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Key concepts

* Bernoulli: probabilities over binary variables
e Binomial: probabilities over counts and binary sequences
e Inference, priors and pseudo-counts, the Beta distribution

* model comparison: an example
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Coin tossing

* You are presented with a coin: what is the probability of heads?
What does this question even mean?

How much are you willing to bet p(head) > 0.5?
Do you expect this coin to come up heads more often that tails?
Wait... can you toss the coin a few times, I need data!

Ok, you observe the following sequence of outcomes (T: tail, H: head):
H
This is not enough data!

Now you observe the outcome of three additional tosses:
HHTH
How much are you now willing to bet p(head) > 0.5?
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The Bernoulli discrete binary distribution

The Bernoulli probability distribution over binary random variables:
* Binary random variable X: outcome x of a single coin toss.

e The two values x can take are
e X =0 for tail,
e X =1 for heads.

* Let the probability of heads be t=p(X = 1).
7t is the parameter of the Bernoulli distribution.

e The probability of tail is p(X = 0) = 1 — 7t. We can compactly write

p(X=xlm) = p(xln) = w(1—m)'

What do we think 7t is after observing a single heads outcome?

* Maximum likelihood! Maximise p(H|7t) with respect to 7t
p(Hlm) = p(x=1n) = m«, argmax, .o 7= 1

* Ok, so the answer is 7t = 1. This coin only generates heads.
Is this reasonable? How much are you willing to bet p(heads)>0.5¢
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The binomial distribution: counts of binary outcomes

We observe a sequence of tosses rather than a single toss:
HHTH

e The probability of this particular sequence is: p(HHTH) = (1 — 7).
* But so is the probability of THHH, of HTHH and of HHHT.

* We often don’t care about the order of the outcomes, only about the counts.
In our example the probability of 3 heads out of 4 tosses is: 473(1 — 7).

The binomial distribution gives the probability of observing k heads out of n
tosses

plkimn) = (1)1 —m" "

* This assumes 1 independent tosses from a Bernoulli distribution p(x|7).

n . . . .
. ( k) = ﬁlk)' is the binomial coefficient, also known as “n choose k”.
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Maximum likelihood under a binomial distribution

If we observe k heads out of n tosses, what do we think 7 is?
We can maximise the likelihood of parameter 7 given the observed data.

p(klmn) o (1 —m)nk

It is convenient to take the logarithm and derivatives with respect to 7t

logp(klm,n) = klogm+ (n—k)log(1 — 7t) + Constant

ol -
dlogp(mn) _ k n—k_ [k
om n l—-=m n

Is this reasonable?
¢ For HHTH we get m = 3/4.

* How much would you bet now that p(heads) > 0.5?
What do you think p(mt > 0.5)is?¢
Wait! This is a probability over ... a probability?
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Prior beliefs about coins — before tossing the coin

So you have observed 3 heads out of 4 tosses but are unwilling to bet £100 that
p(heads) > 0.5?
(That for example out of 10,000,000 tosses at least 5,000,001 will be heads)

Why?
* You might believe that coins tend to be fair (71 ~ %)
e A finite set of observations updates your opinion about 7.
e But how to express your opinion about 7t before you see any data?

Pseudo-counts: You think the coin is fair and... you are...
* Not very sure. You act as if you had seen 2 heads and 2 tails before.
* Pretty sure. It is as if you had observed 20 heads and 20 tails before.
e Totally sure. As if you had seen 1000 heads and 1000 tails before.

Depending on the strength of your prior assumptions, it takes a different number
of actual observations to change your mind.
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The Beta distribution: distributions on probabilities

Continuous probability distribution defined on the interval [0, 1]

Mo+ B) ac1pq p—1 _ a—1¢q _ \p—1
Feorp) ™ ™ Blop)” ™

* o« >0 and B > 0 are the shape parameters.

Beta(mtot, B) =

* these parameters correspond to ‘one plus the pseudo-counts’.

* T'(«) is an extension of the factorial function'. I'(n) = (n — 1)! for integer 1.
* B(x, B) is the beta function, it normalises the Beta distribution.

* The mean is given by E(n) = %5. [Left: « = B =1, Right: a« = 3 = 3]

Beta(1,1) Beta(3,3)

0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
o n

9] 1 -
IM(a) =[x Te >dx
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Posterior for coin tossing

Imagine we observe a single coin toss and it comes out heads. Our observed data

is:
D = {k=1}, where n=1.

The probability of the observed data given 7t is the likelibood:
p(Dlm) = =
We use our prior p(mle, p) = Beta(mtx, B) to get the posterior probability:

p(mx, B)p(Dlm)

p(7D) (D)

oc 7t Beta(m|ex, B)

o mn* V(1 —m) B « Beta(moa+1,p)

The Beta distribution is a conjugate prior to the Bernoulli/binomial distribution:
* The resulting posterior is also a Beta distribution.

. . 04 ior = Xprior T K
* The posterior parameters are given by: PO prior
Bposterior = Bprior + (Tl - k)
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Before and after observing one head
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Making predictions

Given some data D, what is the predicted probability of the next toss being

heads, Xpext = 17
Under the Maximum Likelihood approach we predict using the value of 7y that

maximises the likelihood of 7 given the observed data, D:

P (Xnexe = 1mtmr) = mmr

With the Bayesian approach, average over all possible parameter settings:
Pl = 11D) = [ plox = 1) pliD) dre

The prediction for heads happens to correspond to the mean of the posterior
distribution. E.g. for D ={(x = 1)}:
e Learner A with Beta(1, 1) predicts p(Xpexe = 1|D) =
* Learner B with Beta(3, 3) predicts p(Xpexe = 1|D) =

NI Qoo
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Making predictions - other statistics

Given the posterior distribution, we can also answer other questions such as
“what is the probability that 7t > 0.5 given the observed data?”

1

1
p(t > 0.5|D) = J p('|D)dn’ = J Beta(7t'|o/, B/)dm’
0.5 0.5

* Learner A with prior Beta(1, 1) predicts p(7t > 0.5|D) = 0.75
* Learner B with prior Beta(3, 3) predicts p(7t > 0.5|D) = 0.66
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Learning about a coin, multiple models (1)

Consider two alternative models of a coin, “fair” and “bent”. A priori, we may
think that “fair” is more probable, eg:

p(fair) = 0.8, p(bent) = 0.2

For the bent coin, (a little unrealistically) all parameter values could be equally
likely, where the fair coin has a fixed probability:

1 1
=08 ~0.8
o 8
506 06
904 204

0.2 0.2

% 05 1 % 0.5 1
parameter, q parameter, q
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Learning about a coin, multiple models (2)

We make 10 tosses, and get data D: THTHTTTTTT
The evidence for the fair model is: p(Dlfair) = (1/2)'° ~ 0.001
and for the bent model:

p(Dlbent) = J'p(Dln, bent)p(7mibent) dmt = an(l —m)® dmr=B(3,9) ~ 0.002

Using priors p(fair) = 0.8, p(bent) = 0.2, the posterior by Bayes rule:
p(fair|D) o< 0.0008, p(bent|D) x 0.0004,

ie, two thirds probability that the coin is fair.
How do we make predictions? By weighting the predictions from each model by
their probability. Probability of Head at next toss is:

2 1,1 3 _s
372 3712 12°
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