 iterations of Gibbs sampling on a bivariate Gaussian; both conditional
distributions are Gaussian.

Notice that strong correlations can slow down Gibbs sampling.
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Gibbs Sampling

Gibbs sampling is a parameter free algorithm, applicable if we know how to
sample from the conditional distributions.

Main disadvantage: depending on the target distribution, there may be very
strong correlations between consecutive samples.

To get less dependence, Gibbs sampling is often run for a long time, and the
samples are thinned by keeping only every 10th or 100th sample.

It is often challenging to judge the effective correlation length of a Gibbs sampler.
Sometimes several Gibbs samplers are run from different starting points, to
compare results.

Rasmussen and Ghahramani Lecture 6 and 7: Probabilistic Ranking 17 / 22



Gibbs sampling for the TrueSkill model

We have g = 1, . . . ,N games where Ig: id of Player 1 and Jg: id of Player 2.
The outcome of game g is yg = +1 if Ig wins, yg = −1 if Jg wins.

Gibbs sampling alternates between sampling skills w = [w1, . . . ,wM]>

conditional on fixed performance differences t = [t1, . . . , tN]>, and sampling t
conditional on fixed w.

1 Initialise w, e.g. from the prior p(w).

2 Sample the performance differences from

p(tg|wIg ,wJg ,yg) ∝ δ(yg − sign(tg))N(tg;wIg −wJg , 1)

3 Jointly sample the skills from

p(w|t)︸ ︷︷ ︸
N(w;µ,Σ)

∝ p(w)︸ ︷︷ ︸
N(w;µ0,Σ0)

N∏
g=1

p(tg|wIg ,wJg)︸ ︷︷ ︸
∝ N(w;µg,Σg)

4 Go back to step 2.
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Gaussian identities

The distribution for the performance is both Gaussian in tg and proportional to a
Gaussian in w

p(tg|wIg ,wJg) ∝ exp
(
− 1

2 (wIg −wJg − tg)
2)

∝ N
(
− 1

2

( wIg − µ1

wJg − µ2

)>[ 1 −1
−1 1

]( wIg − µ1

wJg − µ2

))
with µ1 − µ2 = tg. Notice that[ 1 −1

−1 1

]( µ1

µ2

)
=
( tg
−tg

)
Remember that for products of Gaussians precisions add up, and means weighted
by precisions (natural parameters) also add up:

N(w;µa,Σa)N(w;µb,Σb) = zc N
(
w;µc,Σc

)
where µc = Σc(Σ−1

a µa + Σ−1
b µb) and Σc = (Σ−1

a + Σ−1
b )−1
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Conditional posterior over skills given performances

We can now compute the covariance and the mean of the conditional posterior.

Σ−1 = Σ−1
0 +

N∑
g=1

Σ−1
g︸ ︷︷ ︸

Σ̃−1

µ = Σ
(
Σ−1

0 µ0 +

N∑
g=1

Σ−1
g µg︸ ︷︷ ︸
µ̃

)

To compute the mean it is useful to note that:

µ̃i =

N∑
g=1

tg
(
δ(i− Ig) − δ(i− Jg)

)
And for the covariance we note that:

[Σ̃−1]ii =

N∑
g=1

δ(i− Ig) + δ(i− Jg)

[Σ̃−1]i 6=j = −

N∑
g=1

δ(i− Ig)δ(j− Jg) + δ(i− Jg)δ(j− Ig)
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Implementing Gibbs sampling for the TrueSkill model

we have derived the conditional distribution for the performance differences in
game g and for the skills. These are:

• the posterior conditional performance difference for tg is a univariate
truncated Gaussian. How can we sample from it?

• by rejection sampling from a Gaussian, or
• by the inverse transformation method (passing a uniform on an interval

through the inverse cumulative distribution function).
• the conditional skills can be sampled jointly form the corresponding

Gaussian (using the cholesky factorization of the covariance matrix).

Once samples have been drawn from the posterior, these can be used to make
predictions for game outcomes, using the generative model.

How would you do this?
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Appendix: The likelihood in detail

p(y|w1,w2) =

∫∫
p(y|t)p(t|s)p(s|w1,w2)dsdt =

∫
p(y|t)p(t|w1,w2)dt

=

∫+∞
−∞δ(y− sign(t))N(t|w1 −w2, 1)dt

=

∫+∞
−∞δ(1 − sign(yt))N(yt|y(w1 −w2), 1)dt

= y

∫+y∞
−y∞δ(1 − sign(z))N(z|y(w1 −w2), 1)dz (use z ≡ yt)

=

∫+∞
−∞δ(1 − sign(z))N(z|y(w1 −w2), 1)dz

=

∫+∞
0

N(z|y(w1 −w2), 1)dz =
∫y(w1−w2)

−∞ N(x|0, 1)dx (use x ≡ y(w1 −w2) − z)

= Φ(y(w1 −w2))
(
where Φ(a) =

∫a
−∞ N(x|0, 1)dx

)
Φ(a) is the Gaussian cumulative distribution function, or ‘probit’ function.
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