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A really simple document model

Consider a collection of D documents from a vocabulary of M words.

• Nd: number of words in document d.
• wnd: n-th word in document d (wnd ∈ {1 . . .M}).
• wnd ∼ Cat(β): each word is drawn from a discrete

categorical distribution with parameters β
• β = [β1, . . . ,βM]>: parameters of a categorical /

multinomial distribution1 over the M vocabulary
words.

wnd

n = 1...Nd

β

d = 1...D

1It’s a categorical distribution if we observe the sequence of words in the document, it’s a
multinomial if we only observe the counts.
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A really simple document model

Modelling D documents from a vocabulary of M unique words.

• Nd: number of words in document d.
• wnd: n-th word in document d (wnd ∈ {1 . . .M}).
• wnd ∼ Cat(β): each word is drawn from a discrete

categorical distribution with parameters β

wnd

n = 1...Nd

β

d = 1...D

We can fit β by maximising the likelihood:

β̂ = argmaxβ

D∏
d=1

Nd∏
n

Cat(wnd|β)

= argmaxβ Mult(c1, . . . , cM|β,N) β̂m =
cm

N
=

cm∑M
`=1 c`

• N =
∑D
d=1Nd: total number of words in the collection.

• cm =
∑D
d=1

∑Nd

n I(wnd = m): total count of vocabulary word m.

Ghahramani Lecture 12: Models for documents 3 / 16



Limitations of the really simple document model

• Document d is the result of sampling Nd words from the categorical
distribution with parameters β.

• β estimated by maximum likelihood reflects the aggregation of all
documents.

• All documents are therefore modelled by the global word frequency
distribution.

• This generative model does not specialise.
• We would like a model where different documents might be about different

topics.

Ghahramani Lecture 12: Models for documents 4 / 16



A mixture of categoricals model

wnd

n = 1...Nd

βk

d = 1...D

zdθ

k = 1...K

zd ∼ Cat(θ)

wnd|zd ∼ Cat(βzd
)

We want to allow for a mixture of K categoricals parametrised by β1, . . . ,βK.
Each of those categorical distributions corresponds to a document category.

• zd ∈ {1, . . . ,K} assigns document d to one of the K categories.
• θk = p(zd = k) is the probability any document d is assigned to category k.
• so θ = [θ1, . . . , θK] is the parameter of a categorical distribution over K

categories.

We have introduced a new set of hidden variables zd.

• How do we fit those variables? What do we do with them?
• Are these variables interesting? Or are we only interested in θ and β?
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A mixture of categoricals model: the likelihood

wnd

n = 1...Nd

βk

d = 1...D

zdθ

k = 1...K

zd ∼ Cat(θ)

wnd|zd ∼ Cat(βzd
)

p(w|θ,β) =

D∏
d=1

p(wd|θ,β)

=

D∏
d=1

K∑
k=1

p(wd, zd = k|θ,β)

=

D∏
d=1

K∑
k=1

p(zd = k|θ)p(wd|zd = k,βk)

=

D∏
d=1

K∑
k=1

p(zd = k|θ)

Nd∏
n=1

p(wnd|zd = k,βk)
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The Expectation Maximization (EM) algorithm

Given a set of observed (visible) variables V, a set of unobserved (hidden / latent /
missing) variables H, and model parameters θ, optimize the log likelihood:

L(θ) = logp(V |θ) = log
∫
p(H,V |θ)dH, (1)

where we have written the marginal for the visibles in terms of an integral over
the joint distribution for hidden and visible variables.

Using Jensen’s inequality for any distribution of hidden states q(H) we have:

L(θ) = log
∫
q(H)

p(H,V |θ)
q(H)

dH >
∫
q(H) log

p(H,V |θ)
q(H)

dH = F(q, θ), (2)

defining the F(q, θ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q, θ) wrt q and θ, and we can
prove that this will never decrease L(θ).
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Jensen’s Inequality

For any concave function, such as log(x)

log(x) 

 x
1

 α x
1
 + (1−α)x

2
 x

2

 α log(x
1
) + (1−α) log(x

2
)

 log(α x
1
 + (1−α) x

2
)

For αi > 0,
∑
i αi = 1 and any {xi > 0}

log
(∑
i

αixi
)

>
∑
i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).
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The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =

∫
q(H) log

p(H,V |θ)
q(H)

dH =

∫
q(H) logp(H,V |θ)dH+H(q), (3)

where H(q) = −

∫
q(H) logq(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, θ) wrt the distribution over hidden variables given the
parameters:

q(k)(H) := argmax
q(H)

F
(
q(H), θ(k−1)). (4)

M step: maximize F(q, θ) wrt the parameters given the hidden distribution:

θ(k) := argmax
θ

F
(
q(k)(H), θ

)
= argmax

θ

∫
q(k)(H) logp(H,V |θ)dH, (5)

which is equivalent to optimizing the expected complete-data likelihood
p(H,V |θ), since the entropy of q(H) does not depend on θ.

Ghahramani Lecture 12: Models for documents 9 / 16



EM as Coordinate Ascent in F
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The EM algorithm never decreases the log likelihood

The difference between the objective functions:

L(θ) − F(q, θ) = logp(V |θ) −
∫
q(H) log

p(H,V |θ)
q(H)

dH

= logp(V |θ) −
∫
q(H) log

p(H|V, θ)p(V |θ)
q(H)

dH

= −

∫
q(H) log

p(H|V, θ)
q(H)

dH = KL
(
q(H),p(H|V, θ)

)
,

is called the Kullback-Liebler divergence; it is non-negative and zero if and only if
q(H) = p(H|V, θ) (thus this is the E step). Although we are optimising a lower
bound, F, the likelihood L is still increased in every iteration:

L
(
θ(k−1)) =

E step
F
(
q(k), θ(k−1)) 6

M step
F
(
q(k), θ(k)

)
6

Jensen
L
(
θ(k)

)
,

where the first equality holds because of the E step, and the first inequality comes
from the M step and the final inequality from Jensen. Usually EM converges to a
local optimum of L (although there are exceptions).
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EM and Mixtures of Categoricals

In the mixture model, the likelihood is:

p(w|θ,β) =
∏D
d=1

∑K
k=1 p(zd = k|θ)

∏Nd

n=1 p(wnd|zd = k,βk)

E-step: for each d, set q to the posterior (where cmd =
∑Nd

n=1 I(wnd = m)):

q(zd = k) ∝ p(zd = k|θ)

Nd∏
n=1

p(wnd|βk,wn) = θk Mult(c1d, . . . , cMd|βk,Nd)
def
= rkd

M-step: Maximize
D∑
d=1

K∑
k=1

q(zd = k) logp(w, zd)=
∑
k,d

rkd log

[
p(zd = k|θ)

Nd∏
n=1

p(wnd|βk,wnd
)

]

=
∑
k,d

rkd

(
log

M∏
m=1

βcmd

km + log θk
)

=
∑
k,d

rkd(

M∑
m=1

cmd logβkm + log θk)
def
= F(R, θ,β)
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EM: M step for mixture model

F(R, θ,β) =
∑
k,d

rkd(

M∑
m=1

cmd logβkm + log θk)

Need Lagrange multipliers to constrain the maximization of F and ensure proper
distributions.

θ̂k ← argmaxθk
F(R, θ,β) + λ(1 −

K∑
k′=1

θk′)

=

∑D
d=1 rkd∑K

k′=1

∑D
d=1 rk′d

=

∑D
d=1 rkd

D

β̂km ← argmaxβkm
F(R, θ,β) +

K∑
k′=1

λk′(1 −

M∑
m′=1

βk′m′)

=

∑D
d=1 rkdcmd∑M

m′=1

∑D
d=1 rkdcm′d
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A Bayesian mixture of categoricals model

wnd

n = 1...Nd

βk

d = 1...D

zdθ

k = 1...K

α !
θ ∼ Dir(α)

βk ∼ Dir(γ)

zd|θ ∼ Cat(θ)

wnd|zd,β ∼ Cat(βzd
)

With the EM algorithm we have essentially estimated θ and β by maximum
likelihood. An alternative, Bayesian treatment infers these parameters starting
from priors, e.g.:

• θ ∼ Dir(α) is a symmetric Dirichlet over category probabilities.
• βk ∼ Dir(γ) are symmetric Dirichlets over vocabulary probabilities.

What is different?

• We no longer want to compute a point estimate of θ or β.
• We are now interested in computing the posterior distributions.
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Variational Bayesian Learning

Lower Bounding the Marginal Likelihood

Let the hidden latent variables be x, data y and the parameters θ.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s
inequality:

logP(y) = log
∫
dxdθ P(y, x,θ) |m

= log
∫
dxdθ Q(x,θ)

P(y, x,θ)
Q(x,θ)

>
∫
dxdθ Q(x,θ) log

P(y, x,θ)
Q(x,θ)

.

Use a simpler, factorised approximation to Q(x,θ):

logP(y) >
∫
dxdθ Qx(x)Qθ(θ) log

P(y, x,θ)
Qx(x)Qθ(θ)

= F(Qx(x),Qθ(θ), y).

Maximize this lower bound.
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Variational Bayesian Learning . . .

Maximizing this lower bound, F, leads to EM-like updates:

Q∗x(x) ∝ exp 〈logP(x,y|θ)〉Qθ(θ) E−like step

Q∗θ(θ) ∝ P(θ) exp 〈logP(x,y|θ)〉Qx(x) M−like step

Maximizing F is equivalent to minimizing KL-divergence between the
approximate posterior, Q(θ)Q(x) and the true posterior, P(θ, x|y).

logP(y) − F(Qx(x),Qθ(θ), y) =

logP(y) −
∫
dxdθ Qx(x)Qθ(θ) log

P(y, x,θ)
Qx(x)Qθ(θ)

=∫
dxdθ Qx(x)Qθ(θ) log

Qx(x)Qθ(θ)

P(x,θ|y)
= KL(Q||P)
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