Key concepts

- Bernoulli: probabilities over binary variables
- Binomial: probabilities over counts and binary sequences
- Inference, priors and pseudo-counts, the Beta distribution
- Model comparison: an example
Coin tossing

• You are presented with a coin: what is the probability of heads?
 What does this question even mean?

• How much are you willing to bet \(p(\text{head}) > 0.5 \)?
 Do you expect this coin to come up heads more often than tails?
 Wait... can you toss the coin a few times, I need data!

• Ok, you observe the following sequence of outcomes (T: tail, H: head):
 H
 This is not enough data!

• Now you observe the outcome of three additional tosses:
 HHTH
 How much are you now willing to bet \(p(\text{head}) > 0.5 \)?
The Bernoulli discrete binary distribution

The Bernoulli probability distribution over binary random variables:

- Binary random variable \(X \): outcome \(x \) of a single coin toss.
- The two values \(x \) can take are
 - \(X = 0 \) for tail,
 - \(X = 1 \) for heads.
- Let the probability of heads be \(\pi = p(X = 1) \).
 \(\pi \) is the parameter of the Bernoulli distribution.
- The probability of tail is \(p(X = 0) = 1 - \pi \). We can compactly write

\[
p(X = x|\pi) = p(x|\pi) = \pi^x(1-\pi)^{1-x}
\]

What do we think \(\pi \) is after observing a single heads outcome?

- Maximum likelihood! Maximise \(p(H|\pi) \) with respect to \(\pi \):

\[
p(H|\pi) = p(x = 1|\pi) = \pi, \quad \arg\max_{\pi \in [0,1]} \pi = 1
\]

- Ok, so the answer is \(\pi = 1 \). This coin only generates heads.

Is this reasonable? How much are you willing to bet \(p(\text{heads}) > 0.5 \)?
The binomial distribution: counts of binary outcomes

We observe a sequence of tosses rather than a single toss:

HHTH

• The probability of this particular sequence is: \(p(\text{HHTH}) = \pi^3(1 - \pi) \).
• But so is the probability of THHH, of HTHH and of HHHT.
• We often don’t care about the order of the outcomes, only about the counts. In our example the probability of 3 heads out of 4 tosses is: \(4\pi^3(1 - \pi) \).

The \textit{binomial distribution} gives the probability of observing \(k \) heads out of \(n \) tosses

\[
p(k|\pi, n) = \binom{n}{k} \pi^k (1 - \pi)^{n-k}
\]

• This assumes \(n \) independent tosses from a Bernoulli distribution \(p(x|\pi) \).
• \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \) is the binomial coefficient, also known as “\(n \) choose \(k \)”.
Maximum likelihood under a binomial distribution

If we observe \(k \) heads out of \(n \) tosses, what do we think \(\pi \) is?
We can maximise the likelihood of parameter \(\pi \) given the observed data.

\[
p(k|\pi, n) \propto \pi^k (1 - \pi)^{n-k}
\]

It is convenient to take the logarithm and derivatives with respect to \(\pi \)

\[
\log p(k|\pi, n) = k \log \pi + (n - k) \log(1 - \pi) + \text{Constant}
\]

\[
\frac{\partial \log p(k|\pi, n)}{\partial \pi} = \frac{k}{\pi} - \frac{n - k}{1 - \pi} = 0 \iff \pi = \frac{k}{n}
\]

Is this reasonable?

• For HHTH we get \(\pi = 3/4 \).

• How much would you bet now that \(p(\text{heads}) > 0.5 \)?

What do you think \(p(\pi > 0.5) \) is?

Wait! This is a probability over ... a probability?
So you have observed 3 heads out of 4 tosses but are unwilling to bet £100 that $p(\text{heads}) > 0.5$?

(That for example out of 10,000,000 tosses at least 5,000,001 will be heads)

Why?

- You might believe that coins tend to be fair ($\pi \simeq \frac{1}{2}$).
- A finite set of observations updates your opinion about π.
- But how to express your opinion about π before you see any data?

Pseudo-counts: You think the coin is fair and... you are...

- Not very sure. You act as if you had seen 2 heads and 2 tails before.
- Pretty sure. It is as if you had observed 20 heads and 20 tails before.
- Totally sure. As if you had seen 1000 heads and 1000 tails before.

Depending on the strength of your prior assumptions, it takes a different number of actual observations to change your mind.
The Beta distribution: distributions on \textit{probabilities}

Continuous probability distribution defined on the interval \([0, 1]\)

\[
\text{Beta}(\pi|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{\alpha-1}(1 - \pi)^{\beta-1} = \frac{1}{B(\alpha, \beta)} \pi^{\alpha-1}(1 - \pi)^{\beta-1}
\]

• \(\alpha > 0\) and \(\beta > 0\) are the shape \textit{parameters}.
• these parameters correspond to ‘one plus the pseudo-counts’.
• \(\Gamma(\alpha)\) is an extension of the factorial function\(^1\). \(\Gamma(n) = (n - 1)!\) for integer \(n\).
• \(B(\alpha, \beta)\) is the beta function, it normalises the Beta distribution.
• The mean is given by \(\mathbb{E}(\pi) = \frac{\alpha}{\alpha + \beta}\). \([\text{Left: } \alpha = \beta = 1, \text{ Right: } \alpha = \beta = 3]\)

\[1\Gamma(\alpha) = \int_0^{\infty} x^{\alpha-1} e^{-x} \, dx\]
Posterior for coin tossing

Imagine we observe a single coin toss and it comes out heads. Our observed data is:

\[\mathcal{D} = \{ k = 1 \}, \quad \text{where} \quad n = 1. \]

The probability of the observed data given \(\pi \) is the likelihood:

\[p(\mathcal{D} | \pi) = \pi \]

We use our prior \(p(\pi | \alpha, \beta) = \text{Beta}(\pi | \alpha, \beta) \) to get the posterior probability:

\[
p(\pi | \mathcal{D}) = \frac{p(\pi | \alpha, \beta) p(\mathcal{D} | \pi)}{p(\mathcal{D})} \propto \pi \, \text{Beta}(\pi | \alpha, \beta)
\]

\[
\propto \pi \pi^{(\alpha - 1)} (1 - \pi)^{(\beta - 1)} \propto \text{Beta}(\pi | \alpha + 1, \beta)
\]

The Beta distribution is a *conjugate* prior to the Bernoulli/binomial distribution:

- The resulting posterior is also a Beta distribution.
- The posterior parameters are given by:
 \[
 \alpha_{\text{posterior}} = \alpha_{\text{prior}} + k
 \quad \text{and} \quad
 \beta_{\text{posterior}} = \beta_{\text{prior}} + (n - k)
 \]
Before and after observing one head

Prior

Posterior

Carl Edward Rasmussen

Discrete Binary Distributions

November 11th, 2016
Making predictions

Given some data \mathcal{D}, what is the predicted probability of the next toss being heads, $x_{\text{next}} = 1$?

Under the Maximum Likelihood approach we predict using the value of π_{ML} that maximises the likelihood of π given the observed data, \mathcal{D}:

$$p(x_{\text{next}} = 1|\pi_{\text{ML}}) = \pi_{\text{ML}}$$

With the Bayesian approach, average over all possible parameter settings:

$$p(x_{\text{next}} = 1|\mathcal{D}) = \int p(x = 1|\pi) p(\pi|\mathcal{D}) d\pi$$

The prediction for heads happens to correspond to the mean of the posterior distribution. E.g. for $\mathcal{D} = \{(x = 1)\}$:

- Learner A with Beta$(1, 1)$ predicts $p(x_{\text{next}} = 1|\mathcal{D}) = \frac{2}{3}$
- Learner B with Beta$(3, 3)$ predicts $p(x_{\text{next}} = 1|\mathcal{D}) = \frac{4}{7}$
Making predictions - other statistics

Given the posterior distribution, we can also answer other questions such as “what is the probability that \(\pi > 0.5 \) given the observed data?”

\[
p(\pi > 0.5 | \mathcal{D}) = \int_{0.5}^{1} p(\pi' | \mathcal{D}) \, d\pi' = \int_{0.5}^{1} \text{Beta}(\pi' | \alpha', \beta') \, d\pi'
\]

- Learner A with prior \(\text{Beta}(1, 1) \) predicts \(p(\pi > 0.5 | \mathcal{D}) = 0.75 \)
- Learner B with prior \(\text{Beta}(3, 3) \) predicts \(p(\pi > 0.5 | \mathcal{D}) = 0.66 \)
Consider two alternative models of a coin, “fair” and “bent”. A priori, we may think that “fair” is more probable, eg:

\[p(\text{fair}) = 0.8, \quad p(\text{bent}) = 0.2 \]

For the bent coin, (a little unrealistically) all parameter values could be equally likely, where the fair coin has a fixed probability:
We make 10 tosses, and get data $\mathcal{D}:$ T H T H T T T T T T
The evidence for the fair model is: $p(\mathcal{D}|\text{fair}) = (1/2)^{10} \approx 0.001$
and for the bent model:

$$p(\mathcal{D}|\text{bent}) = \int p(\mathcal{D}|\pi, \text{bent}) p(\pi|\text{bent}) \, d\pi = \int \pi^2 (1 - \pi)^8 \, d\pi = \text{B}(3, 9) \approx 0.002$$

Using priors $p(\text{fair}) = 0.8,$ $p(\text{bent}) = 0.2,$ the posterior by Bayes rule:

$$p(\text{fair}|\mathcal{D}) \propto 0.0008, \quad p(\text{bent}|\mathcal{D}) \propto 0.0004,$$

ie, two thirds probability that the coin is fair.

How do we make predictions? By weighting the predictions from each model by their probability. Probability of Head at next toss is:

$$\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{3}{12} = \frac{5}{12}.$$