Lecture 1 and 2: Probabilistic Regression

Machine Learning 4F13, Michaelmas 2015

Zoubin Ghahramani

Department of Engineering
University of Cambridge

http://mlg.eng.cam.ac.uk/teaching/4£13/

Ghahramani Lecture 1 and 2: Probabilistic Regression 1/38



Key concepts

e Linear in the parameters models

e the concept of a model

making predictions
least squares fitting
limitation: overfitting

e Likelihood and the concept of noise

Gaussian iid noise

maximum likelihood fitting

equivalence to least squares

motivation for inference with multiple hypotheses
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How do we fit this dataset?
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¢ Dataset D = {xn,yn}\_, of N pairs of inputs x,, and targets yn.
This data can for example be measurements in an experiment.

e Goal: predict target y. associated to any arbitrary input x..
This is known a as a regression task in machine learning.

e Note: Here the inputs are scalars, we have a single input feature.

Inputs to regression tasks are often vectors of multiple input features.
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Model of the data
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* In order to predict at a new x, we need to postulate a model of the data.
We will estimate y, with f(x.).

* But what is f(x)? Example: a polynomial
fw(x) = Wo+wix+wrx? +w3x® +... +wp xM

The w,,, are the weights of the polynomial, the parameters of the model.
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Model of the data. Example: polynomials of degree M

M=0  M=1 M=2  M=3 M=4 M=5
2l 2 2 2 2 2
oL o 0 0 0 0
2 2 -2 -2 -2 -2
-4 -4 -4 -4 -4 -4
1012 -1012 -1012 -1012 1012 -1012
M=6  M=7 M=8  M=9 M=10 M=11
2 2 2 2 2 2
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-2 -2 -2 -2 -2 -2
-4 -4 -4 -4 -4 -4
1012 -1012 -1012 -1012 -1012 -1012
M=12 M=13 M=14 M=15 M=16 M=17
2 2 2 2 2 2
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-2 -2 -2 -2 -2 -2
-4 -4 -4 -4 -4 -4
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Ghahramani

Lecture 1 and 2: Probabilistic Regression

5/38



Model structure and model parameters
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Should we choose a polynomial?

What degree should we choose for the polynomial?

For a given degree, how do we choose the weights?

model structure
model structure

model parameters

For now, let’s find the single “best” polynomial: degree and weights.

Ghahramani

Lecture 1 and 2: Probabilistic Regression

6/38



Fitting model parameters: the least squares approach

* Idea: measure the quality of the fit to the training data.
e For each training point, measure the squared error €% = (yn — f(xn))?.
* Find the parameters that minimise the sum of squared errors:

N
E(w) = ZefL
n=1

fw(x) is a function of the parameter vector w = [wo, Wi, ...,wml .
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Least squares in detail. (1) Notation

Some notation: training targets y, predictions f and errors e.

* y=1[yi,...,yn] ' isa vector that stacks the N training targets.

o f=[fy(x1),...,fw(xn)]" stacks fy(x) evaluated at the N training inputs.

e e =y — fis the vector of training prediction errors.
The sum of squared errors is therefore given by
Ew) = [lef* = e'e = (y—f)T(y—f)
More notation: weights w, basis functions ¢, (x) and matrix ®.

* w=[wg,wi,...,wml' stacks the M + 1 model weights.

* ¢ (x) =x™ is a basis function of our linear-in-the-parameters model.
M
fw(x) = Wol+wix+wr x> +... +wpx™ = Z Wi Gm(x)
m=0

e @, = Om(xn) allows us to write f = O w.
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Least squares in detail. (2) Solution

An Optimisation View. The sum of squared errors is a convex function of w:
Ew) = (y—0'(y—f) = y—0ow) ' (y-0w)
The gradient with respect to the weights is:

%\:) = 20T (y-®dw) = 20 y+20  dw

The weight vector w that sets the gradient to zero minimises E(w):

w= (oo 'o'y

A Geometrical View. This is the matrix form of the Normal equations.

* The vector of training targets y lives in an N-dimensional vector space.

* The vector of training predictions f lives in the same space, but it is
constrained to being generated by the M + 1 columns of matrix @.

* The error vector e is minimal if it is orthogonal to all columns of ®:

Ple=0 < O (y—dw) =0
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Least squares fit for polynomials of degree 0 to 17
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Have we solved the problem?

e Ok, so have we solved the problem?
e What do we think y, is for x, = —0.25? And for x, = 2?
e If M is large enough, we can find a model that fits the data.
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Overfitting
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e All the models in the figure are polynomials of degree 17 (18 weights).
e All perfectly fit the 17 training points, plus any desired y, at x, = —0.25.
* We have not solved the problem. Key missing ingredient: assumptions!
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Some open questions

* Do we think that all models are equally probable... before we see any data?

What does the probability of a model even mean?

* Do we need to choose a single “best” model or can we consider several?

We need a framework to answer such questions.

* Perhaps our training targets are contaminated with noise. What to do?

This question is a bit easier, we will start here.
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Observation noise
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* Imagine the data was in reality generated by the red function.

* But each f(x,) was independently contaminated by a noise term €,,.
* The observations are noisy: yn = fw(xn) + €n.

* We can characterise the noise with a probability density function.

For example a Gaussian density function, e ~ N(en; 0, 02..):
1 €2
Plen) = ———=cxp (55—
27 0'2 2 0-noise

noise
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Probability of the observed data given the model

A vector and matrix notation view of the noise.

* € =leq,...,en] " stacks the independent noise terms:

N 1 N ele
€~ N(G; Oa 0—1210isel) P(e) - (en) =\ —F/————
T]li[l ’ ( V 2m 0-n01se ) o ( 2 GH()lSe )

* Given that y = f + € we can write the probability of y given f:

1 N f||2
P(Y|f, Gﬁoise) - (y’ f 6“0156) - (72) eXp( HZY(T ” )

. noise
27-[ GHOISC

(e

/ 202
27 O'HOlse noise

¢ E(W)=Y N, (Yn — fw(xn))2=|y — @ w||* =€ e is the sum of squared errors
plylf, o%,.) for a given @.

* Since f = ® w we can write p(ylw, 02...) =
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Likelihood function

The likelihood of the parameters is the probability of the data given parameters.

* plylw, o2,..) is the probability of the observed data given the weights.
2 . ) is the likelihood of the weights.

noise

e L(w) xplylw, o

Maximum likelibhood:

* We can fit the model weights to the data by maximising the likelihood:

E(w)
2 g2

noise

W = argmax L(w) = argmax exp (— ) = argmin E(w)

e With an additive Gaussian independent noise model, the maximum
likelihood and the least squares solutions are the same.

* But... we still have not solved the prediction problem! We still overfit.
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Multiple explanations of the data

* We do not believe all models are equally probable to explain the data.
* We may believe a simpler model is more probable than a complex one.

Model complexity and uncertainty:

* We do not know what particular function generated the data.

* More than one of our models can perfectly fit the data.

* We believe more than one of our models could have generated the data.

* We want to reason in terms of a set of possible explanations, not just one.
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Key Concepts

e probability basics
e Example: Medical diagnosis
* joint, conditional and marginal probabilities
e the two rules of probability: sum and product rules
* Bayes rule
* Bayesian inference and prediction with finite regression models
e likelihood and prior
e posterior and predictive distribution
* the marginal likelihood

 Bayesian model selection
e Example: How Bayes avoids overfitting
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Medical inference (diagnosis)

Breast cancer facts:

* 1% of scanned women have breast cancer
* 80% of women with breast cancer get positive mammography scans
* 9.6% of women without breast cancer also get positive mammography scans

Question: A woman gets a scan, and it is positive; what is the probability that she
has breast cancer?

@ less than 1%
® around 10%
® around 90%
® more than 99%
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Medical inference

Breast cancer facts:

* 1% of scanned women have breast cancer
* 80% of women with breast cancer get positive mammography scans

* 9.6% of women without breast cancer also get positive mammography scans

Define: C = presence of breast cancer; C = no breast cancer.
M = scan is positive; M = scan is negative.

The probability of cancer for scanned women is p(C) = 1%
If there is cancer, the probability of a positive mammography is p(M|C) = 80%
If there is no cancer, we still have p(M|C) = 9.6%

The question is what is p(C|M)?
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Medical inference

What is p(C|M)?

Consider 10000 subjects of screening

* p(C) = 1%, therefore 100 of them have cancer, of which
* p(MJ|C) = 80%, therefore 80 get a positive mammography

¢ 20 get a negative mammography

e p(C) = 99%, therefore 9900 of them do not have cancer, of which

* p(M|C) = 9.6%, therefore 950 get a positive mammography
e 8950 get a negative mammography

M M
C| 80 | 20
C | 950 | 8950
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What is p(CIM)?

M M
C| 80 20
C | 950 | 8950

p(C|M) is obtained as the proportion of all positive mammographies for which
there actually is breast cancer

p(C,M) p(C,M) 80
CIM) = = = = ~ 7.8%
PEM) = e p M)~ p(M) 80+950

This is an example of Bayes’ rule:
p(BIAp(A)
p(B)
Which is just a consequence of the definition of conditional probability

p(A,B)
p(B) ’

p(A[B) =

p(AB) = (where p(B) # 0).
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Just two rules of probability theory

Astonishingly, the rich theory of probability can be derived using just two rules:

The sum rule states that

p(A) = ) p(A,B), or p(A) = JBP(A,B)dB,
B

for discrete and continuous variables. Sometimes called marginalization.

The product rule states that

P(A,B) = p(A[B)p(B).

It follows directly from the definition of conditional probability, and leads
directly to Bayes’ rule

P(BIA)p(A)

p(AB)p(B) = p(A,B) = p(BIA)p(A) = p(A[B) = (B)

Special case:
if A and B are independent, p(A|B) = p(A), and thus p(A,B) = p(A)p(B).
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Posterior probability of a function

Given the prior functions p(f) how can we make predictions?

e Of all functions generated from the prior, keep those that fit the data.
e The notion of closeness to the data is given by the likelihood p(ylf).
* We are really interested in the posterior distribution over functions:

pIf p(f) Bayes Rule

p(fly) =

| Ey g
-1.5 -1 -0.5 0 0.5 1 15 2 -1.5 -1 -0.5 0 0.5 1 15 2

Some samples from the prior Samples from the posterior
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Priors on parameters induce priors on functions

A model M is the choice of a model structure and of parameter values.

M
= Z Win Gm(x)
m=0
The prior p(w|M) determines what functions this model can generate. Example:
¢ Imagine we choose M = 17, and p(w,) = N(wy,; 0, 02).

e We have actually defined a prior distribution over functlons p (V).

This figure is generated as follows:

¢ Use polynomial basis functions,
bm(x) =x™. I
Define a uniform grid of n = 100
values in x from [—1.5,2].

¢ Generate matrix ® for M = 17.
* Draw wy,, ~N(0, 1).

e Compute and plot f = @, 15 w.
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Maximum likelihood, parametric model

Supervised parametric learning:

* data: x,y
e model M: y = fy(x) + ¢

Gaussian likelihood:

N
plyb,w, M) o [ exp(—3(yn — fw(xn))*/Onoise) -

n=1

Maximize the likelihood:

wmr = argmax p(ylx, w, M).
w

Make predictions, by plugging in the ML estimate:
P (y* |X*9 WML, M)
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Bayesian Inference, parametric model

Supervised parametric learning:

e data: x,y
* model M: y = fy(x) + ¢

Gaussian likelihood:

N
p(y|X, W, J\/{) [0 H CXP(—%(yn - fw(xn))z/o—ﬁoise)'

n=1

Parameter prior:
p(wiM)

Posterior parameter distribution by Bayes rule (p(a/b) = p(a)p(bla)/

p(WM)p(ylx, w, M)

p(W\X, Y, j\/[) ==
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Bayesian inference, parametric model, cont.

Posterior parameter distribution by Bayes rule (p(alb) = p(a)p(bla)/

P(WIM)p (v, w, M)

p(wix,y, M) =

Making predictions (marginalizing out the parameters):

p(y*‘x*’X9Y9 M) = J'p(y*’W|X9Ys X*’M)dw

- Jp(y*\w,x*,wp(wm,y,Mde.
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Posterior and predictive distribution in detail

For a linear-in-the-parameters model with Gaussian priors and Gaussian noise:

e Gaussian prior on the weights: p(w|M) = N(w; 0, 02 1)
e Gaussian likelibood of the weights: p(y|x, w, M) = N(y; ®w, o2 1)

noise

Posterior parameter distribution by Bayes rule p(alb) = p(a)p(bla)/p(b):

p(WIM)p(ylx, w, M)

p(wlx,y, M) = N(w; w, £)
o2 —1
L= ( niozlse(DTq)+o_721) and n = ((I)Tq)+ 8-0156 I) q)Ty

The predictive distribution is given by:

PY«lxe, X, 7, M) = N(ya3 d)(X*)TH, (I)(X*)TZ(I)(X*) + O_ﬁoise)
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Marginal likelihood

P(WIM)p (ylx, w, M)

p(wix,y, M) =

Marginal likelihood:

_ Jp(w|m)p(y|x,w, M)dw.

Second level inference: model comparison and Bayes’ rule again

p(Mly,x) = L PO p(OV).

plylx)
The is used to select between models.

For linear in the parameter models with Gaussian priors and noise:

= Jp(WIM)p(yIX,W,M)dW = N(y; 0,02 @@ + 02,1

noise
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Understanding the marginal likelihood (1). Models

Consider 3 models M, M, and M3. Given our data:

* We want to compute the marginal likelibood for each model.
* We want to obtain the predictive distribution for each model.

M
v ) }"‘li}\‘ % 1
"\\J "’\. g .,

)
N
4.

7

"}"\‘ c

“ .yc‘ NV
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Understanding the marginal likelihood (2). Noise

Consider a very simple noise model for y,, = f(xn) + €n

* ¢, ~ Uniform(—0.2,0.2) and all noise terms are independent.

[0 if lyn — f(xn)] > 0.2
plynlf(xn)) = { 1/0.4 =2.5 otherwise

* The likelihood of a given function from the prior is

|0 if for any n, [y, — f(xn)| > 0.2
p(ylf) = 1_-[ Pynlflen)) = { 2.5N  otherwise

We will approximate the marginal likelihood by Monte Carlo sampling:

S

Z (ylfs) =3 -2.5N

PyIM) = jp(ym (Ft,)

(J)\»—\

* A total of S functions are sampled from the prior p(fM;).

e f, is the s™ function sampled from the prior.

* S, is the number of samples with non-zero likelihood: these are accepted.
The remaining S — S, samples are rejected.
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Simple Monte Carlo

We can approximate integrals of the form

z = J f(x)p(x)dx,

where p(x) is a probability distribution, using a sum

N
1
z ~ TZf(X(t))’ where xY) ~ p(x).

t=1
As T — oo the approximation (under very mild conditions) converges to z.

This algorithm is called Simple Monte Carlo.
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Understanding the marginal likelihood (3). Posterior

Posterior samples for each of the models obtained by rejection sampling.

* For each model we draw 1 million samples from the prior.
* We only keep the samples that have non-zero likelihood.

Sa | Py M)

8

88

17

8 x 10~*

9x1073

2x 1073

Ghahramani

e

-4 -2 0

Lecture 1 and 2: Probabilistic Regression

34/38



Predictive distribution

Predictive distribution for each of the models obtained.

* For each model we take all the posterior functions from rejection sampling.
* We compute the average and standard deviation of f,(x).

2,
+
or £ #
L ‘ ‘ ‘ b TRV ‘
-6 -4 -2 0 2 4 6

-6 -4 -2 0 2 4 6
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Conclusions

Probability theory provides a framework for

* making inferences from data in a model

* making probabilistic predictions
It also provides a principled and automatic way of doing
* model comparison

In the following lectures, we’ll demonstrate how to use this framework to solve
challenging machine learning problems.
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Appendix: Some useful Gaussian identities

If x is multivariate Gaussian with mean p and covariance matrix X

P, I) = 2aZ) P 2exp (— (x—w) " (x—w)/2),
then

Ex] = n,
Vix] = E[(x—E[x])?] = £.

For any matrix A, if z = Ax then z is Gaussian and

Elz] = Ay,
Viz] = AZAT.
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Matrix and Gaussian identities cheat sheet
Matrix identities
* Matrix inversion lemma (Woodbury, Sherman & Morrison formula)
(Z+uwvht=z'—z'luw ' +viz-luytviz!
* A similar equation exists for determinants
1Z+uwVvT =z W] W+ VTZz 1y
The product of two Gaussian density functions

N(x]a, A) N(P" x|b, B) = z. N(x]c, C)

* is proportional to a Gaussian density function with covariance and mean
C=(A"'+pPBPT)"" c=C (A 'a+PB D)

* and has a normalizing constant z. that is Gaussian both in a and in b

ze=(2m) FB+PTAP[ Zexp(— %(b—PT a)" (B+PTAP) ' (b—PTa))
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