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Limitations of the mixture of categoricals model

i : :i 0 ~ Dir()
@*“*@“‘“_“‘ 5. ~ Dirty)

I.k—[ K' zq ~ Cat
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d=1.D Wnalza ~ Cat

A generative view of the mixture of categoricals model

©® Draw a distribution © over K topics from a Dirichlet(c).

® For each topic k, draw a distribution 3, over words from a Dirichlet(y).
©® For each document d, draw a topic z4 from a Categorical(0)

© For each document d, draw N4 words w4 from a Categorical(f3, )

Limitations:

e All words in each document are drawn from one specific topic distribution.

* This works if each document is exclusively about one topic, but if some
documents span more than one topic, then “blurred” topics must be learnt.
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NIPS dataset: LDA topics 1 to 7 out of 20.
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NIPS dataset: LDA topics 8 to 14 out of 20.
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NIPS dataset: LDA topics 15 to 20 out of 20.
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Latent Dirichlet Allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities
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Generative model for LDA

Topics Documents Topic proportions and
assignments
gene 0.04
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* Each topic is a distribution over words.
e Each document is a mixture of corpus-wide topics.
e Each word is drawn from one of those topics.
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The posterior distribution

. Topic proportions and
Topics Documents assignments
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e In reality, we only observe the documents.
* The other structure are hidden variables.
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The posterior distribution

. Topic proportions and
Topics Documents opic p qp orions
assignments
Seeking Life’s Bare (Genetic) Necessmes
¢ V| YORK— “
\_/
\_/—
\/_‘ * Genome Mapping and Sequenc- \ e
ing, c\m Snvmg Harbor, New York. Stripping down. Computer analysis yields an esti-
May mate of the minimum modern and ancient genomes.
SCIENCE = VOL. 172 = 24 MAY 1996
|
!
\_/

e Our goal is to infer the hidden variables.
* This means computing their distribution conditioned on the documents
p(topics, proportions, assignmentsldocuments)
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The LDA graphical model

Per document Observed
topic proportions word
Proportions Per word topic . Topic
parameter assignment Topics  parameter
i=1N k=1.K
d=1:D

* Nodes are random variables; edges indicate dependence.
* Shaded nodes indicate observed variables.
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The difference between mixture of categoricals and
LDA

oo ol e iio

A generative view of LDA

® For each document d draw a distribution 04 over topics from a Dirichlet().
® For each topic k draw a distribution B, over words from a Dirichlet(y).
© Draw a topic znq for the n-th word in document d from a Categorical(0)

© Draw word w4 from a Categorical(p, )
Differences with the mixture of categoricals model:

e In LDA, every word in a document can be drawn from a different topic,

* and every document has its own distribution over topics 04.
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The LDA inference problem

_____________________

“Always write down the probability of everything.” (Steve Gull)

p(ﬁl:K’ elzD’ {an}s {Wnd}h/’ OC)

K D Ny
=T TrBcv) TT [p(0ale) ] [P(znal®a)p(WnalBikszna)]
k=1 d=1 n—1

Learning involves computing the posterior over the parameters, B;.x and 61.p
given the words {w;, 4}, but this requires the we marginalize out the latent {z,, 4}.
How many configurations are there?

This computation is intractable.
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Gibbs to the Rescue

The posterior is intractable because there are too many possible latent {z,, 4}
Sigh, ... if only we knew the {znq4}...?

Which reminds us of Gibbs sampling ... could we sample each latent variable
given the values of the other ones?
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Refresher on Beta and Dirichlet

If we had a Beta(a, B) prior on a binary probability 7t, and observed k successes

and n — k failures, then the posterior probability
7 ~ Beta(a+ k&, +n—Xk),
and the predictive probability of success at the next experiment

oa+k

E[ﬂ} = m

Analogously, if we had a Dir(xy, ..., xx) on the parameter 7t of a multinomial,

and cy,...,cx observed counts of each value, the posterior is
7T ~ Dir(ag +¢1,...5 0 + Ck),s

and the predictive probability that the next item takes value j is:

o5 + ¢

T oecre
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Collapsed Gibbs sampler for LDA

In the LDA model, we can integrate out the parameters of the multinomial
distributions, 84 and f, and just keep the latent counts z,,4. This is called a
collapsed Gibbs sampler.

Recall, that the predictive distribution for a symmetric Dirichlet is given by
X+ Cq
Pty at e
j ot ¢
Now, for Gibbs sampling, we need the predictive distribution for a single z,,q
given all other z,, 4, ie, given all the counts except for the word n in document d.
The Gibbs update contains two parts, one from the topic distribution and one
from the word distribution:

o4 ck v+ ¢k
P(an = k|{Z7TLd}’ {W}a Y, (X) X K nd M B
Zcx+c) Z(y+6‘im)
j=1 m=1

where c*_, is the count of words from document d, excluding 1i, assigned to
topic k, and ¢*,, is the number of times word m was generated from topic k

(again, excluding the observation nd).
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Derivation of the collapsed Gibbs sampler

The probability of everything:

o)
z
(=9

P(B1:> 010 {znah (Wnally, &) Hp Bulv) [ [|p(0ale) [ T [P(znal®a)p(WnalBiixs zna)]
d=1

= n=1
What we want for Gibbs samplmg is:
P(an = kl{and}s {W}a Y, 0()

X P(an = kl{z—nd}, ) (Wnd|znd =k, {and}s {and}"Y)

atc Y+ c:_Wnd
K M
ZOC+C Z(‘Y_._Elim)
j= m=1
o (o + how often topic k occurs in doc d)(y + how often k generates W 4)
where c];nd def Z T(zn/q =j) and €, def Z TI(wnrgr =m) I(znrgr = k).
n’/#n (n/,d’)#(n,d)
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Per word Perplexity

In text modeling, performance is often given in terms of per word perplexity. The
perplexity for a document is given by

exp(—l/n),

where 1 is the joint log probability over the words in the document, and n is the
number of words. Note, that the average is done in the log space.

A perplexity of g corresponds to the uncertainty associated with a die with g
sides, which generates each new word.
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